You are here

Dependence of spectroscopic and electrochemical properties of dimolybdenum multiimine complexes on ligand structure

Download pdf | Full Screen View

Date Issued:
1991
Summary:
The complexes MoX4(Multiimine)2, where X = Cl, Br, I and Multiimine = dimethyl-bipyridine, bipyridine, phenanthroline, bipyrazine, bipyridazine and bipyrimidine, have been prepared. The product complexes apparently contain non-bridged quadruple molybdenum-molybdenum bonds. Each molybdenum is coordinated to a bidentate diimine and two halogen atoms. An electronic absorption study reveals an important trend that the intensity of the delta-->delta* transition increases with decreasing energy. This shows the energy of this band is determined by mixing of this transition with a metal-to-ligand charge transfer transition. An EEC type mechanism is proposed for the redox behavior of these compounds on the basis of an electrochemical study and some consistent results are obtained by correlating the oxidation potentials with the delta-->delta* transition energies. Also, fairly good correlations of both the delta-->delta* transition energies and the oxidation potentials with pk(a) of L are obtained.
Title: Dependence of spectroscopic and electrochemical properties of dimolybdenum multiimine complexes on ligand structure.
63 views
13 downloads
Name(s): Yang, Fengli
Florida Atlantic University, Degree Grantor
Baird, Donald M., Thesis Advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1991
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 94 p.
Language(s): English
Summary: The complexes MoX4(Multiimine)2, where X = Cl, Br, I and Multiimine = dimethyl-bipyridine, bipyridine, phenanthroline, bipyrazine, bipyridazine and bipyrimidine, have been prepared. The product complexes apparently contain non-bridged quadruple molybdenum-molybdenum bonds. Each molybdenum is coordinated to a bidentate diimine and two halogen atoms. An electronic absorption study reveals an important trend that the intensity of the delta-->delta* transition increases with decreasing energy. This shows the energy of this band is determined by mixing of this transition with a metal-to-ligand charge transfer transition. An EEC type mechanism is proposed for the redox behavior of these compounds on the basis of an electrochemical study and some consistent results are obtained by correlating the oxidation potentials with the delta-->delta* transition energies. Also, fairly good correlations of both the delta-->delta* transition energies and the oxidation potentials with pk(a) of L are obtained.
Identifier: 14724 (digitool), FADT14724 (IID), fau:11515 (fedora)
Note(s): Thesis (M.S.)--Florida Atlantic University, 1991.
Subject(s): Molybdenum
Diffusion bonding (Metals)
Ligand binding (Biochemistry)
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14724
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.