You are here
Development of a discrete time multivariable system identification technique
- Date Issued:
- 1989
- Summary:
- An identification scheme which can be used for discrete time multi-input multi-output time invariant systems is presented. The identification scheme involves two steps; (1) The identification of a set of invariant indices (Structure identification) and (2) The estimation of the parameters of the system (Parametric identification). The technique utilizes a canonical representation of a system which is based on the notion of output injection. This canonical form is dependent on a chosen real number alpha and is therefore called the alpha-canonical form. Least square estimation technique is used for parameter estimation. The off-line version of this identification scheme is presented here. This scheme is then used to generate a linear model of the Space Shuttle Main Engine at the operating point corresponding to the 100% power level from the nonlinear dynamic engine simulation.
Title: | Development of a discrete time multivariable system identification technique. |
70 views
23 downloads |
---|---|---|
Name(s): |
Saravanan, Natarajan Florida Atlantic University, Degree grantor Duyar, Ahmet, Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1989 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 68 p. | |
Language(s): | English | |
Summary: | An identification scheme which can be used for discrete time multi-input multi-output time invariant systems is presented. The identification scheme involves two steps; (1) The identification of a set of invariant indices (Structure identification) and (2) The estimation of the parameters of the system (Parametric identification). The technique utilizes a canonical representation of a system which is based on the notion of output injection. This canonical form is dependent on a chosen real number alpha and is therefore called the alpha-canonical form. Least square estimation technique is used for parameter estimation. The off-line version of this identification scheme is presented here. This scheme is then used to generate a linear model of the Space Shuttle Main Engine at the operating point corresponding to the 100% power level from the nonlinear dynamic engine simulation. | |
Identifier: | 14558 (digitool), FADT14558 (IID), fau:11355 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1989. |
|
Subject(s): |
System identification Space shuttles--Propulsion systems--Mathematical models |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14558 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |