You are here
Using a cerebellar model arithmetic computer (CMAC) neural network to control an autonomous underwater vehicle
- Date Issued:
- 1991
- Summary:
- The design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, roll angle, and yaw angle. Properties of CMAC and results of computer simulations for identification and control of the AUV model are presented.
Title: | Using a cerebellar model arithmetic computer (CMAC) neural network to control an autonomous underwater vehicle. |
![]() ![]() |
---|---|---|
Name(s): |
Comoglio, Rick F. Florida Atlantic University, Degree grantor Pandya, Abhijit S., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1991 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 145 p. | |
Language(s): | English | |
Summary: | The design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, roll angle, and yaw angle. Properties of CMAC and results of computer simulations for identification and control of the AUV model are presented. | |
Identifier: | 14762 (digitool), FADT14762 (IID), fau:11553 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.C.E.)--Florida Atlantic University, 1991. |
|
Subject(s): |
Neural networks (Computer science) Artificial intelligence Submersibles--Automatic control |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14762 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |