You are here
Solids hydrodynamics and heat transfer to in-line and staggered tube banks in large particle fluidized beds
- Date Issued:
- 1990
- Summary:
- A Computer Automated Radioactive Particle Tracking (CARPT) facility was designed and implemented for the investigation of hydrodynamics in two phase flows. This facility was complemented by a versatile fluidized bed facility capable of handling high air flow rates. Solids mean dynamic behavior and heat transfer to internals in a 29.21 cm diameter fluidized bed were investigated for different operating conditions. Different flow parameters like the solids ensemble-averaged velocity, stagnancy and the phase density in the presence of horizontal tubes were determined using the CARPT facility. Local circumferential variations of heat transfer coefficients at the surface of horizontal tubes were measured at different locations in a large particle fluidized bed using a miniature heat transfer probe assembly. The influence of solids hydrodynamics on the heat transfer coefficient in gas-fluidized beds was investigated. The data obtained in the present study was compared to current heat transfer models for large particle gas-fluidized beds.
Title: | Solids hydrodynamics and heat transfer to in-line and staggered tube banks in large particle fluidized beds. |
75 views
19 downloads |
---|---|---|
Name(s): |
Darda, Monish M. Florida Atlantic University, Degree grantor Moslemian, Davood, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1990 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 201 p. | |
Language(s): | English | |
Summary: | A Computer Automated Radioactive Particle Tracking (CARPT) facility was designed and implemented for the investigation of hydrodynamics in two phase flows. This facility was complemented by a versatile fluidized bed facility capable of handling high air flow rates. Solids mean dynamic behavior and heat transfer to internals in a 29.21 cm diameter fluidized bed were investigated for different operating conditions. Different flow parameters like the solids ensemble-averaged velocity, stagnancy and the phase density in the presence of horizontal tubes were determined using the CARPT facility. Local circumferential variations of heat transfer coefficients at the surface of horizontal tubes were measured at different locations in a large particle fluidized bed using a miniature heat transfer probe assembly. The influence of solids hydrodynamics on the heat transfer coefficient in gas-fluidized beds was investigated. The data obtained in the present study was compared to current heat transfer models for large particle gas-fluidized beds. | |
Identifier: | 14576 (digitool), FADT14576 (IID), fau:11373 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1990. |
|
Subject(s): |
Heat--Transmission Hydrodynamics Fluidization |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14576 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |