You are here

Development of a controller for a Stewart platform

Download pdf | Full Screen View

Date Issued:
1992
Summary:
A Stewart platform is a six degree of freedom robot manipulator with its six links arranged in a parallel configuration. A dynamic model for the plant of each link, which consists of an amplifier, an electrohydraulic servo valve, and a hydraulic actuator, is found from open-loop step and frequency responses. To determine a model for the complete closed loop system, integrators located in the link input and feedback paths were added to the plant's model. PID controllers were designed to increase the system's bandwidth. Once control of the individual links was achieved, control algorithms were developed to control the motion of Stewart platform. The algorithm would move the platform through its initialization sequence, then control platform velocity, as dictated by the user.
Title: Development of a controller for a Stewart platform.
221 views
39 downloads
Name(s): Marquis, Lawrence Paul.
Florida Atlantic University, Degree grantor
Masory, Oren, Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1992
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 96 p.
Language(s): English
Summary: A Stewart platform is a six degree of freedom robot manipulator with its six links arranged in a parallel configuration. A dynamic model for the plant of each link, which consists of an amplifier, an electrohydraulic servo valve, and a hydraulic actuator, is found from open-loop step and frequency responses. To determine a model for the complete closed loop system, integrators located in the link input and feedback paths were added to the plant's model. PID controllers were designed to increase the system's bandwidth. Once control of the individual links was achieved, control algorithms were developed to control the motion of Stewart platform. The algorithm would move the platform through its initialization sequence, then control platform velocity, as dictated by the user.
Identifier: 14849 (digitool), FADT14849 (IID), fau:11636 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1992.
Subject(s): Manipulators (Mechanism)
Robots--Control systems
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14849
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.