You are here
Power flow analysis of simple structures
- Date Issued:
- 1988
- Summary:
- A Power Flow approach, where the vibrational Power Flow is expressed in terms of mobility functions is analytically investigated for simple connected structures. Using a Power Flow approach the global structure is divided into a series of substructures and the vibrational Power Flow between the substructures expressed in terms of input and transfer mobilities. Depending on the type and shape of the junction, line or point mobilities may be used. While in the case of point joints, the mobility functions are only functions of frequency, for line joints the mobility functions are variables of not just the frequency but also of space. In this thesis the application of the Power Flow method is first demonstrated for an L-shaped beam and the method is then extended to the application of a line junction between two plates forming an L-shaped plate. The results obtained in the two cases are compared to results obtained using Finite Element Analysis or Statistical Energy Analysis.
Title: | Power flow analysis of simple structures. |
49 views
16 downloads |
---|---|---|
Name(s): |
Rassineux, Jean-Louis Maurice. Florida Atlantic University, Degree grantor Cuschieri, Joseph M., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1988 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 110 p. | |
Language(s): | English | |
Summary: | A Power Flow approach, where the vibrational Power Flow is expressed in terms of mobility functions is analytically investigated for simple connected structures. Using a Power Flow approach the global structure is divided into a series of substructures and the vibrational Power Flow between the substructures expressed in terms of input and transfer mobilities. Depending on the type and shape of the junction, line or point mobilities may be used. While in the case of point joints, the mobility functions are only functions of frequency, for line joints the mobility functions are variables of not just the frequency but also of space. In this thesis the application of the Power Flow method is first demonstrated for an L-shaped beam and the method is then extended to the application of a line junction between two plates forming an L-shaped plate. The results obtained in the two cases are compared to results obtained using Finite Element Analysis or Statistical Energy Analysis. | |
Identifier: | 14439 (digitool), FADT14439 (IID), fau:11239 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1988. |
|
Subject(s): | Structural dynamics | |
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14439 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |