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ABSTRACT 

To-Choi Lau 

The Dynamics of The Generalized Manipulator 

Florida Atlantic University 

Master of Scien~e in Electrical Engineering 

1985 

The con~ept of "generalized manipulator" is introduced, and 

the closed form and recursive form dynamical models of the 

generalized manipulator are presented in Newton-Euler 

formulation. The physical meaning of each term in the 

dynamical model is explained. 

The dynamical models formulated by the Newton-Euler method 

and the Lagrangian-Euler method are proved equivalent. The 

dynamical model of the generalized manipulator is reduced to 

ordinary manipulators. The reduced dynamical model is shown 

identical to existing models. Futhermore, the reduced 

dynamical model of the generalized manipulator can be used 

to compute forces and torques components along any 

direction. 

Application of the model to problems of mobile robots and 

flexible manipulators is shown. 
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Notation List 

A lower case letter represents a scalar. 

Underlined of a lower case letter means a vector. 

x, y, z are the three components of a Cartesian vector. 

T represents the homogeneous transformation operation. 

A represents the rotation of a coordinate frame. 

d represents the translation of a coordinate frame. 

Superscript at the upper right corner of an operator: 

The coordinate frame that is referred to before operation. 

Subscript at the lower left corner of an operator: 

The coordinate frame that is referred to after operation. 

The two subscripts at the lower right corner of an operator 

separated by a comma: The first subscript refers to the 

component of the subscript coordinate frame, and the second 

subscript indicates the component of the superscript 

coordinate frame. 

X 



u is the translational velocity. 

a is the translational acceleration. 

~ is the rotational velocity. 

w is the rotational acceleration. 

v is the sum of translational and rotational velocity. 

a is the rotational velocity in matrix form. 

f is the force of a mass element. 

n is the torque of a mass element. 

F is the force of a link. 

N is the torque of a link. 

6 is the generalized angle of rotational vector. 

~ is the generalized translational vector. 

n is the generalized velocity vector. 

R is the generalized acceleration vector. 

r is the generalized force vector. 

s is the Cartesian component selection vector. 

r is the position vector of a mass element. 

I is the inertial matrix of a link. 

Superscript ,j at the upper right corner of r or I indicates 

that mass element j is being referred. 

xi 



CHAPTER 1 

INTRODUCTION 

In this thesis, the dynamical model of a "generalized 

manipulator" is derived and some applications of such model 

are shown. 

A generalized manipulator is an hypothetical model 

whose main use is in facilitating certain analysis aspects 

of robotics. A generalized manipulator can have arbitrary 

number of links connected as an open chain by "generalized 

joints"(fig.l). A generalized joint has three translational 

and three rotational degrees of freedom which is the upper 

limit for any physical joint. 

The closed form and recursive form dynamical models of 

the generalized manipulat~r are derived in chapters 3 and 5. 

Newton-Euler formulation is used. The equivalence to 

Lagrange formulation is shown in chapter 4. The dynamical 

model of the generalized manipulator can be specialized to 

the one-degree-of-freedom-per-link rigid manipulator. The 

reduction technique is also discussed in chapter 4. 

The dynamical model of the generalized manipulator can 

be combined with other mechanical models to solve some 

nontrival problems, such as the trajectory computation of a 

1 
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Figure 1 The N-link Generalized Manipulator 
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movable robot(chapter 6), and the static deflection of a 

flexible manipulator(chapter 7). 

Next let us outline in more detail the contents of 

each chapter highlighting the original contributions. 

Three mathematical tools are required to derive the 

dynamical model of a generalized manipula~or(chapter 2). 

These are the homogeneous transformation matrix, the 

kinematic model, and the prcpagation equations of static 

forces and torques~ The homogeneous transformation matrix 

transfers the reference from one coordinate frame to the 

other coordinate frame (section 2.1). The kinematic model 

of manipulators provide the relationship between the set of 

joint variables and the set of global coordinates of the end 

effector(section 2.2). The propagation equations of static 

forces and torques are shown in section 2.3. 

The distributive property of orientation matrices 

(equation 2-46) is shown to be valid only for orthogonal 

coordinate frames. This important feature is useful in 

simplifying the derivation of the dynamical model. In this 

thesis, Cartesian coordinate frames are chosen for every 

joint. 

In chapter 3, the· derivation of the closed form 

dynamical model of the generalized manipulator is done in a 

straight forward manner. The physical meaning ~f each term 

in the model is explained. In the closed form dynamical 
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model, each term can be found independently of the others. 

A step-by-step procedure of writing the closed form 

dynamical model for the generalized manipulator is 

presented(section 3.3). 

For deriving the dynamical model, the open kinematic 

chain concept and the open dynamic chain concept(section 

3.3) are employed. The entire concept of "generalized 

manipulator" is new. The derivation of the model follows 

similar derivations that have been done by others for 

ordinary manipulators. Interestingly, the generalization is 

conceptually simple and has the same level of complexity as 

the derivation for ordinary manipulators. 

Although the Newton-Euler method and the Lagrangian 

method are proved equivalent[GoldS9], the dynamical models 

derived by these two methods do not have the same 

appearance. In chapter 4, the term by term equivalence of 

these two formulations is shown(section 4.2). 

The dynamical model of the generalized manipulator can 

be specialized to the one-degree-of-freedom-per-link rigid 

manipulator. The reduced model is shown to be identical to 

existing models[Paul82]. Most importantly, the derivation 

i~ chapter 4 shows that the reduced dynamical model may be 

used to compute forces and torques components in any 

direction(not necessarily along the principal axes of 

motion). This property has never been shown before. 
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The recursive form dynamical model of the generalized 

The reduced 

equivalent to 
manipulator is derived in section 5.2. 

recursive dynamical model in section 5.3 is 

existing models[LuhSO]. 

In this thesis, two possible applications of 

generalized manipulator theory are introduced. Both utilize 

the important feature of generalized manipulator, namely -

the ability to compute forces and torques along any 

direction. The analysis of movable robots(chapter 6) and 

the analysis of static deflection of manipulators(chapter 

7), applying the generalized manipulator dynamics, is 

original. 



CHAPTER II 

MATHEMATICAL BACKGROUND 

The study of the dynamics of the robot manipulator has 

three purposes. It is for helping us to discover some 

important insights of the dynamical properties of the 

manipulator. It is used for simulation and it can be 
' 

applied in on-line control. 

Dynamical model can be written in various forms 

employing different formulations. The closed form is 

suitable for analysis and the recursive form is good for 

computational aspects, such as on-line control. 

Lagrangian formulation dominated the field in the last 

decade. Only recently, Newton-Euler formulation start to 

become popular. Newton-Euler formulation is proved to be 

more efficient computationally. It also eases the task of 

visualizing the physical meaning of each term in the 

equations[LuhSO]. 

In this thesis, general algorithms for writing the 

dynamical model in closed form and recursive form by the 

Newton-Euler formulation are derived. This dynamical model 

is even more general than the existing ones because it 

considers every force and torque components of each joint. 

6 
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This is important in some applications, such as modelling 

the movable robot(chapter 6) and flexible manipulator 

(chapter 7). 

For deriving the dynamical model, we need to develop 

several mathematical tools. These are the transformation of 

the reference to different coordinate frames(homogeneous 

transformation), the relationship between the movement of 

the end effector and the joints of the manipulator(kinematic 

model), and the changes of force and torque with reference 

to another coordinate frame(statics). 

2.1 Homogeneous Transformations 

We need to develope a method for transferring the 

reference from one coordinate frame to another. The 

coordinate frames can be arbitrarily defined and different 

sets of coordinate systems can be used within the same 

manipulator. 

The notation which is used in this thesis is 

summarized in the notation table. For examples(fig.2): 

~represents a generalized coordinate and d represents 

a displacement. They have three components a, s, t and are 

referred to the coordinate frames i, j, k. 



' 

C 
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Figure 2 
: Homogeneous 
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T represents a homogeneous transformation. The 

transformation is from the superscript coordinate to the 

subscript coordinate. 

itjx,y (not shown in the figure) is the projection of 

the unity vector of the y-axis in coordinate j on the x-axis 

of coordinate i, and the projection is independent of the 

translation of the coordinates. 

For simplicity, any obvious or unimportant superscript 

or subscript will not be written. For instance, we may 

write 

itjx,y = tx,y 

if we have indicated in the text that coordinates i and j 

are referred, or the relation is true for any· coordinates. 

2.1.1 Homogeneous Transformation Matrix 

For a rigid body, the transformation from one 

coordinate to another coordinate should consist of the 

following scalars. 

= { tx,x' tx,y ' tx,z ' ty,x ' ty,y ' ty,z 

tz,x ' tz,y ' tz,z ' dx ' dy ' dz } 

We need to organize the above scalars such that the 

transformation can be cascaded as the following: 
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.Tj .Tk = .Tk 
, J , 
The projection of a component in coordinate k to any 

axis of coordinate i via the coordinate j goes throug_h three 

different routes, and the following nine equations are 

obtained. 
k 

it X X 
' 

itjx x 
k 

itjx,y 
k + tj k ( 2-1) = jt x,x + jt y,x jt z,x 

' 
; x,z 

k 
it x,y 

itjx x 
k 

itjx,y tk + ;tjx,z 
k ( 2-2) = jt x,y + jt z,y 

' 
j y,y 

k 
it X Z 

' 
;tjx x 

k 
itjx,y 

k + tj k (2-3) = jt x,z + jt y,z jt z,z i X Z , ' 

k 
it y,x 

itjy,x tk + itjy,y 
k + tj k (2-4) = jt y,x jt z,x j x,x i y,z 

k 
it y,y • 

= itjy,x 
k 

jt x,y + ;tj;,y tk + ;tjy,z 
k (2-5) j y,y jt z,y 

k 
;t y,z 

= ;tjy,x 
k 

jt x,z + itjy,y 
k + tj k (2-6) jt y,z i y,z jt z,z 

k 
it Z X , 
;tjz x 

k 
itjz,y 

k + tj k (2-7) = jt x,x + jt y,x jt z,x 
' 

i z,z 
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k 
it z,y 

= itjz,x 
k 

jt x,y + itjz,y 
k 

jt y,y + itjz,z 
k 

jt z,y (2-8) 

k 
it z,z 

= itjz,x 
k 

jt x,z + itjz,y 
k 

jt y,z + itjz,z 
k 

jt z,z (2-9) 

The displacement components of the origin from 

coordinate k to coordinate i via coordinate j is not the sum 

of their·respective displacement coordinates because their 

reference coordinates have different orientation. They are 

calculated by the equations. 

k 
id X 

idjx i t_j X , X 
k 

itjx,y :d k itjx,z 
k (2-10) = + jd X + + jd z J y 

k 
id y 
.dj + itjy,x 

k 
itjy,y 

k 
itjy,z 

k ( 2-11) = jd X + jd y + jd z 1 y 

k 
id z 
.dj + itjz,x 

k 
itjz,y 

k 
itjz,z 

k (2-12) = jd X + jd y + jd z 1 z 

Combining equations 2-1:2-12 yields the following 

matrix . . 
tx,x tx,y tx,z dx 

T = 
ty,x ty,y ty,z dy 

tz,x tz,y tz z 
' 

dz 

0 0 0 1 
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and the cascade of transformations is equal to the matrix 

multiplication[Paul82] . 

. Tj . Tk = . Tk 
1 J 1 

The 3X3 matrix tx,x tx,y tx,z 

ty,x ty,y ty,z 

tz,x tz,y tz,z 

(2-13) 

is called the 

Orientation Matrix. This matrix is independent of the 

displacement between coordinate frames (This matrix is 

sometimes referred to as the "matrix of directional 

cosines"). 

The 3X1 vector [ dx dy dz ]T is called the 
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Displacement Vector[Paul82]. 

In order to reduce the complexity of the notation, we 

define: 

tx,x tx,y t X, Z ax bx ex 

.Aj -- t ty,y ty,z -- ay by cy (2-15) 
1 y,x 

tz,x tz,y tz,z az bz cz 

dx 

.dj -- dy (2-16) 
1-

dz 

Thus 

ax bx ex dx 

.Tj --
ay by cy dy 

(2-17) 
1 

az bz cz dz 

0 0 0 1 

2.1.2 Inverse Homogeneous Transformation Matrix 

The inverse homogeneous transformation transfers the 

reference back to the original coordinate. Hence 

.Ti = ( .Tj )-1 
J 1 

(2-18) 

Due to the fact that the transformation is reversible, 
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the following equalities must hold. 

. t i = itjx x (2-19} 
J x,x ' i 

itjy,x (2-20} jt x,y = 
i 

itjz,x (2-21} j t X, Z = 
i 

itjx,y (2-22} jt y,x = 
i .tj (2-23} jt y,y = 1 y,y 
i 

;tjz,y (2-24} jt y,z = 
i 

;tjx z (2-25} jt z,x = 
' i 

itjy,z (2-26} jt z,y = 
i 

itjz,z (2-27} jt z,z = 

Having used the above nine equations, the displacement 

referred to coordinate j in terms of coordinate i are: 

; 
idjx itjx x idjy itjy,x idjz itjz,x (2-28} jd X = - - -

' i idjx itjx,y idjy itjy,y idjz itjz,y (2-29} jd y = - - -
i idjx itjx,z idjy itjY,? idjz itjz,z (2-30} jd z = - - -

where the minus signs indicate that the direction of the 

displacement vector is reversed in the inverse homogeneous 

transformation. 

Equations 2-18:2-30 & 2-15 identify the structure of 

the inverse homogeneous transformation matrix as: 
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ax ay az -a•d 

-1 bx by bz -b•d 
T -- (2-31) 

ex cy cz -c•d 

0 0 0 1 

where a•d = ax dx + a d + y y az dz is the scalar product of 

the vectors a & d· _, and it is the same for b•d and c•d. Also 

ax ay az 
A-1 -- bx by bz (2-32) 

ex cy cz 

Refer to [Paul82]. 

2 .1. 3 Object Representation 

An object is represented by a set of points. Each 

point is treated as a vector E. in a reference coordinate, 

say j. The transformation of a vector to another 

coordinate, say i ' is: 

.Tj ·E. = ;E. (2-33) 
1 J 

j 
ax bx ex dx Px = ax Px + b Py + c Pz + d 

X X X 

ay by cy dy Py ay Px + b y Py + cy Pz + d y 

az bz cz dz Pz az Px + b z Py + cz Pz + d z 

0 0 0 1 1 1 
i j i 



or 
.d j + .Aj n n 
1- 1 jZ:. = ;z:. 
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(2-34} 

Equation 2-34 indicates that a homogeneous transforma-

tion of a vector can be decomposed into the translational 

part, i£j, and the rotational part, .Aj ·£· 
1 J 

The transformation of a set of points(an object} is 

j 
ax bx ex dx Px qx rx = Px qx rx 

ay by cy dy Py qy ry Py qy ... ry 

az bz cz dz Pz qz rz Pz qz rz 

0 0 0 1 1 1 1 1 1 1 
i j i 

For a rigid object, a coordinate frame(four points} at 

the object is adquate for the representation[Paul82]. 

2 .1. 4 Properties of the Orientation Matrix 

Since A-1 A = I , we substitute equations 2-32 & 2-15 

to 2-1:2-9 and obtain 

ax ax + ay ay + a az = a•a = 1 (2-35} 
z 

ax bx + a b + az bz = a•b = 0 (2-36} 
y y 

ax ex + a cy + a cz = a•c = 0 (2-37} 
y z 

bx ax + b ay + b az = b•a = 0 (2-38) 
y z 

bx bx + b by + b b = b•b = 1 (2-39) 
y z z 

bx ex + b cy + b cz = b•c = 0 (2-40) y z 
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ex ax + cy ay + cz az = c•a = 0 (2-41) 

ex bx + c b + cz bz = c•b = 0 (2-42) 
y y 

ex ex + c cy + cz cz = c•c = 1 (2-43) 
y 

These nine equations indicate that the three axes of 

the coordinate frame are mutually orthogonal. 

By using the equations 2-35:2-43, we can prove the 

following equality. 

(2-44) 

This equation means that the scalar product of any two 

vectors is independent of the orientation of the coordinate 

frame. 

Defining the vector product of any two vectors as: 

Py qz - p z qy 

Q. X g_ = Pz qx - p qz (2-45) 
X 

Px q -y Py qx 

Since the cross product often appears in computing the 

torque(discussed later), it is desired that the magnitude of 

the cross product will be invariant under rotation of the 

coordinate frame. In order words, we want 

.Aj·Q. X .Aj.g_ = .Aj(·Q. X .g_) 
1 J 1 J 1 J J 

(2-46) 

By direct substitution and comparison between 

corresponding terms, equation 2-46 holds when the following 



three equations are valid. 

a = b X c 

b = c X a 

c = a X b 

18 

.. 

(2-47) 

(2-48} 

(2-49) 

This means that the three axes of the coordinates must 

be perpendicular to each other. From now on, we restrict 

ourselves to this kind of coordinate systems. 

The Cartesian coordinate system fulfilles the 

requirement of equations 2-35:2-43 & 2-47:2-49, and it is 

suitable for modelling the dynamics of robot manipulators. 

Now, we are ready to compute the orientation matrix in the 

Cartesian coordinate system. 

Suppose the coordinate j rotates an angle 0 in the 

direction of x-axis and becomes the coordinate i(fig.3). By 

definition, we get 

tx,x = 1 

tx,y = 0 

tx,z = 0 

for the unity vector on x-axis; and 

ty,x = 0 

ty,y = cos0 

ty,z =-sin0 

for the unity vector on y-axis; and 



Figure 3 

19 

.C· J 

i ~~~. ~ : ttJS (,1 
---- c 

I 

• 
I 

!:r---••• --- - -
I 

Orientation Hatrix 

Rotate an Angle 0 Around the x-axis. 
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tz,x = 0 

tz,y = sin0 

tz,z = cos0 

for the unity vector on z-axis. Hence 

j 
Rot(x;0) = 1 0 0 (2-50) 

0 cos0 -sin0 

0 sin0 cos0 
i 

Similarly, 
j 

Rot(y;0) = cos0 0 sin0 (2-51) 

0 1 0 

-sin0 0 cos0 
i 

and 
j 

Rot(z;0) = cos0 -sin0 0 (2-52) 

sin0 cos0 0 

0 0 1 
i 

Note that rotation operations do not commute[Paul82]. 

Differentiation of the Orientation Matrix 

The differentiation of a matrix is carried by 

differentiating every element. Therefore by the chain rule, 

d 

dt 

d0 
Rot(x;0) =-

dt x-axis 

j 
0 0 0 

0 -sin0 -cos0 

0 cos0 -sin0 
; 
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j 
= 0 0 0 1 0 0 

0 0 -w 
X 

0 cos0 -sin0 

0 wx 0 0 sin0 cos0 
i 

= nx .Aj (2-56) 
l 

where 

d0 
-- wx (2-57) 

dt x-axis 

and 

nx -- 0 0 0 (2-58) 

0 0 -w 
X 

0 wx 0 

are the angular velocity vector and matrix in x-direction 

[Paul82]. 

Similarly 

d0 
-- wy (2-59) 

dt y-axis 

and 
ny -- 0 0 wy (2-60) 

0 0 0 

-w y 0 0 

are the angular velocity vector and matrix in y-direction. 
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Also, 

d0 
-- wz 

dt z-axis 
(2-61) 

and 
az -- 0 -w 0 z (2-62) 

wz 0 0 

0 0 0 

are the angular velocity vector and matrix in z-direction. 

It is easy to verify that the three angular velocity 

matrices mutually commute: 

ax ay = ay ax 

ay az = az ay 

az ox = ax oz 

Define 

a = ax ay az = 

or 

w = [w w w ]T 
- X y Z 

0 -w z 

wz 0 

-w y w-
X 

wy 

-w 
X 

0 

(2-63) 

(2-64) 

(2-65) 

(2-66) 

(2-67) 

are the angular velocity matrix and vector in any direction. 

The time derivative of the orientation matrix can be 

shown to satisfy 

(2-68) 
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It can be written in a vector form as: 

dt(.Aj).r = . w X .Aj .r 
and , J- 1- , J-

dtt( .Aj) .r =· dt ( ;!'!) X . Aj .r + .w X (. w X 
1 J- 1 J- 1-

,_ 
= .(I X .Aj .r + .w X ( · w X 

where 
,_ , J- 1-

,_ 
• (I = 
1- dt(i!'!) 

is the angular acceleration of coordinate i. 

.Aj .r) 
1 J-
.Aj . r) 
1 J-

(2-69) 

(2-70) . 

(2-71) 

(2-72) 

If the reference coordinate rotates an arbitrary 

angle, say iAj, then the angular velocity vector becomes 

.w = .Aj .w (2-73) ,_ , J-

and the angular velocity matrix changes to 
j i .n =.A .n.A , , J J 

2.1.5 The Displacement Vector 

(2-74) 

Let i&j be a displacement vector. from coordinate j to 

coordinate i. To compute its velocity and acceleration, 

nonmoving coordinate frame is introduced denoted as 

coordinate 0. So 

(2-75a) 

(2-75b) 

(2-75c) 



Denote 

.uj = ,_ 

.aj = ,_ 

.vj and = ,_ 

dt(i!!,j) 

dt(i!!j) 
0 . 

;A dtCo!!Jl 
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(2-76) 

(2-77) 

(2-78) 

as the translational velocity, acceleration, and the total 

velocity (translational and rotational) of the displacement 

vector respectively. 

If we multiply equations 2-75b & 2-75c by iA 0 and use 

equations 2-46, 2-72, 2-76:2-78, then we arrive at the 

following results: 

.vj = . uj + .w X .dj ,_ ,_ ,_ ,_ (2-79) 

dt(i!j) = .aj + .a X .dj + .w X ( . w X . dj) ,_ ,_ ,_ ,_ ,_ ,_ 
+ 2.w X .uj ,_ ,_ (2-80) 

The total acceleration of the displacement vector 

consists of the translational acceleration, angular 

acceleration, centrifugal acceleration and the Coriolis 

acceleration(in the same order as in equation 2-80). Refer 

to [Luh80]. 

Finally, let us introduce some useful vector 

identities that will be ~sed later in developing the 

dy~amical model of the robot manipulator. They can be 

verified by direct substitution. (Refer also to [Spie71]) 

E. X (9. X.!:) = [ tr(rpT)I - rpT ]9. (2-81) 
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E. X ( 9. X !,) = (E. • !.)9. - (E. • 9.)!. (2-82) 

(E. X g.) X r = Ce. • !.)9. - (!, • g.) E. (2-83) 

(E. X g.) X r = E. X (9. X !) + 9. X (!. X g.) (2-84) 

E. • (9. X :!:) = 9. • (!. X E.) = r • (E. X g.) (2-85) 

E. X (9. X(!. X!))= (tr(psT)I- psT- ltr(I)I)(!, X g_) 

+ (!.X (tr(psT)-psT)g_) (2-86) 

2.2 Kinematics 

Kinematics relates the motion of joints to the 

movement of end effector. The configuration of the 

manipulator is given by the position of all the joints. Each 

jointjlink) requires a coordinate frame to describe its 

position and a homogeneous transformation matrix relates the 

relationship between one frame and another. Every 

coordinate frame has six degrees of freedom which includes 

three translations and three rotations. Therefore, the 

maximum number of degrees of freedom for a rigid link is 

six, and the total number of degrees of freedom of the 

N-link manipulator is 6N. 

The computation of the spatial position(translation 

and rotation) of the end effector from a given set of joint 

positions is known as the forward kinematics. Computing the 

joint variables from given end effector position and 
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orientation is known as the inverse kinematics. 

2.2.1 Coordinate System 

The way of placing the coordinate frames of the 

manipulator links influences the effectiveness of analyzing 

the system. Here are some guidelines(fig.4}: 

1. Because most of 

either perpendicular 

Cartesian coordinate 

reference. 

the manipulators 

or parallel to 

frame$ provide 

have their links 

each other, the 

an easy manageable 

~ Origin of the coordinate frames should be placed at 

some representative points. The intersection point of the 

axes of motion is a popular choice. The coordinate frame 

reflects the current position of that joint (after motion 

has been made}. Finally, we pick a nonmoving point for the 

base coordinate as the global reference of the position of 

the joints and end effector. 

~Always align one of the coordinate axes to the axis of 

motion of that joint. For a revolute joint, the axis of 

rotation is chosen; for a prismatic joint, the axis of 

displacement is selected. 
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Figure 4 The Cartesian Coordinate Frames of the 

Robot at the "Reference Position" 



28 

4. When the neighboring links are perpendicular to each 

other, align another coordinate axis in the same direction 

as the axis of motion of previous link. In more general 

situation, the axis is taken along the common normal to the 

two neighbouring axes of motion. 

~ Given the right hand coordinate system, there are two 

possible choices of the third axis(Notice that we have not 

yet assign the positive sense to the direction of axes). 

~ Finally, assign the z-axis of the coordinate frames. 

For each coordinate frame, it has three possible choices and 

there are two assignment strategies: 

a Assign the axes in a unified way such that a general 

tiansformation can be applied[Paul82]. 
-
~ Assign the axes arbitrary in order to reduce the 

complexities of the kinematic model of the manipulator(This 

thesis). 

2.2.2 Kinematic Hodel 

The kinematic model of the manipulator relates the 

position of the joints to the end effector position. The 

geometry of the manipulator is embedded within the kinematic 

model. Link is defined to be rigid, if the relative 

position between any two points in the link is fixed. Then 
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the transformation from one link frame to the next consists 

of six elementary transformations. 

Rotate an angle with respect to an axis of coordinate i. 

Rot(e& X • ) = Rot(e&i) (2-87) 
1 

Rot(B y.) = Rot(Bi) (2-88) 
1 

Rot(t z i) = Rot(-ri) (2-89) 

By these three rotations, the orientation of link frame i 

becomes the same as the orientation of the next link frame. 

Three translations along the axes of coordinate frame i are 

required to align the origins of the two coordinate frames. 

Tran(a X. ) = Tran(ai) (2-90) 
1 

Tran(b y i) = Tran(bi) (2-91) 

Tran(c z . ) = Tran(ci) (2-92) 
1 

In [Paul82], the transformation from one link frame to 

the next is done in terms of only two rotations and two 

translations(the Denavit-Hartenberg An matrices), if a 

certain convention in placing the link frames is followed. 

Equations 2-87:2-92 are a generaliztion of that method, 

since here link frames are assumed to be arbitrarily placed. 

Once the coordinate frames have been assigned to the 

robot manipulator links, using the ab~ve six elementary 

transformations to move the reference from one frame to the 
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other provides the homogeneous transformation between the 

two frames(Note, there may exist more than one way to move 

the reference of coordinate frame to align with the other 

frame). As an example to the development of the kinematic 

model, refer to figures 4 and 5 

= cos01 -sin01 0 0 (2-93) 

sin01 cos0 1 0 0 

0 0 1 do 

0 0 0 1 

1 
r2 = Tran(d 1 ; Y1) Rot(02 Y2=Y1) 

= cos0 2 0 sin02 0 (2-94) 

0 1 0 d1 

-sin0 2 0 cos0 2 0 

0 0 0 1 

2 
T3 = Tran(d 2 • -X ) ' 2 

= 1 0 0 -d2 l (2-95) 

0 1 0 0 

0 0 1 0 

0 0 0 1 
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~. 

Figure 5 The Cartesian Coordinate Frames of the 

Robot After Moved 
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This robot has three degrees of freedom, namely 01, 02 

and d2.The parameters d0 and d1 are the geometrical constant 

of the system. 

Based on equations 2-93:2-95, we can construct the 

homogeneous transformation matrix for any pair of coordinate 

frames. Hence, 

0 
T2 = 0 

T1 
1 
r2 (2-96) 

= cos01cos0 2 -sin01 cos0 1sin0 2 -d 1sin0 1 
' sin01cos0 2 cos0 1 sin0 1sin0 2 d1cos0 1 

-sin02 0 cos0 2 do 

0 0 0 1 

T3 -0 - T2 T3 = 
0 2 

(2-97) 

cos01cos0 2 -sin01 cos0 1sin02 -d 1sin01-d 2cos0 1cos0 2 

sin0 1cos0 2 cos01 sin0 1sin0 2 d1cos01-d 2sin0 1cos0 2 

-s i.n0 2 0 cos0 2 d0+d 2sin0 2 

0 0 0 1 

1 
T3 = T2 T3 

1 2 

= cos0 2 0 sin0 2 -d 2cos0 2 (2-98) 

0 1 0 d1 

-sin02 0 cos0 2 d2sin02 

0 0 0 1 
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Equations 2-93:2-98 form the complete kinematic model 

of the example robot manipulator. Similarly, for aN-link 

robot manipulator, its complete kinematic model is 

where i, j = 0,1,2 ..••••• ,N (2-99) 

2.3 Statics 

By statics, we refer to the computation of the 

distribution of force and torque in an object at rest. For 

a rigid object at rest, the t~tal sum of external forces and 

the total sum of external torques are zero at any point of 

the object(Statical balance). When the total sum of 

external forces or torques is not zero, the object is 

accelerated or revolved according to the Newton and Euler 

equations, and the system is no longer statically balanced. 

Nevertheless due to D'Alembert's principle[Beer62], one can 

replace the acceleration of the object by the equivalent 

reaction force and torque, to restore an "equivalent static 

balance" of the system. 

2.3.1 Force 

By Newton's second law, the force is defined as: 

(2-100) 
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where 

£ = my is the momemtum of the object. (2-101) 

Suppose a force is acting on a point that is at .r in 
J-

coordinate j, or is .r in coordinate i(fig.6). Recall 
1-

equation 2-34, we have 

. r = .dj + .Aj .r 
then 1- 1- 1 J-

. v = .Aj .v 
1- 1 J-

because the time differentiation of .dj and 
1-

(2-102) 

(2-103) 

are zero 

provided that the coordinates i and J are not moving. 

If the mass of the object is constant, then from 

equations 2-101 & 2-100, the transformation of the static 

force between coordinates is achieved as follows: 

1
·£ = .Aj ·£ 

1 J 
.f = .Aj.f 
1- 1 J-

and 

Equation 2-100 can be written as: 

f - dt (£) = 0 

or 
f - f - -r = 0 

(2-104) 

(2-105) 

(2-106) 

(2-107) 

where fr is the reaction force and equation 2-107 provides 

the statical balance condition for a moving object 

(D 1 Alembert principle). 
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Figure 6 : The Transformation of Static Force and 

Torque Between Coordinate Frames 
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2.3.2 Torque 

Torque is defined as 

.n = .r X .f (2-108) 
J- J- J-

in coordinate j. If the reference is transferred to coor-

d i nate i ( f i g •. 6) , then 

. n 
Si nee 1-

.r = .dj + .Aj.r 

= . r X • f 
1- 1-

then 1- 1- 1 J-
.n = .dj X .Aj .f + 

1
.Aj .r X .Aj .f 

1- 1- 1 J- J- 1 J-

= .dj X .Aj.f + .Aj ( .r X .f) 
1- 1 J- 1 J- J-

= .dj X .f + .Aj.n 
1- 1- 1 J-

after equations 2-46, 2-104 & 2-108 have been used. 

(2-109) 

(2-110) 

Equation 2-110 describes the changes of the static 

torque between coordinate frames. 



CHAPTER 3 

CLOSED FOR~ NEWTON-EULER DYNAMICAL MODEL OF THE 

GENERALIZED MANIPULATOR 

3.1 Introduction 

The dynamical mo~el of the manipulator describes the 

relationship between the force/torque and the translational/ 

rotational acceleration of the manipulator at a given 

position and velocity condition. The forward dynamical 

analysis computes the force and torque of each link by 

knowing the translational and rotational acceleration of the 

end effector. The inverse dynamical analysis provides the 

velocities and accelerations of each link, given the 

external forces and torques. 
• 

The dynamical model of the manipulator can be written 

in closed form or in recursive form. In the closed form 

dynamical model, each link is treated individually. In the 

recursive form dynamical model, each link is described with 

respect to the previous link. 

The closed form dynamical model has a clear 

distinction of each individual effect and it is used for 

analysis and design purposes.(table 1). The recursive form 

37 



Dynamical 
Model 

Closed 
Form 

Recursive 
Form 
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Newton-Euler 
Applications Method 

Intuitive but 
Analysis derivations 

require some 
and innovations 

Design [Hol182] 
[This thesis] 

More efficiency 
Real-time on computation 

Applications 
( on-line [Luh80] 

control ) [This thesis] 

Table 1 The Newton-Euler Method 
versus 

The Lagrangian Method 

Lagrangain 
Method 

Derivations 
are straight-
forward but 
the physical 
meaning of 
the terms are 
not easy to 
understand 

[Paul82] 

Less 
efficiency on 
computation 

[Holl82] 
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suitable for real time applications, such as on-line control 

of the robot manipulator. 

For deriving the dynamical model of a manipulator, two 

methods are commonly used. The Lagrange formulation 

achieves the dynamical model in a straightforward manner, 

however the physical meaning of the terms is often hard to 

interprete. The Newton-Euler formulation is intuitive and 

more efficient, but its derivation requires a three 

dimensional view of the manipulator. 

The general algorithm for constructing the dynamical 

model in closed 

f~rmulation can be 

general algorithm 

form and recursive form by the Lagrangian 

found in [Paul82] and [Holl80]. The 

for writing the dynamical model in 

recursive form by the Newton-Euler formulation was derived 

by [Luh80]. The dynamical model in closed form by the 

Newton-Euler formulation can be found in[Holl82]. In both 

papers that deal with the Newton-Euler formulation, the 

center of mass of each link are used as origins for the 

respective coordinate·frames. 

There are two restrictions of the above dynamical 

models. One is that those models compute forces and torques 

only at the direction of motion but ignore the other 

directions. This restriction is acceptable if the robot is 
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assumed to be rigid and stationary. The other restriction 

is that the coordinate frames have to be set in a specific 

way such that their models can be applied(In other word, the 

user must follow a fixed convention). 

In this thesis, the derived dynamical models have the 

following characteristics: 

a. The derivation follows the Newton-Euler formulation. 

The physical meaning of the terms will be explained and the 

derivation seems to be simpler than in the Lagrange method. 

b. The dynamical model can be used for computing the 

force and torque in all directions for any joints. The way 

to do it is to assume that each joint can translate and 

rotate in all directions(fig.l). Such joints will be 

referred to as "generalized joints". A manipulator consists 

of N generalized joints is ca 11 ed the N-link generalized 

manipulator and it has 6N degrees of freedom. The 

derivation of the dynamical model for the generalized 

manipulator avoids the difficulties of identifying the 

axis-of-motion of each joint(link). The model contains all 

the possible information of any physical manipulator with 

the same number of links(section III.3). This generalized 

dynamical model can be reduced to (c). 



c. the dynamical 

per-link manipulator. 

direction selection 

has two advantages. 

arbitrarily and ·it 
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model for the one-degree-of-freedom­

It is done easily by introducing the 

vectors. The reduced dynamical model 

The coordinate frames in it can be set 

can compute the force or torque at any 

desired direction. The method of reduction is discussed in 

detail in chapter 4. 

d. The reduced dynamical model from Newton-Euler method 

will be shown to be identical to the dynamic~l model using 

Lagrangian method. It will be shown that the terms of the 

dynamical model from Newton-Euler method can be visualized 

but have each four different forms according to the four 

possible combinations of translational joints and rotational 

joints. The Lagrangian method however gives unique 

expressions for any combination of joints but the physical 

interpretation of the term is lost. 

~ Futhermore, the unique expression for the reduced 

dynamical model can be used for computing the force and 

torque in any direction. This is proved using the 

Newton-Euler method but it cannot be shown using the 

Lagrangian method. 
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3.2 Derivation of the Closed Form Dynamical Hodel 

The method of deriving the closed form dynamical model 

is, first to compute the force for accelerating a mass 

element of the manipulator. Second, we integrate the force 

over all mass elements from the desired joint to the end 

effector. This is the force demanded by that joint. The 

computation of the torques follow the same procedures. We 

first compute the torque of a mass element, then we 

integrate it to obtain the demanded torque from a joint. 

The method is simple, and it will be demonstrated to be 

efficient too. 

The force of a mass element 

The force for accelerating a mass element anywhere at 

link j of the generalized manipulator in an inertial 

coordinate frame is described by the Newton's second law. 

(3-1) 

The subscript 0 indicates that the base coordinate has 

been used and it is an inertial frame. The superscript ,j 

means that that mass element is in link j of the 

manipulator. 

The computation of dtt(o!'j) is as follows(fig.7): 

(3-2) 
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Figure 7 The Force of a Mass Element in Link j. 
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dt(or'j) = dt(o&1l + dt(oA 1l1r'j + oA 1dt(1r'j) 

dtt(or'j) = dtt(o~1 ) + dtt(oA 1l1r'j 

+2dt(oA1)dt(1r'j) + oA1dtt(1r'j) (3-4) 

The superscript ,j will be supressed in the following 

derivations. Recali equations 2-75:2-80 & 2-70:2-71, we 

have 

obtain 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

After substituting 3-5:3-8 into equations 3-3:3-4, we 

sing equation 

dt (orl = o~1 

dtt(orl = o!
1 

(3-9) 

(3-10) 

3-2, equations 3-9 & 3-10 become: 
1 1 

+ o~ x o! + oA dt(1!) (3-11) 
1 1 1 

+ o~ x o! + o~ x (o~ x o!l 
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+2 1 X 1 + 2 w1 X A1d ( r) 0~ 0~ 0- 0 t 1-
1 

+ oA dtt(1!.l (3-12) 

In equations 3-11 & 3-12, the variables 0~1 , 0 ~1 , 0 ~1 

and 0 ~1 are the translational and rotational velocities and 

accelerations of coordinate 1 with respect to 0. The 

variable o!. can be solved by the inverse kinematic 

method[Holl83]. The variables dt( 1r:) and dtt( 1r:) are unknown 

to us but they can be represented in terms 

dtt(2!.) : 

dt (1!.) 

dtt(1!.) 

Here, 

u2 + . w2 X 2 = 1!. + 1A dt(2!.) 1- 1-
= 2 2 

1~ + 1~ X 2 2 
1!. +1~ X (1~ X 

+ 2 2 
21~ x1~ + 2 2 

21~ X 1A dt(2!.) 
2 

+ 1A dtt(2!.) 

2 the variables 1 ~ , 2 
1~ , 

of dt(2!.) and 

(3-13) 

1!.) 

(3-14) 

translational and rotational velocities and accelerations of 

joint 1 that can be determined by the planned trajectory of 

the end effector using the inverse kinematic methods 

.(Holl83]. 

Substituting equations 3-13 & 3-14 to equations 3-11 & 

3-12, we get 

dt (o!.l = o~1 
+ o~1 x o!. 

+oA1(1~2 + 1~2 X dt(1!.)) 
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+ A2 
0 dt(2!.) (3-15) 

dtt(o!.l = al 
0- + o! 

1 X o!. + w1 
0- X ( wl 

0- X o!.l 
1 2 2 X w2 X ( w2 X 1!.) ) +OA (1! + 1! 1!. + 1- 1-
2 

+oA dtt(2!l 

+2 w1 X A0( u1) 0- 0 0-
+2 w1 X 1 2 2 

X 1!.) 0- oA (1.!! + 1~ 

+2 w1 X 2 
0- oA dt(2!.l 

+2 A1( w2 X 
2 

0 1- 1.!! ) 

+2 A1( w2 
X 

'2 (3-16) 0 1- 1A dt(2!,)) 

In equations 3-15:3-16, all the variables can be solved from 

the inverse kinematic methods except for dt( 2!) and dtt( 2!.)· 

We can expand dt( 2!,) and dtt( 2!,) in the similar manner. The 

expansion wi 11 be terminated at dt (. r) and 
J-

because 

we have assumed that the mass element is in link j of the 

manipulator. The equations for dt(j!.) 
j+l j+l dt(.r) = .u + .w X .r 

J- J- J- J-

and dtt(j!.) are : 

(3-17) 
j+l j+l j+1 j+l 

dtt(.r) =.a +.a X .r + .w X (.w 
J- J- J- J- J- J-

X • r) 
J-

+2 .wj+l X .uj+l 
J- J- (3-18) 

The physical interpretation of equations 3-17:3-18 is 

that the movement(velocity and acceleration) of the latter 

joints(joint j+l to end effector) will not affect the 

movement of the mass element in the preceeding joints. This 

property characterizes open kinematic chains(One may take it 
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as a definition of open kinematic chains). 

By combining equations 3-15:3-18, one gets 

(3-19) 

d ( ) j Ak( k+1 k+1 x k+1x· ( k+1x H
1 

or: = t o k! + k!!. k!. + k!! k!! 

+2 .wj+ 1 X .uj+ 1) 
J- J-

+2 ~ ~ oAk(kwk+1 X kAl(lul+1 + lwl+1 X 6k11r) 
l~k k=1 - - - (3:'20) 

where 6kl equals to zero when k=l; otherwise it equals one. 

From equations 3-1 & 3-20, the force of the mass 

element on link j of the generalized manipulator is: 

f'j 
j k . ~ fkk,j + 

j j 
fk 1 'j = I f 'J + t I (3-21) 0- k=1°- k 0- 0-=1 hk k=1 

where fk,j 
0- = m Ak( ak+1 

0 k- + k!!. 
k+1 

X k!J (3-22) 

fkk 'j 
0- = m Ak( wk+1 

0 k-
X( wk+1 

k- X k!.)) (3-23) 

fk 1 'j =2m Ak( wk+1 1 1+1 1+1 (3-24) 0- 0 k- X kA ( 1~ + 1~ X6kll!:) 

are the inertial force, centrifugal force and Coriolis force 

of the mass element on link j of the generalized manipulator 

respectively. 

The orientaion matrices are there to align the 

direction of the joint coordinates to the base coordinate. 
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If we define 

(3-25) 

as the vector in coordinate k that is referred to the 

direction of coordinate 0, then the expressions will be more 

readable. For example, equations 3-11:3-24 can be written 

as: 

fk,j = m ( ak+1 + k+1 X k!.) (3-26) 
0- 0 k- k!!. 
fkk,j 

0- = m ( k+1 
0 k:! 

X( wk+1 
k- X k!,)) (3-27) 

fk 1 'j =2m ( k+1 X ( ul+1 1+1 
X 1!.) (3-28) 

0- 0 k:! k 1- + 1:! 

·The subscripts indicate the destination coordinates. They 

cascade from the inner parentheses to the outer parentheses, 

and all the subscripts within the same parentheses must be 

the same. 

The total force of a joint 

For the open dynamic chains, the force of a joint is 

the integration of forces of all the mass elements from that 

joint(denoted as J;) to the end effector(denoted as E) plus 

the payload(One may use it as the definition of open dynamic 

chain). By integrating equation 3-21, we obtain the 

demanded force of joint i. 

o(if.} 

k o ( i E l (3-30) 
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( .Fkk) 
rE 

X( wk+ 1 X = j ( wk + 1 k!.)) dm (3-31) 0 1- 0 k- k-
Ji 

( .Fkl) 
rE 

1+1 1+1 
0 1- =2j O(k!!k+1 X k(l!!, + 1!:! X 1r.) dm (3-32) 

Ji 

These are respectively the inertial force, the 

centrifugal force and the Coriolis force of link j of the 

generalized manipulator. The direction of each force is 

referred to the base coordinate. If we want each force to 

be referred to its own coordinate, we simply change the 

subscript 0 to i that is equivalent to multiply the whole 

0 equation by ;A . Hence, 

N N N N · 
.F = t .Fk + I .Fkk + t t .Fkl 
1- k=1 1- k=1 1- l~k k=1 1-

(3-33) 

where 

.Fk 
rE 

k+1 = j·( ak+l + X k~)dm (3-34) 
1- 1 k- k!!. 

Ji 

.Fkk 
rE 

X(k!fk+1 X = j . ( wk + 1 k!.))dm (3-35) 
1- 1 k-

Ji 

.Fkl rE k+1 1+1 1+1 
X 6kll!.))dm (3-36) 

1- =2j;(k!:! X k(l!! + 1!:! 
Ji 

Define the mass and center of mass of link j in 

coordinate k as: 



r 
= J dm 

link j 
r . 

= J r'J dm k-
link j 
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(3-37) 

(3-38) 

where jE is the center. of mass of link j in its own 

coordinate frame. 

Then equations 3-34:3-36 can be written as: 

N k . 
= ! .F ,J 

. {" k}1-J =max 1 , 

(3-39) 

= ~ .Fkk,j 
j=max{i,k}-

(3-40) 

= ~ .Fkl,j 
j=max{i,k~T} 

(3-41) 

where 

.Fk,j =M'j.(ak+l + k~ 
k+l X kE' j) (3-42) 

1- 1 k-
.Fkk,j 
1-

= M'j.( wk+l 
1 k-

X ( wk + 1 
k- X kE' j)) (3-43) 

.Fkl ,j =2M'j.( wk+l X ( ul+l 1 +1. X 0knE'j)) 
1- 1 k- k 1- + '1!:!. 

are the inertial force, centrifugal force and Coriolis force 

of link j acting on joint i due to the movements of links k 

and 1. 

When k=i or l=i, the force of joint i is due to the 

movement of joint i itself. Conversely, the force of joint 

i is due to the movements of other links, and this is the 

coupling force. 
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The torgue of a mass element 

The torque of a mass element in link j of the 

generalized manipulator is computed by equation 2-109. 

where 

;!!. = i!. X ;f 
of is according to equations 3-21 
1-

& 3-26:3-28. 

Changing the subscript from 0 to i for referring the forces 

to the local coordinate, one gets 

w·he re 

0 j k 0 j kk 0 j j kl . 
of'J = t of ,J + t of ,J + t t of ,J 
1- k=1 1- k=l 1- l~k k=l 1-

ofk,j 
1-

ofkk,j 
1-

0 fk 1 'j 
1-

= m 

= m 

=2m 

( k + 1 
0 ka 
1 -

( 
. k + 1 

o kw 
1 -

( k + 1 
0 kw 
1 -

(3-45) 

(3-46) 

(3-47) 

(3-48) 

Then the torques on a mass element in link j of the 

generalized manipulator are: 

0 j k 0 j kk 0 j j kl 0 

on'J = t on ,J + t on ,J + t t on ,J 
1- k=1 1 - k=l 1- l~k k=l 1

-

where 

onk,j = m or X ( k+l + k!!. 
k+l 

X k!.) o ka 
1- 1- 1 -

onkk,j = m or X ( k+l X ( wk+l X k!.)) o kw 
1- 1- 1 - k-
onkl,j 
1-

=2m .r 
1-

X ( k+l o kw 1 -
X A1( ul+l 

k 1-
+ 1:! 

1+1 
X 6kll!.) 

(3-49) 

(3-50) 

(3-51) 

(l-!,t) 
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are the inertial torque, centrifugal torque and Coriolis 

torque of the mass element on link j of the generalized 

manipulator actin~ on joint i due to the movements of links 

k and 1. 

When k=i or l=i, the torque of joint i is due to the 

movement of joint i itself. Conversely, the torque of joint 

i is due to the movements of other links, and this is the 

coupling torque. 

The torgue of a joint 

The torque of a joint is the integral of the torques 

of all the mass elements from that joint to the end effector 

plus the payload. By integrating equation 3-41:43, we 

obtain the demanded torque of joint i. 

N k N N N 
.Nkl .N = t . N + t .Nkk + t t 

1- k=1 1- k=1 1- l~k k=l 1- (3-53) 

where 

. Nk 
N k . 

= t . N 'J 
1- . {' k}1-J=max 1, 

(3-54) 

.Nkk = ~ .Nkk,j 
1- j=max{i,k}-

(3-55) 

. Nk 1 = ~ .Nkl,j 
1- . { . k 1 ... } J=max 1, ,J 

(3-56) 
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.Nk,j r ( k+l k+l 
= J . r .x . k a + k~ X k!)dm ,_ 1- 1 -

link j 
(3-57) 

.Nkk,j r ( k + 1 X( wk+l = J . r X . kw X k!)) dm 1- 1- 1 - k-
link j 

(3-58) 

Equations 3-54:3-56 are the inertial torque, the 

centrifugal torque and the Coriolis torque of link j of the 

generalized manipulator acting on joint i due to the 

movements of links k and 1 respe~tively. 

a. the inertial torgue 

The integrand in equation 3-57 has two terms, the 

first term is 

J

f i! X i(k~k+l) dm = M'j(i~,j X i(k~k+l)) 
link j 

· t· 3 37 & 3 38 s· k+l after us1ng equa 1ons - - . 1nc~ k! 

translational acceleration of link k, so M'j.( ak+l) , k-

force to achieve that translational acceleration of 

(3-60) 

is the 

is the 

1 ink j 

in coordinate i, and equation 3-60 is the torque that is 

observed at the origin of coordinate i. 

The second term is 



r . 
= J (.dJ + ,_ 

link j 
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.Aj .r) X . (kak+l X (kdj + kAj .r)) dm 
1 J- , - - J-

r . 
= J ;&J 

link 
X ;(k~k+l X k~j) dm 
j 

·+Jr .dj x .(kak+l x Aj ) dm 
1- 1 - k j!. 

link j. 

+Jf ;Ajj! X ;(k!k+l X k&jl dm 
link j 

r j k+l j 
+J ;A j!. X ;(k~ X kA j!.) dm 

link j 

where [2-34] means "refer to equation 2-34". 

The first term of equation 3-61 is 

J

r i~j X i(k~k+l X k~j) dm 
link j 

= M'j ;&j X ;(k~k+l X k~j) 

[2-34] 

(3-61) 

[3-37] 

(3-62) 

where the torque depends on the distances between 

coordinates j, i & k(fig.S). This is a version of the 

"parallel axis theorem"[Beer62]. 

The second term is 

J
f ;&j X ;(k!k+l X kAjj!) dm 
link j 

= M'j i~j X ;(k~k+l X kAjj~'j) 

and the third term is 

[3-37] 

(3-63) 
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r j k+l j 

J 
.A .r X .(ka X kd ) dm 
1 J- 1 - -

link j 
[3-38] 

= M'j .Aj .n'j X .( ak+l X dj) 
1 J~ 1 k- k- (3-64) 

where the torques in equations 3-63 & 3-64 are due to the 

fact that the center of mass of link j is not at the 

origin of either coordinate frame i or k [fig.7]. 

The fourth term is 

[2-46] 

[2-81] 

where 

. r r T I'J = J [tr(.r.r )I - (.r.r )] dm (3-65) 
J-J- J-J-

link j 
is called the inertial matrix of link j measured at the 

origin of the local coordinate frame(here the inertia matrix 

of the link includes the inertia of the actuators) . 

. Aji,j(.Aj)T is the inertial matrix of link j under rotation 
1 1 

j . k k+l of ;A (f1g.8). ;A k~ is the angular acceleration of joint 



• 

57 

k measured in the direction of coordinate i. So the fourth 

term is the torque to rotate a link at an arbitrary angle. 

So the inertial torque represented in equation 3-57 is 

the combination of equations 3-60:3-65, hence 

.Nk,j = Jrr X .( ak+l + ak+l X r +2 wk+l X uk+l) 
, - - , k- k- k- k- k-

link j 

{3-66) 

where 

r r r 
-- j (y 2

+z
2

)dm j xy dm J xz dm {3-67) 
link j link j link· j 

r ( r 
J yx dm J{x

2+z
2)dm J yz dm 

link j link j 1 ink j 

r ( r 
J zx dm J zy dm J{x

2+y 2)dm 
link j link j link j 
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-- 1xx I xy 1xz (3-68) 

Iyx Iyy Iyz 

1zx Izy 1zz 

b. the Coriolis torgue 

The Coriolis torque of link j for joint i due to the 

movements of joints k and 1 is computed by equation 3-58, 

where the operator 6kl is suppressed in the derivations. 

i~kl,j = 2Jri! X i(k~k+l X k(l~l+l + 1~1+1 X l!))dm 

link j 

r ( k+l X ( ul+l)) = 2 J i!. dm X . kw 
1 - k 1-

link j 
r . . 

.( wk+l X +2 ( .dJ + .AJ .r) X 
1- 1 J- 1 k-

( 1+1 
k 1~ X ( dj + 

1- lAjj!.) ) dm 

link j 
= 2M'j ;£'j 

r . 
+2j ig_J 

link 
X i(k~k+l X k(l~l+l X lg_j)) dm 

j 

+2Jf ;.!lj X i(k!!k+l X k(l!!l+l X lAjj.!:.)) dm 

link j 

+2Jr .Aj.r x .(kwk+l x k( 1w1+1 x 1dj)) dm 
1 J- 1 - - -

link j 

[2-34] 

[3-38] 

(3-69). 

+2jf ;Aj j!. X i(kl+l X k(l!!l+l X lAj j!.ll dm 

link j 
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Equation 3-70 is the Coriolis torque of link j for 

joint i due to the movements of joints k & 1. This equation 

has six terms all caused by the fact that joint k is 

revolute. If joint is prismatic(fig.9), the Coriolis 

force is then 2M'j.( wk+lx ( u1+1)) at the center of mass of 
1 k- k ,_ 

link j(3-44). Therefore, the arm of torque is i2'j in the 

first term. The next five terms exist only if joint 1 is 

revolute. The physical explanation is not obvious but the 

meaning is understood by following the derivations that is 

similar to the explanation for the inertial torque. Anyway, 

the geometrical interpretation of such variables are 

presented in fig.9. 
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If k=l, then 6kl is zero and equation 3-70a becomes: 

(3-70b) 

c. the Centrifugal torgue 

The equation for the centrifugal torque is achieved by 

letting the coordinate frames k & 1 coincide, without 

considering the translational velocity and the factor 2 in 

(3-57:3-58). Hence 

.Nkk,j r 
.( wk+l X( wk+l X r))dm = J. r X 1- 1- 1 k- k- k-

link j 
= H'j .dj X ( k + 1 X ( wk+l X k~j)) . kw 1- 1 - k-
+ H'j .dj X .( wk+ 1 X ( wk+l X Aj ·E.'j)) 

,_ 1 k- k- k J 

+ M'j .Aj ·E.'j X .( wk+ 1 X ( wk+ 1 X dj)) 
1 J 1 k- k- k-

+ (.Ak wk+l)X{[.Aji,j(.Aj)TJ(.Ak wk+ 1)} 
1 k- 1 1 1 k- (3-71) 

The fourth term of equation 3-70 vanishes since the 

cross product of two identical vectors is zero. The last 

term is due to the generalized Euler equation. The rest of 

the terms treat the link as a point mass due to the 

variables of separation of coordinate frame origins and the 

position of center of mass. 
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The gravity force and torgue 

The gravity force of a mass element in link j of the 

generalized manipulator in the base coordinate is: 

ofg = H 'j og 

where g is the gravity accel~ration. 

If one refers to a local coordinate, then 

;fg = m' j ;g 

(3-72) 

(3-73) 

For the open dynamic chains, the total gravity force 

acting on joint i is the sum of the gravity force of all the 

mass elements from that joint(J;) to the end effector(E). 

Therefore, 

rE N 
'j .F = 

J ig dm = . I. ;f.g 1-g 
Ji J =1 

(3-74) 

or 

;E.g 
,j = M'j ig (3-75) 

according to equation 3-37. 

The gravity torque of a mass element in link j of the 

generalized manipulator at the origin of coordinate frame i 

is : 

.n = .r X .f = m'j .r X .f 
1-g 1- 1-g 1- 1- (3-76) 

The total gravity torque acting on joint i in the 

local coordinate is: 



where 

i!!g 

rE 
= J i!: dm X i~ 

Ji 

,j = H'j i.E.'j X 
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N . 
= I .N ,J 
.. 1-g 
J =1 

i.9. 

= H'j ( .dj+.Aj ·.E.'j) X 
1- 1 J 

(3-77) 

i.9. (3-78) 

3.3 Algorithm For Constructing The Closed Form Dynamical 

Model of the Generalized Manipulator 

In the previous section, we have derived the closed 

form dynamical model for the generalized manipulator. The 

following step-by-step procedures summarize the derivation 

of the mode 1: 

A. Link Variables 

Measure : 

a. The mass of each link (M'j). 
• 

b. The center of mass of each link(in terms.of the link 

coordinate frame(j.E.'j)). 

c. The inertia matrix of each link (in link's coordinate 

(I'j)). 

B. The Kinematic Model 

Find the geometrical parameters of each link, then 

establish the kinematic model according to the 

procedures of section 2.2. 
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C. Joint Variables 

Specify : 

a. The translational velocity(k~k+l) & acceleration(k!k+l), 

b. The angular velocity(k~k+l) and acceleration(k~k+l) of 

joint k, k=1,2, ....•. ,N. 

D. Construction of the dynamical model 

The total force of joint i is the sum of equations 

3-33, 3-74 & 3-79. 

where 

and 

. F ,_ 
N N N N 

= t .Fk + E .Fkk + 1: 1: .Fkl + .F + .F (3-81) 
k=1 1- k=1 1- l~k k=l ,_ l-g l-m 

N k . 
= 1: .F ,J 

. {' k},_ J=max 1, 

= ~ .Fkk,j 
j=max{i,k}-

= ~ .Fkl,j 
j=max{i,k~T} 

N . 
= 1: .F ,J 
.. 1-g 
J = 1 

k+l 
+ k~ 

X( wk+l 
k-

(3-82) 

(3-83) 

(3-84) 

(3-85)" 

(3-87) 

(3-88) 
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where 

and 
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.Fk1,j =2M'j.( wk+l X ( u1+1 + 1+1 X o ,j)) 
1- 1 k- k 1- ,~ kll.Q. 
.F ,j = M'j 

1
.n 

1-g ~ 

The total torque of joint i is the sum of equations 

3-77 & 3-80. 

N k N 
. N = I .N + I . Nkk 
1- k=1 1- k=1 1-

= ~ .Nk,j 
j =rna x { i , k} 1-

.Nkk = ~ .Nkk,j 
1

- j=max{i,k}-

.Nk1 = ~ • .Nkl,j 
1

- j=max{i,k~T} 

N • 
= I .N ,J 
.. 1-g 
J =1 

N N 
. Nk 1 + I I 

hk k=1 1-

+ . M, j .dj 
1-

X .( ak+1 X dj) 
1 k- k::-

+ 

+ M'j .dj X . ( k(J k+1 X kAj jl!.'j) 
1- , -

+ M'j .Aj·.Q.'j X ·( ak+1 X dj) 
, J 1 k- k- . 

+ .Ajl,j(.Aj)T (·A\ak+ 1) 
, 1 1 -

.Nkk,j M'j .dj X = ,_ ,_ ( k+1 . kw , - X ( wk +1 
k- X 

+ M'j ·dj X ( k+1 X ( k +1 X ,_ i k~ k~ 

. N + 
1-g ;!!m (3-90) 

(3-91) 

(3-92) 

(3-93) 

(3-94) 

(3-96) 

dj)) (3-97) k-

kAj jl!.'j)) 



If 1 ~ k, then 

If 1 = 

where 

.Nkl,j = 
1-

k' then 

. Nk 1 , j = 1-

i!!g 
,j -. 

I , j is 
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2M'j i~' j X ( k+l . kw 
1 -

H'j i~' j X ig_ 

the inertial matrix 

coordinate origin of joint j. · 

X ( ul+l)) 
k 1-

(3-98b) 

(3-99) 

of link j measured at the 

The derivation of the dynamical model is based on four 

concepts: 

a. The Rigid Body Assumption 

The relative position of any two points in the link 

does not change while the link moves. 

b. The Open Kinematic Chain Concept 

The kinematic variables of a mass element do not 

depend on the kinematics of those mass elements which are 
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closer to the open end of the chain. 

c. The Open Dynamical Chain Concept 

The overall required force(torque) at joint i is 

the sum of all forces(torques) that act on all mass elements 

from link i to the end effector. 

d. The Generalized Manipulator Concept 

The generalized mainpulator is constructed by the 

generalized joints which can be translated and rotated in 

any direction. In other words, their direction of motion 

are arbitrary. 

Example 

The robot in figures 4-5 is used as an example. In 

order to demonstrate the multiple degree-of-freedom link, 

joint 2 is thought of having two degrees of freedoms. It 

can rotate w.r.t. v2-axis and can translate along -x 2-axis 

too. Thus it is a two link robot that has three degr~es of 

freedom. 

The derivation of the dynamical model consists of the 

following steps : 

Step A. Specifying all the link variables 

The mass of link 1 is H1 and its center of mass is 

located at the frame origin(~1 = 0). The inertial matrix of 



link 1 

link 

link 1 

is I 1 

1 is 

is : 

I lxx = 
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and it can be derived by equation 3-67. Since 

a flat cylindical mass, the inertial matrix of 

H1 d1Z I 4 (3-100) 

I1yy = H1 d1Z I Z (3-101) 

I1zz = H1 d1Z I 4 (3-10Z) 

I1xy = I1yx = I1yz = I1zy = I1xz = I1zx = 0 (3- 103 ) 

where H1 is the mass of link 1 and d1 is the radius of the 

cylindrical mass. 

Let d0 be the thickness of the top. 

The mass of link Z is Hz and its center of mass is 

situated at the middle of the link(~zx =-dziZ =varying). 

Since link z is a slender rod, the inertial matrix of link 

z ( Iz) is: 

I2xx = 0 (3-104) 

I2yy = Hz d z 
2 I 12 (3-105} 

I2zz = Hz d 2 
2 I 12 (3-106} 

I2xy = I2yx = I2yz = I2zy = I2xz = I2zx = 0 (3-107) 

Step B. Writing the kinematic model 

The open kinematic chain concept implies that the 

kinematic model is established from the base to the end 

effector. 
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cos0 1 -sin0 1 0 0 

sin0 1 cos0 1 0 0 

o o 1 d0 

0 0 0 1 

cos0 2 0 sin0 2 -d 2cos0 2 

0 1 0 d1 

-sin02 0 cos0 2 d2sin0 2 

0 0 0 1 

OT2 = Tran(d 0 Zo) Rot(01 
. Z1) ' 

Rot ( 02 Y2)Tran(d 2 ; - x2) 

cos0 1cos0 2 -sin01 cos0 1sin0 2 

sin01sin02 cos01 sin0 1sin0 2 

-sin0 2 
. 0 cos0 2 

0 0 0 

(3-108) 

(3-109) 

Tran(d 1 Y1) 

= (3-110) 

-d 1sin0 1-d 2cos0 1cos0 2 

d1cos01-d 2sin0 1cos0 2 

do +d 2sin0 2 

1 

Step C. Specifying the dynamical variables of each joint 

The angular velocity and acceleration of link 1 are 

T T 
indicated by the vectors [0, 0, ! 1] & [0, 0, ! 1] . 

The angular velcoity and acceleration of link 2 are 
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T represented by the vectors [0, ~2 , 0] , [0, 2_2, 

the translational velocity and acceleration of link 2 are 

specified ·by the vectors [-!2, 0, 0] 1 and [-!2, 0, O]T. 

Step D. Constructing the dynamical model 

Because of the open dynamic chain concept, the 

dynamical model is constructed from the end effector to the 

base. 

The gravity terms 

The gravity vector in the local coordinate is: 

o.9. = [0, 0, -g]T 

1.9. = (oA1lTo.9. = [0, 0, -g]T 

z.9. = 2 T 
( o A l o.9. = g[sin0 2, 0, -cos02]1 

The gravity force of joint 2 is: 

(3-111) 

(3-112) 

(3-113) 

zfg = 2f' 2g = M' 2 2~ = M2g[sin0 2, 0, -cos0 2]T (3-114) 
• 

The gravity force of joint 1 is: 

F'2 
1- g = M'21.9. = -M 2g[O, 0 ' 1] T 

F'1 
1- g = M'11.9. = -M1g[O, 0' l]T 

1fg = F'2 + 
1- g 

F'1 
1- g = -(M 1+M 2)g[O, 0, 1] 1 (3-115) 

The coordinates of the centers of mass are: 

zE.' 2 = [-ld2, 0, 0] T (3-116) 

1E.' 2 = [-!d 2cos0 2, d1, id 2sin02]T (3-117) 
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The gravity torque of joint 2 is: 

1~g = 2~,2g = M'2 2~,2 X 2~ 
=-iM 2gd 2[o, cos0 2, O]T 

The gravity torque of joint 1 is: 

1~,2g = M'2 1~,2 X 1~ 

=-lM 2g[d 1, d2cos0 2 , O]T 

1~,1g = M'1 1~,1 X 1~ = [0, 0, O]T 

2 1 
1 ~g = 1 ~' g + 1 ~' g =-iM 2g[d 1, d2cos0 2, 

inertial terms 

Let: 

F2,2 
2- = M2(!2 + !!.2 X ~2) 

= M2 -a2 

0 

l<~2d2 

F1,2 M2 
1 1~' 2) = 2A (!!,1 X 2-

= M2 - <~ 1 d 1 cos0 2 
-l<~ 1 d 2 sin0 2 
.- <~ 1 d 1 sin0 2 

Then the inertial force of joint 2 ; s: 

(3-118) 

(3-119) 

(3-120) 
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2-
FI = F2,2 + F1,2 

2- 2-

Similarly: 

= M2 -a 2-a1d1cos0 2 

-la1d2sin02 

. }a 2d2-a1d1sin02 

F2,2 = 
1-

= M2 -a 2cos0 2+}d 2a2sin0 2 

0 

F1,2 = 
1-

= M2 -d1a1 

-}d 2sin02a1 
0 

Fl,l = M w X 0 
1- 1 -1 £1 = -

Then the inertial torque of joint 1 is: 

1-
FI = F2,2 + Fl,2 + F1,1 

1- 1- 1-

= M2 -a 2cos02+}d 2a2sin0 2-d 1a1 

-ld 2sin02a1 
a2sin02+}d 2a2cos0 2 

(3-121) 

(3-122) 
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The inertial torque of joint 2 is calculated as 

follows: 

N2,2 = H ( X ) 1,2 
2- 2 E.2 !2 + a2 

= 0 

I2yya2 

0 

N1,2 1 2 + !'2 2A1a1 = H2(E.2 X 2A (!1 X 1& )) 2-

= a1 iH 2d1d2cos0 2-r 2xxsin02 

lH 2d1d2sin02 
2 iH 2(d 2) cos02+r 2zzcos02 

2-
NI = N2,2 + N1,2 

1- 1-

= (iM 2d1d2cos02-r 2xxsin0 2)a1 

r2yya 2+iM 2d1d2sin02a1 

(iH 2d1d2sin02+r 2zzcos0 2)a1 

Similarly, the inertial torque of joint 1: 

1~2,2 = H2 (1E.,2 X 1A2!2) 
2 2 

+H2 1& X 1A (!2 X E.2) 

+1A2I,22A1(1A2!2) 

(3-123) 
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H2d1(a 2sin0 2+id 2a2cos0 2) 

2 
-!H 2(d 2) a2+I 2yya 2 

. H2d1 (a 2cos0 2-id 2a2sin02) 

= a1 (H 2(d 2)2+(I 2zz-I 2xx))cos02sin02 

-3/2M 2d1d2sin0 2 

. H2(d1)2+12xx(sin02)2+12zz(cos02)2 

= 0 

0 

1-
NI = N2,2 + Nl,2 + N1,1 

1- 1- 1-
• 

(3-124) 

= H2d1(a 2sin02+id 2a2cos0 2) 

+a1{(M 2(d 2}2+(I 2zz-I 2xx))cos0 2sin0 2 

-}M 2(d 2)2a2+I 2yya 2-3/2M 2d1d2sin0 2a1 

H2d1(a 2cos0 2-ld 2a2sin0 2)+{M 2(d 1)2 

+I2xx(sin02)2+12zz(cos02)2+Ilzzlal 
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The centrifugal and Coriolis terms 

The centrifugal and Coriolis terms can be computed in 

a similar manner. In this example, we assume that the robot 

is moving in slow speed, thus these two effects are 

insignificant. 
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CHAPTER 4 

EQUIVALENCE BETWEEN THE NEWTON-EULER AND THE LAGRANIAN 

METHODS 

In the previous section, the closed form dynamical 

model for the generalized rigid robot manipulator has been 

derived. In this section, we limit ourself to rigid 

manipulators that have only one degree of freedom per link. 

Joints that have more than one degree of freedom are 

decomposed i~to multiple of one degree of freedom joints, 

and each "subjoint" is described by one coordinate frame. 

This is done for the sake of properly identifying the 

generalized variables of the Lagrange formulation. 

If the joint has only one degree of freedom, then only 

the component along the axis of motion is of interest. Thus 

the complexity of the dynamical model is reduced 

significantly. Also, since the links are rigid, we have 

either force or torque along the axis of motion of that 

link. That makes the dynamical model even simpler. If the 

link has a prismatic joint, the force component is of 

interest. If it has a revolute joint, the torque component 

is considered. 

76 
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4.1 The Generalized Variables 

Before reducing the closed form dynamical model of the 

previous chapter to the single degree of freedom per link 

case, let us define the generalized variables(needed for 

Lagrange formulation). 

The 

s ----
s == 

s == 

The 

& == 

& == 

selection vectors are chosen as follows: 

[1, 0, O]T if x-component of the joint 

[0, 1 ' O]T if y-component of the joint 

[0, 0, 1]T if z-component. of the joint 

is selected. 

generalized angle of rotation is(fig.10): 

0 if the joint/link is prismatic. 

ATs if the joint/link is revolute. 

(4-1) 

( 4-2) 

(4-3) 

(4-4) 

(4-5) 

The selection vector! specifies the axis of rotation of the 

original coodinate, and the vector 6 is the direction of the 

axis of rotation in the destination coordinate where A is 

the orientation matrix between the two coordinates. 

The generalized displacement vector is(fig.ll): 

!!. == ATs if the joint/link is prismatic. (4-6) 

!!. == AT(~X£) if the j o i n t /1 i n.k is revolute. (4-7) 

If the joint is prismatic, then the selection vector s 

specifies the axis of translation of the original coodinate, 
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Figure 10 The Generalized Angle of Rotation 
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' '<t 

• 
= . J/J ,r-

Figure 11 The Generalized Displacement Vector 
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and the vector~ is the direction of the axis of translation 

in the destination coordinate where A is the orientation 

matrix between the two coordinates. If the joint is 

revolute, then the selection vector s determines the axis of 

rotation, and the displacement equals to ! X ~where d is 

the displacement vector and A is the orientation matrix 

between the two coordinates. 

The generalized velocity is: 

n -- us if the joint is prismatic. 

n -- ws if the joint is revolute. 

(4-8} 

(4-9} 

The generalized velocity is defined as the component along 

the direction of the axis~of-motion. 

The generalized acceleration is: 

R -- as if the joint is prismatic. 

R -- as if the joint is revolute. 

(4-10} 

(4-11} 

The generalized acceleration is defined as the component 

along the direction of the axis-of-motion. 

The generalized force is: 

r -- Fs if the joint is prismatic. 

r -- Ns if the joint is revolute. 

(4-12} 

(4-13} 

The generalized force is defined as the component along the 

direction of the axis-of-motion. 
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For the dynamical model derived by the Newton-Euler 

' method, different mathematical expressions result when using 

different ordering of prismatic and revolute joints(when 

representing a multi-degree of freedom joint by a sequence 

of single degree of freedom joints), and each mathematical 

expression can be interpreted physically. However, when 

generalized coordinates(equations 4-1:4-13) are used, all 

combinations of prismatic and revolute joints lead to the 

same mathematical equation. In this "generalized". equation, 

the physical interpretation of the various terms is implicit 

and sometimes cannot be visualized. 

4.2 Equivalence Between the Newton-Euler and the Lagrangian 

Methods 

Lagrange formulation yields a unique dynmaical model. 

Io this section, we shall prove that the dynamical model 

derived from the Newton-Euler method can be transformed into 

the same unique dynamical model. Hence, the Newton-Euler and 

Lagrangian methods are equivalent[Holl82]. 

In the following derivations, the superscripts of the 

prismatic and revolute velocity and acceleration will be 

mitted since they are always larger by one than the 

subscripts and the subscripts indicate the joints which are 
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referred. k+1 
For example, k~ = k~' etc. 

The inertial terms 

If we assume that both joints k and i are revolute, 

then from equations 4-1:4-7, we obtain 

.~j = (.Aj)T.s 
1- 1 1-

k!j = (kAj) \! 

·llj = (.Aj)T(.s X .dj) 
1- 1 1- 1-

\lj = ( Aj)T( s X k-dj) 
k- k k-

(4-14) 

(4-15) 

(4-16) 

(4-17) 

In equation 3-96, both joints k and i are revolute, 

then the inertial torque is 

.s .Nk,j = H'j { .dj X 
1
.Ak(k_s X kdj) 

1- 1 1- -

+.dj X .Ak( s X Aj.n,j) 
1- 1 k- k J~ 

+.Aj .n'j X .Ak( s X dj) 
1 J.l:. 1 k- k-

+.AjK,j .Ak s } ka 
1 J k-

(4-18) 

(4-19) 

is the unit mass inertial matrix of link j measured at the 

coordinate origin of joint j. 

Using the definition of generalized force and acceler­

ation, equation 4-19 can be written as: 

irk,j = Dik,j kR (4-20) 
. . . k • 

where Dik,J = M'J { i! • (;~J X ;A (k! X k~J)) ( 4-21) 

+.s • ( .dj X .Ak(ks X kAj .n'j)) 
1- 1- 1 - J~ 
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The fourth term of equation 4-21 is: 

.s T .AjK ,j .Ak s 
,_ , ·J k-

= ((iAj)Ti~)T K'j ((kAj)Tk~) 

= (i!j) T K'j (k!j) 

The first term of equatibn 4-21 is: 
k . 

X ;A (k~ k!!J)) 

X ;Aj(kAj)T(k~ X 

(4-22) 

(4-23) 

where equations 2-44, 2-46 and 2-85 have been used and they 

will be used very often in the following derivations as 

well: 

The second term of the equation 4-21 is: 

= .s • ( .dj X .Ak(ks X kAj .n'j)) ,_ ,_ , - J~ 

= .Ak(ks X kAj .n'j) • ( .s X .dj) , - J~ ,_ ,_ 

= .Aj( Aj)T( s X Aj.n,j) • .Aj(.Aj)T(.s X .d , k k- k J~ , , ,_ ,_ 

= ( Aj)T( s X Aj.n,j) • (.Aj)T(.s X .dj) k k- k J~ , ,_ ,_ 
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= (( Aj) T s X ·E.'j) • (.Aj)T(.s X .dj) 
k k- J 1 1- 1-

= ( ~j X ·l?.'j) • ·\1 j 
k- J 1-

= . E.' j • ( ·\1 j X ~j) (4-24) 
J 1- k-

(4-25) 

After combining equations 4-22:4-25, equation 4-21 

becomes 

0 ,j = H'j 
ik { (.~j)T 

1-
K'j 

+.l?.'j • ( •\1 j 
J 1-

Assume that both joints k 

equations 4-1:4-7, we obtain 

.~j = 0 
1-

~j = 0 k-
·\1 j = (.Aj)T.s ,_ , ,_ 
llj = ( Aj)T s 

k- k k-

( ~j) + llj • ·llj 
k- k- 1-

X ~j 
k-

+ llj 
k- X . ~ j) 

1-

& i are prismatic, 

In equation 3-87, if both joints k & i are 

then the inertial force is: 

.s .Fk,j 
1- 1 

= M'j .Ak 
1 k! ka 

=> .rk,j = Dik 'j kR 1 

} (4-26) 

then from 

(4-27} 

(4-28) 

(4-29) 

(4-30) 

prismatic, 

(4-31) 
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where 0ik 
'j = H'j T k 

{(;!) );A k!} 

= H'j {[(.Aj)T.s]T[( Aj)T s]} , ,_ k k-
H'j 

. T . 
= {( ·l!J) l!J} ,_ k-

= H'j { ·1! j • l!j} (4-32) ,_ k-

Using the definitions of 4-27:4-30, equations 4-32 & 

4-32 equal to equations 4-20 & 4-26 respectively but the 

definition of the terms is different. 

Assume that joint k is revolute and joint i is 

prismatic, then from equations 4-1:4-7, we obtain 

. ~j = 0 (4-33) ,_ 
~j 

k- = ( Aj)T s 
k k- (4-34) 

·l!j = (.Aj)T.s (4-35) ,_ , ,_ 
l!j 

k- = ( Aj)T( s X dj) 
k k- k- (4-36) 

In equation 3-87, if joints k is revolute and joint i 

is prismatic, then the inertial force is: 

i! iFk,j = H'j {iAk(k! X k£'j)} ka 

=> ;rk,j = Dik,j kR (4-37) 

where Dik,j = H'j { i! • iAk(k! X k2'j)} . 

= H ' j { A k ( X d j ) A k ( X A j •J ) J .s•. ks k + .s•. ks k .n ,_ 1 - - 1- 1 - Jl;. 

= H'j { ( .Aj)T.s • ( Aj)T( s X dj) , ,_ k k- k-
+(.Aj)T.s •(( Aj)T s X .n'j)} , ,_ k k- Jl;. 

= H'j { i!j • k!j + j2'j • (i!j X k!j) } (4-38) 
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With the defintions of 4-33:4-36, equations 4-37 & 

4-38 equal to equations 4-20 & 4-26 respectively. 

Assume that joint k is prismatic and joint i is 

revolute, 

. ~j 
1-

~j 
k-
·llj 
1-

llj 
k-

then from equations 

= (.Aj)T.s 
1 1-

= 0 

= (.Aj)T(.s X . d j) 
1 1- 1-

= ( Aj)T s 
k k-

4-1:4-7, we obtain 

(4-39) 

(4-40) 

(4-41) 

(4-42) 

In equation 3-96, if joints k is prismatic and joint i 

is revolute, then the inertial torque is: 

.s .Nk,j = H'j { .n'j X .Ak s } ka 
1- 1 1.1:. 1 k-

=> .rk,j 
1 

where Dik,j 

With the definitions of 4-39:4-42, equations 4-43 & 

4-44 equal to equations 4-20 & 4-26 respectively. 

In conclusion, the following equations work for any 

combination of joint k and i, providing the generalized 
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terms(4-1:4-7) are used accordingly. 

irk,j = Dik,j kR (4-45) 

0 ,j = H'j { ( .cJj)T K'j ( 6j) + llj • ·llj ik ,_ k- k- ,_ 

+ .n'j • ( ·llj X 6j + llj X .cJj) } (4-46) 
J~ ,_ k- k- ,_ 

where K'j = [tr(.r'j(.r'j)T- .r'j( .. r,j)T] I H'j (4-47) 
J- J- J- J-

In equation 4-45,. if both joints k & i are revolute, 

then the first term is due to the arbitrary angle of link j; 

the second term is due to the "parallel axes theorem"; the 

last two terms are due to the fact that the center of mass 

of link j does not coincide with the coordinate origin of 

joint j. If joints k & i are in different combinations, the 

explanation of the terms is not obvious since the 

definitions of the variables are altered. 

The Coriolis terms 

In computing the Coriolis force and torque(equations 

2-82:2-83), joint k is always taken to be revolute. Let 

joints 1 & i be both revolute, then according to equations 

4-1:4-7, we obtain: 

. 6j = (.Aj)T.s (4-48) ,_ , ,_ 
6j = k-

( Aj)T s 
k k- (4-49) 

6j 
1- = ( Aj)T s 

1 1-
(4-50) 

•J,lj . T 
. dj) = (iAJ) (i! X (4-51) ,_ ,_ 
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. 

llj 
k- = ( Aj)T( s X dj) 

k k- k- (4-52) 

llj 
1- = ( Aj)T( s X dj) 

1 1- 1- (4-53) 

If both joints 1 & i are revolute, according to 

equation 3-98a, the Coriolis torque is: 

hence 

where Dikl,j = H'j { 

i! • (;&j X ;Ak(k! X kA 1(1! X 1£j))) 
j k 1 j ,j 

+.s •· (.d X .A (ks X kA (1s X 1A ·P. ))) 
1- 1- 1 - - J 

•;! • (;AjjP.'j X iAk(k! X kA 1(1! X 1£j)) 

•;! • ([;AjK,j(;Aj)T-ltr(K'j)](;A 1
1! X iAkk!)) 

(4-54) 

(4-55) 

•;! • ((;A 1
1!) X ([iAjK,j(;Aj)T](;Akk!)) } 

In equation 4-55, the last term is: 

;! • ((;A 1
1!) X {[;AjK,j(;Aj)T](;Akk!)) 

= ;Aj(;Aj)T;!•[(;Aj( 1Aj) Tl!)X[;AjK,j(;Aj)T](;A 

= (;Aj)T;! • [(lAj)Tl!) X K'j((kAj)Tk!)] 

= .6j • ( 6j X K'j oj) (4-56) 
1- 1- k-
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The fourth term of equation 4-55 is: 

;! • ([iAjK,j(iAj)T-}tr(K'j)](;A 1
1! X iAkk!)) 

= (.Aj)T.s • [K'j-}tr(K'j)]·(( Aj)T s X ( Aj)T s) 
1 ,_ 1 1- k k-

= -~j • [K'j-}tr(K'j)]( ~j X ~j) (4-57) ,_ 1- k-

(4-58) 

(4-59) 

(4-60) 

After substituting equations 4-56:4-60 into equation 



4-55, we obtain 

D ,j = H'j { 
ikl 

90 

.~Sj • 
1-

( 15j 
1- X K'j 15j) 

k-
+.15j 
1-

• [K'j-ltr(K'j)]( 15j 1- X 

+ 15j • 
k-

( llj 
1- X ·llj) 

1-

+ ·E.'j • 
J 

( 6j 
1- X ( 15j 

k- X ·llj)) 
1-

+ ·E.'j • 
J 

( • 6 j 
1-

X ( llj 
1- X 15j)) 

k-

(4-61) 

15j) 
k-

} 

Now assume that both joints 1 & i are prismatic and 

joint k is revolute, then 

.15 j = 0 (4-62) 
1-

15j = k-
( Aj)T s 
k k- (4-63) 

15j 
1- = 0 (4-64) 

·ll j = (.Aj)T.s (4-65) 
1- 1 1-

llj 
k- = ( Aj)T( s X dj) 

k k- k- (4-66) 

llj 
1- = ( Aj)T s 

1 1- (4-67) 

If both joints 1 & i are prismatic and joint k is 

revolute, then from equation 3-89, we get: 

.Fk1,j = 2M'j k 1 .s • i A ( k! X kA 1!) kw lu 1- 1 

=> .rkl,j = 2 D. "k 
,j 

kn 1n (.4-68) 
1 1 J 

where 0ik1 
,j H'j { . s • k 1 = ;A (k! X kA 1!)} 1-

= M'j {(.Aj)T.s • ((Aj)Tsx ( Aj)T s} 
1 1- k k- 1 1-

= M'j { ·llj • ( 6j X llj) } 
1- k- 1-

= M'j { 15j • ( llj X ·llj) } (4-69) 
k- 1- 1-
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Under definitions 4-62:4-67, equations 4-68 & 4-69 

equal to equations 4-54 & 4-61 respectively. 

Let joint i be prismatic and joints k & 1 be revolute, 

then 

.6j = 0 (4-70) 
1-

6j 
k- = ( Aj)T s 

k k- (4-71) 

6j 
1- = ( Aj)T s 

1 1- (4-72) 

·llj = (.Aj)T.s (4-73) 
1- 1 1-

llj 
k- = ( Aj)T( s X dj) 

k k- k- (4-74) 

llj 
1- = ( Aj)T( s X dj) 1 1- ,_ (4-75) 

If joint i is prismatic and both joints k & 1 are 

revolute, then from equation 3-89, the Coriolis force is: 

.s .Fkl,j = 2M'j .Ak( s X A1( s X 1n,j)) ... w lw 
1- 1 1 k- k 1- l:. 1\ 

=> r kl,j = 2 0 ,j n- n-
i ikl k 1 (4-76) 

where Oikl,j = M'j {i! • iAk(k! X kA 1(1! X lE.'j))} 

= H'j {(.Aj)T.s•(( Aj)T s X ( Aj)T( s X 
1 1- k k- 1 ,_ 

+(iAj)Ti!•((kAj)Tk! X ((lAj)Tl! X 

= H'j { ·llj • ( 6j X llj) 
1- k- 1-

+.lJj • ( 6j X ( 6j X .n'j)) } 
1- k- 1- Jl:. 

= H'j { 6j • ( llj X ·llj) 
k- 1- 1-

(4-77) 

+.n'j • ( 6j X ( 6j X ·llj)) } 
Jl:. 1- k- 1-

Under definitions 4-70:4-75, equations 4-76 & 4-77 

equal ·to equations 4-54 & 4-61 respectively. 
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Finally, assume that joint 1 is prismatic and joints k 

& i are revolute, then 

. oj = (.Aj)T.s (4-78) 
1- 1 1-

oj 
k- = ( Aj)T s 

k k- (4-79) 

oj 
1- = 0 (4-80) 

·llj = (.Aj)T(.s X . d j) (4-81) 
1- 1 1- 1-

llj 
k- = ( Aj)T( s X dj) 

k k- k- (4-82) 

llj 
1- = ( Aj)T s 

1 1- (4-83) 

Since joint 1 is prismatic and both joints k & i are 

revolute, then from equation 3-98, the Coriolis torque is: 

=> 

i! iNkl,j = 2M'j (i~,j X iAk(k! X kA 1
1!)) kw 1u 

.rkl,j = 2 o. ,j n n 
1 1-k 1 k 1 (4-84) 

where Dikl,j = M'j {i! • (i~,j X iAk(k! X kA 1
1!))} 

= M'j {[.Ak(ks X kA 1
1s)]•(.s X (.dj+.Aj.~,j))} 

1 - - 1- 1- 1 J 

= M'j {[( Aj) T s X ( Aj) T s]•[( .Aj) T ( .s X .dj)] 
k k- 1 1- 1 1- 1-

+( Aj)T s X ( Aj)T s]•((.Aj)T.s X .n'j)} 
k k- 1 1- 1 1- J~ 

= M'j { ( oj X llj) • ·llj 
k- 1- 1-

+( oj X pj) • ( .oj X .n'j) } 
k- 1- 1- J~ 

= M'j { oj • ( llj X ·llj) 
k- 1- 1-

(4-85) 

+.n'j • (.oj X ( pj X oj))} 
J~ 1- 1- k-

Under defintions 4-78:4-83, equations 4-84 & 4-85 

equal to equations 4-54 & 4-61 respectively. 
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So no matter what kind of combination of joint 1 & i, 

we still get the same equation for computing the Coriolis 

force or torque if the generalized variables(4-1:4-7) are 

applied correctly. The equation 

.r kl,j = 2 0 ,j - -
1 ik1 kn ln 

is: 

where Dikl,j = H'j { i!j • (1!j X K'jk!j) 

+.6j 
1-

• [K'j-ltr(K'j)]( 6j 1-

+ 6j • ( llj X ·llj) 
k- 1- 1-

+.n'j • ( 6j X ( 6j 
JZ:. 1- k-

+.n'j • (.6j X ( llj 
JZ:. 1- 1-

The centrifugal ·terms 

} 

(4-86) 

(4-87) 

The centrifugal terms are a special case of the 

Coriolis terms. If we let k=l and divide the equation by 2 

of the Coriolis terms, we get the expression for the 

centrifugal terms. 

