You are here

Simulation, control and optimization of underwater vehicle performance

Download pdf | Full Screen View

Date Issued:
1989
Summary:
This project addresses the simulation, control and optimization of underwater vehicle performance. An analytical model of underwater vehicle motion has been developed. This model is based on a set of six degree of freedom nonlinear differential equations of motion. These equations incorporate inertial, hydrodynamic, hydrostatic, gravity and thruster forces to define the vehicle's motion. The forces are calculated and the equations of motion solved using a finite difference method of integration. An automatic closed loop control strategy has been developed and integrated into the motion model. The controller determines control plane deflection and thruster output based on sensor provided input, maneuver request and control gain constants. The motion model simulates the effects of these controller requests on the vehicle motion. The controller effects are analyzed and an optimal set of control gains is determined. These optimal gains are determined based on a quantitative comparison of a pre-defined Performance Index (PI) function. The PI is a function of critical performance values, i.e., energy consumption, and user defined weighted constants. By employing an iteration technique the PI is minimized to provide an optimal set of control gains.
Title: Simulation, control and optimization of underwater vehicle performance.
36 views
15 downloads
Name(s): Zipf, David Glenn.
Florida Atlantic University, Degree grantor
Dunn, Stanley E., Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1989
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 161 p.
Language(s): English
Summary: This project addresses the simulation, control and optimization of underwater vehicle performance. An analytical model of underwater vehicle motion has been developed. This model is based on a set of six degree of freedom nonlinear differential equations of motion. These equations incorporate inertial, hydrodynamic, hydrostatic, gravity and thruster forces to define the vehicle's motion. The forces are calculated and the equations of motion solved using a finite difference method of integration. An automatic closed loop control strategy has been developed and integrated into the motion model. The controller determines control plane deflection and thruster output based on sensor provided input, maneuver request and control gain constants. The motion model simulates the effects of these controller requests on the vehicle motion. The controller effects are analyzed and an optimal set of control gains is determined. These optimal gains are determined based on a quantitative comparison of a pre-defined Performance Index (PI) function. The PI is a function of critical performance values, i.e., energy consumption, and user defined weighted constants. By employing an iteration technique the PI is minimized to provide an optimal set of control gains.
Identifier: 14534 (digitool), FADT14534 (IID), fau:11332 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1989.
Subject(s): Oceanographic submersibles--Automatic control
Oceanographic submersibles--Simulation methods
Vehicles, Remotely piloted
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14534
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.