You are here

Cathodic polarization response of simulated prestressed concrete piles exposed to natural sea water

Download pdf | Full Screen View

Date Issued:
1992
Summary:
Experiments were conducted to determine the effectiveness of localized cathodic polarization for reducing corrosion of simulated prestressed concrete piles containing admixed calcium chloride and exposed to a simulated sea water tidal cycle. The specimens contained both continuous and segmented steel tendons, the purpose of the latter being to facilitate measurement of cathodic protection current. Conductive rubber in an impressed current system was used as the anode material. The specimens were initially freely corroded and then cathodically polarized at a constant current ranging from 0.5 to 1 mA/m$\sp2$ which corresponded to potentials (current-on) which ranged from $-$0.500 to $-$1.100 V(sce) in the anode region. The magnitude of impressed current and its distribution along the embedded steel was monitored as a function of exposure time, level of polarization and water levels. Current-on and instant-off potential distribution for both the continuous and segmented tendons were also measured. The level of cathodic polarization was assessed as a function of position along the specimens by the depolarization method. The results were evaluated within the context of marine bridge substructure cathodic protection technology.
Title: Cathodic polarization response of simulated prestressed concrete piles exposed to natural sea water.
47 views
8 downloads
Name(s): Chaix, Olivier.
Florida Atlantic University, Degree grantor
Hartt, William H., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1992
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 140 p.
Language(s): English
Summary: Experiments were conducted to determine the effectiveness of localized cathodic polarization for reducing corrosion of simulated prestressed concrete piles containing admixed calcium chloride and exposed to a simulated sea water tidal cycle. The specimens contained both continuous and segmented steel tendons, the purpose of the latter being to facilitate measurement of cathodic protection current. Conductive rubber in an impressed current system was used as the anode material. The specimens were initially freely corroded and then cathodically polarized at a constant current ranging from 0.5 to 1 mA/m$\sp2$ which corresponded to potentials (current-on) which ranged from $-$0.500 to $-$1.100 V(sce) in the anode region. The magnitude of impressed current and its distribution along the embedded steel was monitored as a function of exposure time, level of polarization and water levels. Current-on and instant-off potential distribution for both the continuous and segmented tendons were also measured. The level of cathodic polarization was assessed as a function of position along the specimens by the depolarization method. The results were evaluated within the context of marine bridge substructure cathodic protection technology.
Identifier: 14865 (digitool), FADT14865 (IID), fau:11651 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1992.
Subject(s): Corrosion and anti-corrosives
Sea-water corrosion
Offshore structures
Reinforced concrete--Deterioration
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14865
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.