.rkl,j = 0ikk 
,j 

kn kn (4-88) 
1 

where 0ikk 
,j = H'j { . 6j • ( 6j X K'j 6j) (4-89) 

1- k- k-
+ 6j • ( llj X ·ll j) k- k- 1-

+ ·E.'j • ( 6j X ( 6j X ·llj)) 
J k- k- 1-

+ ·E.'j • ( . 6 j X ( llj X 6 j)) } 
J 1- k- k-

and the variables are defined according to equations 4-1:4-7. 
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The gravity term 

If joint i is revolute, then 

.\5j = (.Aj)T.s 
1- , 1-

·llj = ( .Aj) T( .s X .dj) , - , ,_ ,_ 

-
(4-90) 

(4-91) 

Referring to equation 3-99, the gravity torque is: 

i! iN'jg = M'j i.l!,j X i~ 
=> .r'j = o. ,j (4-92) , g , 

where Di,j = M'j i! • (i£,j X i~) 

=> 

where 

(.s X (.dj + .Aj.n,j)) ,_ ,_ , J.l:. = H'j i~ • 
.Aj[( .Aj) T ( .s X .dj) , , ,_ ,_ = H'j ;~ • 

+( .Aj) T .s X .n'j)] , ,_ J.l:. 

.Aj( ·llj + .6j X .n'j) (4-93) , ,_ ,_ J.l:. = H'j i~ • 

If joint i is prismatic, then 

.6j = 0 ,_ 
llj = ( .Aj)T .s i- . , ,_ 

(4-94) 

(4-95) 

According to equation 3-89, the gravity force is: 

;! ;F'jg = M'j i~ 
. r, j = D. ,j (4-96) , g 1 

Di 
,j = H'j . s • i~ ,_ 

M'j 
. . T 

= i~ • (.AJ)[(.AJ) .s] 
, , 1-

= M'j i~ • .Aj ·ll j (4-97) , ,_ 
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Under defintions 4-94:4-95, equations 4-96 & 4-97 

equal to equations 4-92 & 4-93 respectively. 

4.3 The Closed Form Dynamical Model For The One-Degree-of­

Freedom-Per-Link Rigid Manipulator 

Based on definitions 4-1:4-7, we have a unique closed 

form dynamical model for the one-degree-of-freedom-per-link 

rigid 

where 

and 

If 1 ~ 

manipulator, and 

.r = 
1 

D. 
1 

N 
D; + t D.k 

k=1 1 

N . 
= t D.,J 

• . 1 
J =1 

N • 
= 1: D. ,J 
j=ma~~i ,k) 

N . 

it 

kR 

D = 1: D. ,J 
i k 1 j =rna l ~ L k , 1 } 

can be written as: 

N N 
+ t 1: 0ikl kn ln 

1=1 k=1 

D. ,j = H'j ;g_ • .Aj ( ·llj + . 6j X ·E.'j) , 1 1- 1- J 

Dik 'j = H'j {"(.6j)T K'j ( 6 j) + llj • 1- k- k-

+ ra. iR 1 

·ll j 
1-

+ ·E.'j • ( ·ll j X 6j + llj X . 6 j) } 
J 1- k- k- 1-

k, then 

Dikl 
,j = H'j { • 6 j • ( 6j X K'j 6j) 

1- 1- k-
+.6j • [K'j-}tr(K'j)]( 6j X k!j) 1- 1-

(4-98) 

(4-99) 

(4-100) 

(4-101) 

(4-102) 

(4-103) 

(4-104) 
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+ ~j • ( llj X ·llj) k- 1- ,_ 
+ ·E.'j • ( ~j X ( ~j X ·llj)) 

J 1- k- ,_ 
+.E.'j • (. ~ j X ( llj X ~ j) ) } 

J 
,_ 1- k-

If 1 < k, then 

0 ,j = D ,j 
ikl ilk (4-105) 

Notice that equation 4-104 will be different if we 

exchange the indices k and 1 and it works only when 1 ~ k. 

·If k > 1, equation 4-105 is used. Under this ~rrangement, 

the index 1 in equation 4-98 runs from 1=1 to l=N instead of 

from l>k to l=N. When l=k, it is the case of generalized 

centrifugal force. 

Equations 4-98:4-105 form the dynamical model for the 

one-degree-of-freedom-per-link rigid manipulator. This same 

dynamical model has also been derived by the Lagrangian 

method [Paul82]. Hence, we demonstrated that the 

Newton-Euler and the Lagrangian methods are equivalent. 

E xamp 1 e 

The robot in figures 4 is again used as an example. 

The coordinate frames are set according to fig.5. The 

procedures to derive the dynamical model are the same as the 

example in chapter 3, but with less amount of computation 

because it is a one-degree-of-freedom-per~link rigid 
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manipulator. 

Step A. Specification of all link parameters 

The mass of link 1 is H1 and its center of mass 

locates right at the origin(£1 = 0). The inertial matrix of 

link 1 is I1 and it can be derived by equation 3-67. Since 

link 1 is a flat cylindical mass, thus the inertial matrix 

of link 1 is: 

I1xx = H1 d 2 
1 I 4 (4-106) 

I1yy = HI d 2 
1 I 2 (4-107) 

I1zz = HI d 2 I 1 4 (4-108) 

I1xy = Ilyx = I1yz = Ilzy = Ilxz = I1zx = 0 (4-109) 

The mass of link 2 is zero(M 2=0) because there is no 

mass from joint 2 to joint 3. 

The mass of link 3 is H3 and its center of mass is 

situated at the middle of the link(£3x =-d312 = varying). 

Since the link 3 is a slender rod, the inertial matrix of 

link 3 (I 3) is: 

I3xx = 0 (4-110) 

I3yy 
2 I 12 (4-111) = M3 d3 

I3zz 
2 I 12 (4-112) = H3 d3 

I3xy = I3yx = I3yz = I3zy = I3xz = I3zx = 0 (4-113) 



98 

Step B. Establishing the kinematic model 

The kinematic model of the robot of figures 4 & 5 is 

given by equations 2-92:2-98. 

Step C. Specifies of the dynamical variables of each joint 

The variables of link 1 are [0, 0, ~1 ]T & 
T The variables of link 2 are [0, ~2 , 0] & 

The variables of link 3 are [-~2 , O,O]T & 

Step D. Constructing the dynamical model 

T 
[0, 0, ~1] . 

T 
[ 0 ' !!.2 , 0 ] • 

T [ -!2, 0, 0] . 

The more convenient way to construct the dynamical 

model of a robot is from the end effector to the base. 

The vectors of the center of mass are: 

3.1?.' 3 = [id3, 0, 0] T 

2.1?., 3 = [id3cos02, 0 -ld3sin02]T 

1.1?., 3 = [ld3cos02, dl' -ld3sin02]T 

E., 2 = [0, 0 ' O]T 
2.1?.' 2 = [0, 0 ' O]T 
l.e.'' 1 = [0, 0 ' O]T 

The gravity terms 

The gravity vector in the local coordinate 

og_ = [O, o, -gJT 

1jl = (oA1)Tojl = [0, 0, -g]T 

is: 

(4-114} 

(4-115} 

(4-116} 

(4-117} 
(4-118} 
(4-119} 

(4-120) 

(4-121) 
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Since joint 3 is prismatic a long the 

3! = [1, 0, 0] T 

03 
3- = [0, 0, 0] T 

3 3 T _ T 
3l!. = ( 3A ) 3! - [1, 0, 0] 

So 03 
,3 = M ,3 A 3 3jl • 3 3l!. 

3 = M3gsin0 2 
Hence 3Fg = o3' 3 = H3gsin0 2 

x3-axis, 

(4-122) 

(4-123) 

then 

(4-124) 

Joint 2 is revolute(having v2-axis as the axis of 

rotation), therefore 
T 

2! = [0, 1, 0] 

03 3 T T = (2A ) 2! = [0, 1, 0] 2-
3 ( A3)T( s X d3) 2l!. = 2 2- 2- [0, T = 0' d3] 

So 02 
,3 = H'3 2jl • 2A3(2l!.3 + 03 X 3E'3) = -lH 3gd 3cos02 2-

Since 02 
,2 = 0 

Hence 0 , 3 2 ('4 -12 5) 2rg = + o2' = -lM 3d3cos02 2 

Joint 1 is revolute(having the z1-axis as the axis of 

rotation), therefore 

1! = [0, 0, 1] T 

03 
1- = (1A3)T1! = [-sin02, 0, cos02]T 

3 = (1A3)T( 1! X 1 ~3 )= -[d 1cos0 2, d2cos0 2, d1sin02]T 1l!. 
So 0 '3 

1 = H'3 g, • A3( ~3 + o3 X E'3) = 0 
1 1 1- 1- 3 



Since 0 ' 2 = 0 1 

and 0 ' 1 = 0 1 

Hence 1rg = 0 

The inertial terms 

Under the above 

3! 
63 

3-

T =[1,0,0J 
T = [0, 0, OJ 

100 

3 
31!. 

2! 
63 

2-

= (3A3)T3! = [1, 0, O]T 

= [0, 1, OJT 

3 
21!. 

1! 
63 

1-

3 T T = (2A) 2!= [0, 1, 0] 

= (2A3)T(2! X 2~3) = [0, 0, d3JT 

T 
= [0, 0, 1J 

= (1A3)T1! = [-sin0 2, 0, cos0 2]T 

(4-126) 

3 
11!. = (1A3)T( 1! X 1 ~3)= -[d 1cos0 2, d2cos0 2, d1sin02]T 

So 

= M3 

and 033 = 033,3 = H3 

So 0 '3 
32 = M'3 { (3~_3) T K'3 (2!3) + 2~3 • 3~3 

+32,3 • (31!.3 X 2!3 + 21!.3 X 3!3) } 

T = [0, 0, OJ 

and o32 = o33 ,3 = 0 
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So 031 
,3 H'3 { ( 63)T K'3 ( 63) 3 3 = + 1!!. • 3!!. 3- 1-

+3.Q.,3 • 3 3 3 3 
(3!!. X 1! + 1!!. X 3! ) } 

=-H3d1cos02 
and 031 

3 = o31 • =-H 3d1cos0 2 

Hence the total inertial force for joint 3 is: 

3FI = 033 -a 3 + 032 (12 + 031 (11 

=-M3(a1 + a1d1cos01) (4-127) 

So 023 
,3 = 0 

and 023 = 0 ' 3 ..:. 0 23 -

So 022 
,3 = I3yy + M3(d3) 

2 

022 
,2 = 0 

and 022 = 0 ,3 + 0 ,2 = 
22 22 I3yy+(d3)2 

So 021 
,3 = M3 (ld 1d3sin0 2) 

021 
,2 = 0 

and 021 = 0 '3 + 
21 o21 •2 = lH 3d1d3sin0 2 

Hence the total inertial torque of joint 2 is: 

2NI = 023 -a 3 + 022 (12 + 021 (11 

[I3yy + 
2 + iH 3d1d3sin0 2a1 (4-128) = M3(d3) ]a2 

So 013 
,3 = 113 (-d 1cos0 2) 

and 013 = 013 
,3 = -H 3d1cos01 
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So 012 
,3 = M3 (-id 1d3sin0 2) 

012 
,2 = 0 

and 012 = 012,3 + 012,2 = -lM3d1d3sin02 

so o11 
,3 = 13xx(sin02)2 + 13zz(cos02)2 

2 2 2 +M 3(d 1) + M3(d 3) (cos0 2) 

011 
,2 = 0 

011 '1 = 11zz 
and o11 = o11 

,3 + 0 ,2 + 0 ,1 
11 11 

= M3(d1) 
2 + 13xx(sin02)2 + 2 2 

[I 3zz+(d 2) ](cos0 2) 

+ 11zz 

Hence the total inertial torque of joint 2 is: 

1NI = 013 -a3 + 012 a2 + 011 a1 

= M3d1cos01a3 - lMjd 1d3sin02a2 

+{ M3(d1)2 + 13xx(sin02)2 + [13zz+(d3)2](cos02)2 

+11zz }a1 (4-129) 

The centrifugal and Coriolis terms 

The centrifugal and Coriolis terms can be computed in 

the similar manner. In this example, we assume· that the 

robot is moving in slow speed, thus these two effects are 

insignificant. 
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Conclusion 

The result of the last example is identical to the 

result from the generalized dynamical model(chapter 3). In 

the example of last chapter, link 2 of the robot was assumed 

to have two degrees of freedom. In the example of this 

chapter, it was assumed to be two separate links, link 2 & 

3, and the two links are separated by a distance d3 in the 

(-X3)-axis direction. For the sake of comparison, the 

following terms of equations 4-124:4-129 are identified: 

Ml by M1 

d1 by d1 

M3 by M2 

d3 by d2 

I3xx by I2xx 

I3yy + M3(d3) 
2 by I2yy (parallel axis theorem) 

13zz + M3(d3) 
2 by 12zz (parallel axis theorem) 

then equation 4-124 equals to the x-component of equation 

3-114, and so on. 

One important remark is that equations 4-98:4-105 may 

be used to compute the component of the generalized force in 

any direction since these are a version of the general 

dynamical model of the previous chapter. If the equations 

4-98:105 are derived using the Lagrangian method, they are 

valid only along the principal axes of motion. 



CHAPTER 5 

RECURSIVE FORM NEWTON-EULER DYNAMICAL MODEL OF THE 

GENERALIZED MANIPULATOR 

5.1 Introduction 

The recursive form dynamical model for an open chain 

robot manipulator computes all the dynamics values of a link 

in terms of the neighbouring link dynamic values. Usually, 

it computes the translational and rotational displacement, 

velocity and acceleration from the base coordinate to the 

end effector•s coordinate; then it computes the force and 

torque at each coordinate origin backwards from the end 

effector to the base[Luh80][Holl80]. The computational 

complexity of the recursive form dynamical model can be 

shown to increase linearly with the number of links. As we 

have seen in the previous two chapters, the computational 

complexity of the closed form dynamical model increases in a 

much faster way. Hence, the recursive form dynamical model 

is used for problems which require intensive computation, 

such as in on-line control of the manipulator. 

There are two common ways to derive the recursive form 

104 
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the Lagrangian formulation[Luh80]. The reason that 

Newton-Euler is more efficient is that the rotational 

velocity and acceleration are represented as vectors in the 

Newton-Euler formulation, but are represented in matrix form 

in the Lagrangian formulation[Holl82]. Both methods as 

appear in the above cited references use the center of mass 

of the link as the reference for balancing the force and the 

torque. Both deal only with the one-degree-of-free~om­

per-link rigid manipulator case. 

In this chapter, the recursive form dynamical model is 

derived for the generalized manipulator, and the coordinate 

origin of the link is used for balancing the forces and the 

torques and can be at arbitrary location. The generalized 

recursive form dynamical model will be specialized to the 

one-degree-of-freedom-per-link rigid manipulator, and will 

be shown to be equivalent to the model where the centers of 

mass of the link are used as the reference points. 

5.2 Derivation of the Recursive Form Dynamical Model 

The key idea in obtaining the recursive form dynamical 

model is to align all the local coordinate frames to have 

the same orientation as the base coordinate frame(fig.12). 

The reason for that will become evident later. 
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f , 

Figure 12 : The Coordinate System for Deriving the 

Dynamical Hodel for the Generalized Manipulator 
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The recursive formula of rotational displacement, velocity 

and acceleration 

Since Ai+l 
0 

then dt (0Ai+l) 

and d ( Ai+l) 
tt 0 

(5-1) 

(5-2) 

(5-3) 

The recursive formula of the displacement, velocity and 

acceleration of the coordinate origin 

Since di+l = di + Ai.di+l (5-4) 
0- 0- 0 ,_ 

then dtCo&i+l) = dt(o&;l + dt(oAi)i£i+l + oAidt(;£i+l) 

i+l i i i+l 
and dtt(o£ )= dtt(o~ ) + dtt(oA li& 

i i+l i i+l 
+2dt(oA )dt(;£ ) + 0A dtt(i£ ) (5-6) 

The recursive formula of the displacement, velocity & accel­

eration of a position in link j w.r.t. the base coordinate 

Since 

then 

and 

(5-7) 

(5-8) 

(5-9) 

where the superscript ,j of the position vector r has been 

suppressed. 

The recursive formula of the displacement, velocity & accel­

eration of a position in link j ~.r.t. the local coordinate 

Since ·r = ·di+l + i+l 
1- 1- ;A i+l!. (5-10) 
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then i+1 i+1 i+1 
dt(;rl=dt(;& l + dt(iA li+1r +;A dt(i+1rl(S-11) 

and i+1 i+1 
dtt(irl=dtt(i~ l + dtt(;A l;+1r 

i+1 i+1 
+2dt(;A )dt(;+1rl + ;A dtt(;+ 1rl (5-12) 

where the superscript ,j of the position vector r has been 

suppressed. 

Recursive formula of the force 

Let's define 

i fE . 
{oA Ei-1,;l -- JJ~tt{or'Jl dm (5-13) 

as the force of link i acting on link i-1, that is the total 

force accumulating f~om joint i to the end effector. The 

orientation matrix 0Ai adjusts the direction from the local 

coordinate i to the base coordinate 0. 

Similarly, the force of link i+1 acting on link i is: 

{5-14) 

By sustituting equations 5-7:5-9 to equation 5-13, and 

suppress the superscript ,j of the position vector r in the 

following derivations, we obtain 

i 
(oA Ei-1,;) 

fE . 
1 

{ dtt{o& l = 

[5-9] 
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r Ji + 1 

= £ dtt(o£i) + dtt(oA;);r'i + 2dt(oAi)dt(ir'i) 

+oAidtt(ir'i) }dm 

J. 
1 

re 

(5-15) 

Recall equation 3-38: 

. r . . . 
. n•

1 = J .r• 1 dm /M' 1 
,.~:. ,_ 

link i 

then the first term of equation 5-15 is: 

r Ji + 1 

£ dtt(o£il + dtt(oAi)ir'i + 2dt(oAi)dt(ir'i) 

+oAidtt(ir';) }dm 

Ji 

= H'i{ dtt(o£i) + dtt(oAi)i£'i +2dt(oAi)dt(i£'i) 

+0Aidtt(i£'i)l (5-16) 

By using equations 5-1:5-12 & 5-14, and suppressing the 

superscript ,j, the second term of equation 5-15 can be 

rewritten as follows: 
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i i i 
{ d~t(o&) + dtt(oA l;! + 2dt(oA )dt(i!) 

i 
+0A dtt(;!) }dm 

Ji+1 

re 

After substituting equations 5-16:5-17 into equation 

5-15, we obtain the following recursive equation for the 

force. 

