You are here
Estimation of cross range dimensions from a single beam forward look SONAR
- Date Issued:
- 1989
- Summary:
- A computer algorithm is developed to provide real-time cross range spatial quantization for a single beam forward look SONAR similar in operation to a typical sidescan SONAR. This involves the computer simulation of return time signals generated by scanning a surface profile. The time signals are normalized with respect to the scanning altitude to simulate the application of a time varying gain, and then are used as input to the surface estimation algorithm. The algorithm requires two time signals acquired from adjacent scanning positions and solves a stereoscopic geometry in arriving at the surface estimate. Final estimates have an error of less than 1% in target height determination within a set range of operation.
Title: | Estimation of cross range dimensions from a single beam forward look SONAR. |
![]() ![]() |
---|---|---|
Name(s): |
Park, Joseph C. Florida Atlantic University, Degree grantor Cuschieri, Joseph M., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1989 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 155 p. | |
Language(s): | English | |
Summary: | A computer algorithm is developed to provide real-time cross range spatial quantization for a single beam forward look SONAR similar in operation to a typical sidescan SONAR. This involves the computer simulation of return time signals generated by scanning a surface profile. The time signals are normalized with respect to the scanning altitude to simulate the application of a time varying gain, and then are used as input to the surface estimation algorithm. The algorithm requires two time signals acquired from adjacent scanning positions and solves a stereoscopic geometry in arriving at the surface estimate. Final estimates have an error of less than 1% in target height determination within a set range of operation. | |
Identifier: | 14501 (digitool), FADT14501 (IID), fau:11299 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1989. |
|
Subject(s): |
Sonar--Computer simulation Signal processing--Computer simulation Underwater acoustics--Computer simulation |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14501 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |