You are here

Investigation of the oxygen transfer properties of molybdenum-oxide(Et(2)dtc)(2)(THF)(2)I(2)

Download pdf | Full Screen View

Date Issued:
1989
Summary:
Mo2o3 (Et2dtc) 2 (THF) 2I2, readily reduces various oxides. The Mo vio2+2 product of this reaction oxidizes TPP to triphenylphosphine oxide. The transient Mo(iv) species formed in the later reaction rapidly and irreversibly reacts with excess Mo vio2+2 to form the original Mo2 o3 4+ complex. These reactions can be also be coupled to provide catalytic oxygen transfer from PNO to TPP. This catalytic cycle can be monitored using a reverse phase high pressure liquid chromatography method that will also be discussed. The oxides chosen ranged from pyridine-N-oxide to the biological substrates: diphenylsufoxide, DMSO, nicotinamide-N-oxide, and biotin-S-oxide. Since Mo2o3 (Et2dtc) 2 (THF) 2I2 has the ability to abstract oxygen from these biologically significant substrates, it may result in the reconsideration of the role of Mo(V) complexes in catalytic cycles.
Title: Investigation of the oxygen transfer properties of molybdenum-oxide(Et(2)dtc)(2)(THF)(2)I(2).
91 views
23 downloads
Name(s): Falzone, Samuel
Florida Atlantic University, Degree Grantor
Baird, Donald M., Thesis Advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1989
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 157 p.
Language(s): English
Summary: Mo2o3 (Et2dtc) 2 (THF) 2I2, readily reduces various oxides. The Mo vio2+2 product of this reaction oxidizes TPP to triphenylphosphine oxide. The transient Mo(iv) species formed in the later reaction rapidly and irreversibly reacts with excess Mo vio2+2 to form the original Mo2 o3 4+ complex. These reactions can be also be coupled to provide catalytic oxygen transfer from PNO to TPP. This catalytic cycle can be monitored using a reverse phase high pressure liquid chromatography method that will also be discussed. The oxides chosen ranged from pyridine-N-oxide to the biological substrates: diphenylsufoxide, DMSO, nicotinamide-N-oxide, and biotin-S-oxide. Since Mo2o3 (Et2dtc) 2 (THF) 2I2 has the ability to abstract oxygen from these biologically significant substrates, it may result in the reconsideration of the role of Mo(V) complexes in catalytic cycles.
Identifier: 14537 (digitool), FADT14537 (IID), fau:11335 (fedora)
Note(s): Thesis (M.S.)--Florida Atlantic University, 1989.
Subject(s): Molybdenum
Oxidation-reduction reaction
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14537
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.