} 

(5-18) 
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Recursive formula of the torgue 

Define 

i ( oA N. 1 . ) 
-1- 11 

(5-19) 

as the torque of link i acting on link i-1 1 that is the 

total force accumulating from joint i to the end effector. 

The orientation matrix 0Ai adjusts the direction from the 

local coordinate i to the base coordinate 0. 

By substituting equation 5-9 into equation 5-19 1 and 

suppressing the superscript 1j 1 we get 

i 
(oA N. 1 ') -1- 11 

rE 
i 

= (OA i!:) X { i 
dtt(o& ) 

i i 
+ dtt(oA )i!: +2dt(oA )dt(i!:) 

i 
+a A dtt ( i!:) } dm 

J. 
1 

r J; + 1 

= ( Ai.rli) 
0 1-

X { i 
dtt(o!! l + dtt(oAil;!:li 

+2dt(oAi)dt(i!:1;) + oAidtt(i!:li) } dm 

J, 
1 
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rE 

+ (oA\s!i+1) x { dtt(os!;l + dtt(oA;l;!: 
; 

+2dt(oA )dt(;!:l 

+ 

; 
+0A dtt(;!:) } dm 

Recall equation 3-38, then 

r J; + 1 

(0A;;r';) x dtt(os!;) dm = M';{ 0A;;2'; x dtt(os!;)} 

J. (5-22) 
1 

Recall equations 2-71, 2-81, 2-86 & 3-65, then 

r J; + 1 

(0A\r';) x dtt(oA;l;r'; dm 

J. 
1 

= J (l1r.•;J x lo!!.; x 0A\r.';l + o!!; x (o!!;xi1.t'
0>}dlll 

link i 
= Ail,;( Ai)T a; + w; X [Ail,;( Ai)T] w; 

0 0 0- 0- 0 0 0-

where I'; is the inertial matrix of link i measured at the 

origin of coordinate frame i. 

Since link i is rigid, then the translational and 

rotational velocity and acceleration of all the points in 
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the link i are the same(i.e the rigid link). Then, by 

equation 2-77, we have: 

then 

and 

dt (i!.'i) = 

dtt(;!.'i) = 

rJi+1 

j (oA\!.'i) 

J. 
1 

d ( .di+l) = .u 
t 1- 1-

d ( .di+l) = .a tt ,_ 1-

r . . . 
= 2J (0A1;!.'

1) x dt( 0 A 1 )i~ dm 
link i 

= 2M'i{oA\Q.'i 

r J; + 1 

j 
(oA\!.'i) 

Ji 

r . . 
= J <oA\!.'1) 

1 ink i 

i x 0A . a 
1-

(5-24) 

(5-25) 

(5-26) 

(5-27) 

Combining 5-22:5-23 & 5-26:5-27, the first term on the 

right hand side of equation 5-21 is: 

rJi+l 

<oA\!.'i) x { dtt<o£i) + dtt(oAil;!.'i 

+ 2 d t ( 0 A i ) d t ( i!.' i ) + 0 Aid t t ( i!., i) } dm 



114 

= H';{OA;;~,i X dtt(o£;)} 

+M';{ A1.n• 1 X A1 .a} 0 ,.~:. 0 ,_ 

+2M'i{ Ai.n,i X d ( A1).u} 0 ,.~:. t 0 ,_ 

+Ail,;( Ai)T a 1 + w1 X [Ail,;( Ai)T] w1 
o o o- o- o o a-

where 0~ 1 and 0~ 1 is the vector form of dt(oAi) 

respectively. 

Based on equations 5-9, 5-14 & 5-17, the second term 

on the right hand side of equation 5-21 is: 

fE 

Ji+1 
= ( A; .di+1) X ( Ai+ 1F ) 

0 ,_ 0 -i,i+1 (5-29) 

Based on equations 5-17 and 5-20, the third term on 

the right hand side of equation 5-21 is: 

fE 

(5-30) 

After substituting equ~tions 5-28:5-30 to equation 

5-21, we achieve the following recursive equation for 
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(5-31) 

Recursive dynamical model of the generalized manipulator 

Equations 5-1:5-6, 5-18 and 5-31 establish the 

recursive dynamical model of the generalized manipulator. 

The rotational displacement/velocity/acceleration, then the 

total displacement/velocity/acceleration of the link are 

computed from the base coordinate to the end effector; The 

force and the torque are computed backwards from the end 
• 

effector to· the base. The boundary conditions of the model 

are: 

do 
0- = 0 (5-32) 

0 
dt ( o£ ) = 0 (5-33) 

0 
dtt(o£ ) = ~ (5-34) 

0 
Ao = I (5-35) 

0 
dt (oA ) = 0 (5-36) 

dtt(oAO) = 0 (5-37) 
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N+1 
oA EN,N+l is the external force (5-38) 

N+1 
OA !N,N+l is the external torque (5-39) 

acting on the end effector. 

The gravity effect is taken into account in the 

boundary condition 5-34, the gravity acceleration is thought 

of as an external acceleration acting on the base, and it 

will propagate throughout the whole manipulator via the 

recursive formulas 5-1:5-6. 

5.3 The Recursive Form Dynamical Model of the One-Degree­

of-Freedom-Per~Link Rigid Manipulator 

The recursive form dynamical model of the last section 

is not very efficient in computation, and it can be 

simplified by the following two modifications: 

a. In last section, the rotational velocity and 

acceleration are represented in matrix form that has a lot 

of redundancy. In fact, the rotational velocity and 

acceleration can be represented by vectors, then the 

efficiency is three times· larger[Holl82]. 

~ In last section, we have assumed that every joint can 

be rotated and translated in any direction. In pratical 

applications, the joint is either prismatic or revolute in a 

specfic direction. Hence the dynamical model can be 
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simplified. 

Recursive formula of rotational velocity and acceleration in 

vector form 

The rotational displacement can not be represented in 

the vector form(section 1.4), but the rotational velocity 

and acceleration can. 

·From equation 2-68, 

then dt(oAi+ll i+l Ai+l = on 0 

·and i n; Ai dt(oA ) = 0 0 

and d (.Ai+l) t ., = i+l .Ai+l .n 
1 1 

hence equation 5-2 becomes: 
i+l Ai+l _ 

on o - onioA;;Ai+l + A; i+l Ai+l 
0 ;n i 

(5-40) 

(5-41) 

(5-42) 

(5-43) 

after substituting equation 5-l to equation 5-43, it becomes 

ni+l- n; + 
0
Ai.ni+ 1.A0 (5-44) 

0 - 0 1 , 

then by equations 2-66, 2-67, 2-72 & 2-73, we obtain 

i+l i + A; i+l 
0~ = 0~ 0 ;~ (5-45) 

By differentiating equation 5-45, we obtain 

. i+l ; ; i+l ; i+l 
dt(o~ l = dt(o~ l + dt(oA l;~ + oA dt(;~ l 

hence o!i+l = o!i + 0~; X (oAii~i+l) + oA;;!i+l (5-46) 

Equations 5-54 and 5-46 are the recursive formula of 

rotational velocity and acceleration in vector form. 
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Note that the presence of the orientation matrix 0Ai 

is to align the local coordinate frame to the same direction 

as the base coordinate frame. Recall that i!i•1==i! and 

i!i•1==i! are the revolute velocity and acceleration of link 

i in local coordinate frame. 

Since joint i can be either prismatic or revolute in 

the direction .s, therefore, 
1-

.w = 0 if joint 
1-

.(J = 0 
1-

and .w = . s . fi if joint 
1- 1- 1 

.(J = 
1-

. s 
1- iR 

i is prismatic (5-47) 

(5-48) 

i is revolute (5-49) 

(5-50) 

Substituting equations 5-47:5-50 into equations 

5-45:5-46, the recursive formulas of the revolute velocity 

and acceleration are achieved as follows: 
i+1 = wi if joint i is prismatic (5-51) a! 0-
i+1 i (5-52) o! = 0~ 

and i+1 wi + (0Ai.s).fi if joint i is revolute (5-53) o!!. = 0- 1- 1 
i+1 i + wi X i (0Ai.s).R (5-54) o! = 0~ ( 0A .s) .fi • 0- 1- 1 1- 1 

Equations 5-51:5-54 are the recursive formulas of the 

revolute velocity and acceleration for the one-degree-of­

freedom-per-link rigid manipulator in vector form. 

Recursive formula of the displacement/velocity/acceleration 

Since the revolute displacement cannot be simplified, 
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the recursive formu 1 a of displacement remains 

unchanged(equation 5-4}. 

Define the total velocity and acceleration of the 

origin of coordinate frame i w.r.t. to base coordinate as: 

Using 

i 
-- o! 

-- ei 
0-

equations 2-70:2-71, equations 

o! 
i+l = vi 

0-
+ 0~ 

i X Ai.di+l 0 ,_ + 

ei+I ei i X Ai.di+l = + 0~ + 
0- 0- 0 ,_ 

i X Aid (.di+l) + 
+20~ 0 t 1-

5-5:5-6 become: 

Aid (.di+l) 0 t ,_ 

0~ 
i X (o~ 

i X 

Aid (.di+l) 0 tt ,_ 

(5-55) 

(5-56) 

(5-58) 

which are the recursive formula of the total velocity and 

acceleration of the origins of local coordinate frames. 

Recall equations 2-79:2-80, the following equations 

are derived: 

dt ( .di+l) 
1-

= . u ,_ if joint i is prismatic (5-59) 

d ( .di+l) tt ,_ = .. a ,_ (5-60) 

and dt ( .di+l) = .w X .di+l if joint i is revolute (5-61) 
1-

,_ 1-

d ( .di+l) = .a X .di+l + .w X (. w X .di+l) (5-62) 
tt 1-

,_ 1-
,_ 1- 1-

Now, suppose that the joint has only one degree of 

freedom, then 

.u = .s .n ,_ ,_ 1 

i! = i! iR 

if joint i is prismatic (5-63) 

(5-64) 
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and ;!!. = Q. if joint i is revolute (5-65) 

.a = 0 (5-66) ,_ 

By using equations 5-59:5-66 and 5-51:5-54, equations 

5-57:5-58 becom•: 

if 

if 

i+1 
o.Y. = 
ei+1 = 

0-

joint· i is 

o.Y. 
i+1 = 

ei+1 
0-

= 

joint i is 

wi+1 X Ai.di+1 
0- 0 ,_ 

a i+1X A; .di+1 + 
0- 0 ,_ 

+ (0Ai.s).n (5-67 ,_ , 
i + 1 X ( i + 1 X A i. • d t +I ) 

o~ o~ o" ,_ 
i+1 i -

+ 2(0~ XoA ;!);n + (0A; .s) .R (5-68) ,_ , 
prismatic. 

vi + i+1 X Ai.di+1 (5-69) 
0- 0~ 0 ,_ 

ei 
0-

+ ai+1x A; .di+l 
0- 0 ,_ + i+1x( i+lx 

o! o! 

revolute. (5-70) 

Equations 5-67:5-70 are the recursive formulas of the 

the total velocity and acceleration of the origins of local 

coordinates for the one-degree-of-freedom-per-link rigid 

manipulator in vector form. 

Recursive formula of force 

Equation 5-18 is the recursive formula of force, where 

;£'; is the position vector of the center of mass of link i 

in local coordinate frame. 

i 
(oA E;-1,;l 

= M';{ dtt(o~il + dtt(oA;)i£'i +2dt(oA;ldt(i£'i) 

+oAidtt(i£';) l 
i+1 

+( 0A F .. 1) [5-18] 
_, ', + 



121 

If we assume that joint i is prismatic and it consists 

of a single piece of mass, then the velocity and 

acceleration of the center of mass of link ; ; s: 

dt (;.E.i+1) = .s .;; (5-71) ,_ 
1 

i+1 .R (5-72) dtt(;.E. ) = ·S 1- 1 

Because of equations 5-51:5-52, therefore 

d ( A; ) . .E.' i = a;+ 1 X A; . .E.' i + w; + 1 X ( w; + 1 X i · £'i. ) 
tt 0 1 0- 0 1 0- 0- 0 l 

( A;)d ( ,i) ( i+ 1 X A; ) -
d t o t ; .E. = o:! o ; ! ; n (5-74) 

Substituting equations 5-71:5-74 into equation 5-18, 

and using the equation 5-68, one gets 
; 

(oA E;-1,;l 
= H';{ ei+ 1 + i+ 1x A; .E.';+ wi+1x( wi+ 1x A;· ~·i>1 

o- o! o ; + 1 o- o- o ltl 

i+1 
+(oA Ei,i+1) (5-77) 

where i+ 1.E.'; == (;Ai+ 1)1 (;.E.';- ;&i+1) (5-78) 

is the position vector of the center of mass of link i but 

it is refered to the i+1 coordinate frame. 

Assuming that joint i is revolute, then the velocity 

and acceleration of the center of mass of link i are: 

dt (;E.i+1) = i:! X ;.E.i+1 

dtt(;.E.i+1) = i!!. X ;.E.i+1 + i~ X (;~X ;.E.i+1) 

a n d d ( .A ; ) ' i - ; X A ; ' ; ; X ( ; X A 
tt o ;E. -. o! o ;.E. + o:! o:! o 

dt(oA;)dt(;.E.';) = (o:!; X (oA;;:! X ;.E.';)) 

(5-79) 

(5-80) 

(5-82) 
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If using equations 5-18, 5-53:5-54, 5-70, 5-79:5-82 

and 2-84, then one can prove that equations 5-77 & 5-78 are 

indeed valid for revolute joint. 

Recursive formula of torgue 

S ; ; 2 w; ; ince O~ + 0A ;~ + O- X 0A ;Y is the acceleration of 

the center of mass of link i, therefore the term 

M';{
0
A;;n'; X ( E; A; 2 ; X A; )} 

~ o- + o· ;~ + o!'! o ;Y 

is the torque at the origin of coordinate frame i due to the 

acceleration of the center of mass of link i. This term 

will not appear if we use the center of mass of the link as 

the reference to balance the torque[Luh80], however, some 

other terms will appear in the equation. 

In general, the following equation is used when the 

reference point for balancing the torque is not at the 

center of mass. 
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(5-84) 

where ~ is the torque at the reference point, h is the total 

angular momentum, and H is the total linear ·momentum of the 

body. The vector !c is measured from the reference point to 

the center of mass of the body. 

5.4 Algorithm for Constructing the Recursive Dynamical Model 

The results of this section suggest the following 

algorithm: 

Given the following information: 

a. the kinematic model of the manipulator. 

b. the joint variables, . s . fi ,_ , & •• s . A ,_ , for i=1,2 ..•. ,N 

c. the boundary conditions: 

wo 
0- = 0 

0 = 0 o! 
do 

0- = 0 

vo 
0- = 0 

eo 
0- = g: 

N+l 
oA EN,N+l the external force acting on end effector 

N+l 
oA !!N,N+l the external torque acting on end effector 

then the algorithm of construction the recursive dynamic 

model: 
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Step 

0: Set i=1 

; i i ei 1: Compute w ~ v and by equations 5-51:5-54 
0- t 0- t 0- 0-

and 5-67:5-70. 

2: if i=N, then continue to step 3; 

Otherwise, set i=i+1 and return to step 1. 

i i 
3: Compute oA Ei-1,i and oA !i-1,i by equations 3-77, 

3-78 and 3-83. 

4: If ,i=1, then stop; 

Otherwise, set i=i-1 and return to step 3. 



CHAPTER 6 

DYNAMICS OF MOVABLE ROBOT 

In the last three chapters, we have derived the 

dynamical model for an arbitrary open chain manipulator. 

From the dynamical model one is able to compute the force 

and torque required of the actuactors at each joint. Above 

all, it is possible to compute forces and torques that are 

not necessarily in the direction of motion. These are the 

constraint forces and torques of each joint respectively. 

The constraint force and torque are normally not considered 

in a stationary rigid robot manipulator. However, if the 

robot is movable(i.e. has a nonstationary base. Note also 

that we deliberately use the word "movable" and not 

"mobile"), or the manipulator is flexible, then the 

constraint forces and torques become important. This thesis 

will present an example of each case to illustrate the 

significance of the constraint force and torques. No 

attempt has been made to thoroughly investigate these two 

problems. We just want to demonstrate possible applications 

of "generalized manipulators". 

This chapter deals with the first application of the 

dynamical models, namely the analysis of movable robot. 

125 
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6.1 The Problems in Modelling the Movable Robot 

There are three problems in modelling a movable robot: 

a. Constraints on the wheels b. Coupling effects between 

the moving base and the other robot links. c. The changing 

configuration of the system. 

These three problems will be discussed in the above 

order and the equations that describe the effects will be 

derived. These equations are very complicated 

numerical solution. The last section of 

presents an algorithm to solve a class of 

related to movable robots. 

6.1.1 The Constraints on The Wheels 

and 

this 

the 

require 

chapter 

problems 

The movable robot uses its wheels to travel on the 

ground through the frictional force. The frictional 

force(F} is proportional to the reaction force(N} from the 

ground to the wheel. The constant of proportionality ~ is 

called the "frictional coefficient". 

~ = 
F 

N 
(6-1} 

The wheels can either roll or slide on the ground as 

different frictional forces on the wheels are encountered. 
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Usually, the rolling fricitonal force is much smaller than 

the sliding frictional force. Since all the frictional 

forces are proportinal to the reaction force, the rolling 

fricitonal coefficient(pr) is much smaller than the sliding 

fricitional coefficeint(ps)· 

p << p r s 
(6-2) 

The robot will encounter stronger resistance to start 

moving than to maintain its speed(sticking effect). Thus 

the statical frictional force(denoted by pN) is larger than 
I 

the dynamical frictional force(denoted by p N). In terms of 

the frictional coefficients, .the following inequality holds: 

< p (6-3) 

The above frictional coefficients provide the maximum 

resistance force of that kind for which the ground can hold 

the wheels. If the applied force is not big enough, the 

magnitude of the frictional force is exactly the same as 

that of the applied force. This till the applied force. 

overcomes the friction, then the frictional force will be 

constant according to equation 6-1. Mathematically, denote 

the applied force by F, then the frictional force(f) will 

be: 

f = -F 

f = p N 

if F < p N 

if F ~ p N 

(6-4) 

(6-5) 
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a. The Fixed Type Wheels 

Fixed type wheels are restricted tQ roll in one 

direction, although sliding may occur in any direction. 

Let v and a be the linear velocity and acceleration of 

the robot base respectively, and w be the angular velocity 

of the wheels. The the equations of motion of the wheels 

along the direction of rolling are: 

if F < ~ N < ~ N r s then v = 0 (6-6) 

and a = 0 (6-7) 

if ~rN ~ F < ~sN ' 
then v = R w (6-8) 

I 

and H a = F - J.lr N (6-9) 
I 

if JJrN < JJsN ~ F ' then H a = F - J.ls N (6-11) 

where H is the total mass of the system and R is the radius 

of the wheel. 
• 

Equation 6-6:6-7 imply that if the force is not large 

enough to move the system, no motion is expected. Equation 

6-8:6-9 say that the force is sufficiently large to roll the 

wheels but not large enough to make the wheels slide. The 

last equation indicates that the force is large enough to 

roll as well as to slide the wheels. 

The equations of motion of the wheels in the direction 
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that is perpendicular to the direction of rolling (due to a 

perpendicular planar applied force FJ.) are: 

if FJ. < psN then VJ. = 0 (6-12) 
' 

and aJ. = 0 (6-13) 
I 

if FJ. ~ psN ' 
then H aJ. = F - lls N (6-15) 

The rolling frictional coefficient does not enter the 

equation because rolling is not permitted in this direction. 

The equations which relate the linear and angular 

velocities are the kinematical constraint equations; and the 

equations which relate the acceleration and the force are 

the dynamical constraint eq~ations. 

b. The Free Spinning Type Wheels 

For the free spinning type wheels, the wheels always 

align themselves along the direction of the applied force. 

Therefore, along the direction of the applied force, 

the constraint equations are 

if F < 1l N < l1 N then . v = 0 (6-16) r s ' 
and a = 0 (6-17) 

if prN ~ F < llsN ' then v = R w (6-18) 
I 

and M a = F - llr N (6-19) 
I 

if prN < llsN ~ F ' then M a = F - lls N (6-21) 

where M is the total mass of the system and R is the radius 
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of the wheel. 

But, perpendicular to the direction of the force, the 

constraint equations are: 

vl. = 0 (6-22} 

al. = 0 (6-23} 

6.1.1.1 Dynamical Stability of The Robot 

Consider an example. Let us assume that the two link 

with three degree of freedom robot(fig.4} is equipped ·with 

three wheels at its base(fig.13}. One of the wheels is of 

the fr·ee spinning type and the other two are of the fixed 

type. The method of solving this particular movable robot 

indicates the direction of approach to this kind of 

problems. This thesis does not attempt to derive a general 

solution to the problem of mobile robots. 

The first consideration of a movable robot is to 

investigate whether the robot is dynamically stable while it 

is moving(What we mean by that is - what are the conditions 

for the robot and the motion, such that the robot maintains 

an upright position while moving and does not topple down}. 

In order to reduce the complexity of the equations, let us 

place the x-y coordinate plane on the ground and z-axis 

vertically upwards(fig.13}. 



if 

I 
I 
I 
I 

lt:{ 
I 
I 
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Figure 13 Coordinate Frame of the Mobile Base 

of a Movable Robot 
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Note, none of the wheels is actuated. The base may 

move just as a reaction to motion of the robot links. Let 

N1, N2 & N3 be the ground reaction force to wheel 1, 2, 3 

respectively(fig.13), and hx, hy be the horizontal position 

of the center of mass of the robot in the base coordinate. 

Let s be the distance of the free spinning wheel from the 

origin of the base coordinate, and d is half the distance of 

the two fixed wheels. Assuming that the robot does not 

topple while moving, the following equations should hold: 

F - M ,g_ - N1 - N2 - N3 = z 

Nx - M ,g_ hy + N2 d - N3 d = 

N + M ,g, ( s - hx ) - N1 s = y 

By the stability assumption, 

Nl ~ 0 

N2 ~ 0 

N3 ~ 0 

Thus from equation 6-33, 

N1 = ( NY + M ,g,( s - hx) ) I s 

which implies 

0 

0 

0 

From equations 6-31 & 6-37 and 6-32, we get 

N2 + N3 = Fz + ( M ,g_ hx ) I s - NY I s 

(6-31) 

(6-32) 

(6-33) 

(6-34) 

(6-35) 

(6-36) 

(6-37) 

(6-38) 

(6-40) 
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N2 - N3 = 

N2 = H F z 

N3 = H F z 

H ~ hy ) I d - Nx I d (6-41) 

then 

and 

+ H ~ (hxls + hyld) - (Nyls + Nxld)} (6-42) 

+ H ~ (hxls - hyld) - (Nyls - Nxld)} (6-43) 

Using equations 6-35, 6-38 & 6-42, we obtain 

hy ~ Nx I ( H ~ ) - ( Fz d ) I ( H ~ ) - d 

Equations 6-36, 6-38 & 6-43 will yield 

hx ~ Nx I ( H ~ ) + ( Fz d ) I ( H ~ ) + d 

.(6-44) 

(6-45) 

Equations 6-38, 6-44 & 6-45 define the dynamical 

stability region of the center of mass for a moving robot. 

If the system is stable, equations 6-37, 6-42 & 6-43 provide 

the reaction force of the three wheels respectively. 

In the above inequalities, Nx, NY and Fz are the 

external inputs. 

6.1.1.2 The Spatial Axis of Rotation 

If the robot is stable when it is moving, then it is 

restricted to travel on the horizontal plane only. Assuming 

that all the wheels are rolling without slipping, then the 

robot rotates about a certain common spatial axis. This 

spatial axis of rotation of the robot can be shown to be the 

vertical line coming out of the unique intersection point of 

all planar normals to the wheels directions(fig.l4). The 



I 
I 
I 
I 
I 
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Figure 14 Spatial Axis of Rotation of the 

Three Wheels Movable Robot 
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wheels travel along a circle whose center i~ the above 

intersection point since no rolling is allowed along the 

radial direction. Such common intersection point may not 

always exist. In that case, the robot's travel involves not 

just rolling but also slipping. Analysis of this problem is 

very involved. Here, the wheels of the robot are assumed to 

be well aligned such that a spatial axis of rotation indeed 

exists. 

6.1.1.3 Kinematic Constraints of Rolling Robot 

The robot in fig.14 has three wheels. Wheel 1 is the 

free spinning type and wheels 2 & 3 are the fixed 

type(fig.14). Assuming that the robot rolls only, then the 

position of the spatial axis of rotation is determined by 

the angle of wheel 1, 0. The angular velocity and 

acceleration of the robot with respect to the spatial axis 

of rotation is w and B respectively. The radius of the 

wheels is denoted by R and they rolls at an angular speed a. 

The distances that the wheels travel on the circles 

equal to the total length that the wheels have rolled 

respectively. Denote by r1, r2 & r3 the distance between 

each wheel to the spatial axis of rotation. Then the 

following equations hold: 
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R1 81 = r1 w = s csc0 w (6-46) 

R2 82 = r 2 w = ( s cot0 - d ) w (6-47) 

R3 83 = r3 w = ( s cot0 + d ) w (6-48) 

These are the kinematic constraint equations of the wheels 

of the robot. 

Since the Newton-Euler equations are referred to the 

center of mass, a kinematic constraint equation of the 

center of mass (denoted by subscript m) of the robot is 

needed. 

Since vm =· r w m 
(6-49) 

where rm = ( h 2 + s cot0 - h )2 )l ( 6-6 0 ). 
X y 

and 0m = arc cot ( ( s cot0 - hy ) I hx r (6-61) 

w = dt ( 0m) = ( s sin 20m dt(0) ) I ( h X sin 20 ) (6-62) 

n == dt ( 0) (6-63) 

then vx == (vm)x = rm cos0m w (6-64) 

and vy -- (vm)y = rm sin0m w (6-65) 

hence ax = dt(vx) 

= dt ( r m) cos0m w- rm sin0m w +·rm cos0m a (6-66) 

and ay = dt(vy) 

= dt(rm) sin0m w + rm cos0m w + rm sin0m a (6-67) 

By differentiating equation 6-50, one gets: 



137 

After simplications, equations 6-66:6-67 become: 

ax = - ( s I sin 20 ) Q w + ( s cot0 - hy ) II (6-68) 

ay = hx a (6-69) 

Equations 6-68 & 6-69 describe the relationship 

n. between ax, ay and w, 

wheels are actuated(thus w, 

In forcing mode application, the 

determined from the 

n are inputs), 

equations. In 

then ax, 

non-forcing 

ay are 

mode 

application, th~ wheels are not actuated and are rolled by 

the reaction force/torque from the manipulator. Then w, n 

are computed from the dynamical model(6-62:6-63) and ax, ay 

are determined by equations 6-68:6-69. 

6.1.1.4 Dynamical Constraints of the Non-slipping Robot 

The robot in fig.14 has three wheels. The wheel 1 is 

the free-spinning type, therefore, there is no frictional 

force perpendicular to it. On the other hand, wheels 2 & 3 

are of the fixed type, so that there exists a frictional 

force in a perpendicular direction. The perpendicular 

frictional force of the two fixed wheels keep the robot on 

the circumference of the circle(fig.14) and prevent the 

robot from sliding away from it. The magnitudes of these 

two frictional forces are described by the constraint 

equations of the non-slipping robot as follow: 
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or 

(6-70) 

(6-71) 

We may combine equations 6-70 & 6-71, since we exclude 

the possibility of one wheel rolling while the other wheel 

is slipping. In this case, then the-constraint equation of 

the non-slipping robot becomes: 

(6-72) 

6.1.1.5 Horizontal Movement of the Robot 

If the robot in motion is stable(6.1.1.1) and there is 

no slipping, then the wheels of the robot are just 

rolling(6.1.1.3) around a vertical axis in space(6.1.1.2). 

In this example, assuming that there is no external force, 

so that the robot moves purely by the reaction to motions of 

the robot links. 

The coordinate frame of the base of the robot is set 

at the horizontal plane on the ground. Under this 

convention, the forces and torques are separated into two 

functional groups where Fz, Nx, NY determine the stability 

of the system and Fx, FY, Nz control the horizontal movement 

of the robot. 

Refer to fig.14. Acc9rding to Newton•s second law, the 
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acceleration of the center of mass of the system ; s: 
I I 

H ax = F - llr N2 - llr N3 - llr N1cos0 
X 

(6-73) 
I 

H ay = F - f1 - f2 - llr sin0 y 
I 

= F - f - llr sin0 y 
(6-74) 

According to Euler's equation, the balance of torques 

with respect to the spatial axis at point 0 is: 

H ax ( s cot0 - hy ) + ( M ay hx + Izz + M s2 cot 20 )~ 
I I 

= Nz + Fx s cot0 - llr N2(s cot0 - d) - llr N3(s cot0 + d) 

- llr N1 s csc0 (6-75) 

where Izz is the inertial moment w.r.t. the z-axis at the 

coordinate origin. Notice that the cross inertial moments 

are assumed negligible. 

After substituting equations 6-37, 6,42, 6-43, 6-68 & 

6-69 into equations 6-73:6-75, we obtain: 

ell ~ + Cu = -f (6-76) 

e21 ~ + c22 n w + c23 = 0 (6-77) 

e31 ~ + c32 n w + c33 = 0 (6-78) 

where 

ell = M hx (6-79) 

c12 = 0 (6-80) 
I 

Cu = llr ( NY/s + M g (1 - hx/s))sin0 - F (6-81) y 

c21 = H s ( cot 0 - hy I s (6-82) 

e22 ·= - M s I sin 20 (6-83) 
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I 

c23 = llr ( F - N /s + M g hx's ) z y 
I 

+p ( r NY/s + M g (1 - h/s))cos0- Fx (6-84) 

c31 = Izz + H h 2 
+ H(s cot0 - hy) 2 

+ H s2cot 20 (6-85) 
X 

c32 = - H s (s cot0 - hy) I sin 20 (6-86) 
I 

c33 = Pr [(Fz s - N + M g hx) - Fx s]cot0 y 
I 

+p [ r N + y H g ( s - hx) ]csc0 
I 

+p ( r N + 
X 

H g hy - N z (6-87) 

In non-forcing mode applications, we are interested in 

estimating the react horizontal movement of the system due 

to the motions of the links so that control law for the 

wheels can be designed. In this case, [, N are determined 

from ·the dynamical model, hx, hy are derived from the 

kinematical model, and H, s, d are the given system's 
I 

parameters together with the physical constants llr and g. 

Therefore, there remain three unknowns in equations 

6-76:6-78, namely, 0(t), w(t) & f. So solution to this set 

of coupled nonlinear differential equations is possible only 

numerically. 

The solution of the equation set is easier to obtain 

if it the equations are solved iteratively. Multiplying 

equation 6-77 by (s cot0 - hy) and subtracting from equation 

6-78, one obtains: 



141 
I 

a = { N + z Fx hy + p ( r M g hy - N X 
I 

-p ( r NY + H g (s - hx}}( sin0 + hy sin0 I s } } 

I ( 1zz + H h 2 
X 

+ H s2 cot 20 (6-88} 

Given the initial conditions 0(t=O} & w(t=O), then 

equation(6-88} will provide the values of a(t=O} and w(t=1). 

From equation 6-76, we obtain f to verify whether the 

no-slipping condition is met or not. If slipping does not 

occur, we can use equation 6-77 or 6-78 to estimate n and 

update 0 for the next computation cycle. 

One disadvantage of iterative solution is that error 

accumulates. The estimation may be supported by introducing 

a position sensor at the free-spinning wheel such that 0(t} 

is measured. The position control algorithm is implemented 

to hold the system on track. The above iterative algorithm 

provides the estimation of 0 for feedforward control. The 

value of 0 can be easily tontrolled within a certain 

required tolerance. 

The following three difficulties must be resolved 

before solving the above set of equations. The first is 

that the links are actuated(i.e. external energy is provided 

to the robot}. Thus the system cannot be considered to be a 

passive mechanical system as was assumed throughout. This 

is a problem for future studies. 
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The second difficulty is the coupling effect between 

the links and the base. The motion of the links cause the 

system to move, while motion of the base influences back the 

motion of the links. This interaction can be resolved by a 

simple algebraic manipulation of the dynamical equations as 

will be shown in section 6.1.2. 

Finally, the center of mass of the system depends on 

the robot configuration. Thus it is time varying. The 

exact equation showing this phenomenon is presented in 

section 6.1.3. 

6.1.2 Coupling Effect Between the Links and the Hoving Base 

In the dynamical models derivation of chapters 3-5, it 

has been assumed that the base of the robot is stationary. 

If the base of the robot is not firmly fixed, then the 

reaction force and torque(6.1.2) from the motions of the 

links will make the base move(6.1.1). The problem of 

movable robot is not completely solved . by the above two 

sections since the motion of the base affects back the 

movements of the links. This coupling effect will be 

addressed next. 
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a. The Coupling Force 

Consider a particle, dm, in one of the links. It has 

an acceleration, !t. The acceleration !t of the particle 

consists of two components. The acceleration !o if the base 

does not move, and the acceleration !b of the base. 

According to the Newton 2nd law, the total force Et on the 

base is: 

fE (E (E 
Et = J !t 

dm = J !o 
dm + 1 !b 

dm (6-89) 
Jo Jo Jo 

So the reaction force to accelerate the base is: 

re (E 
Mb !b = -Et = -j a dm - 1 !b 

dm (6-90) 
-0 

Jo Jo 

(E fE 
hence Mb + J dm ) !b = - j a dm -0 

Jo Jo 

hence M !b = - Eo (6-91) 

where M is the total mass of the system and Eo is the force 

of the joint at coordinate 0 where the minus sign indicates 

the reaction force. 

b. The Coupling Torgue 

The total torque of the joint at the base ; s: 

(E (E (E 
~t = J or x !t dm = J or x !o dm 

+ ]J~r x !b dm 
Jo Jo 
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(6-92) 

According to Euler•s equation to the origin of 

coordinate 0 that does not coincide with the center of mass 

of the base: 

N 
- N = - N - l: M . ( o!!. i X !b 

-t -0 . 0 1 
1= 

= dt(Ib w) + Mb o!!. b x !b (6-93) 

N 
o!!.i hence - ~O = dt(Ib w) + l: M. X ~b ) . b 1 1= 

(6-94) 

(6-95) 

where -N 0 is the reaction torque from the base to the 

manipulator, M is the total mass of the system and oh is the 

position of the center of mass of the system. Ib is the 

inertial matrix and w is the angular velocity of the base. 

One final remark is: in equations 6-91 & 6-95, M is 

the total mass of the system and Ib is the inertial matrix 

of the base that has not been obvious to forsee that 

coupling occurs only with regard to mass but not with regard 

to inertia. 
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6.1.3 Changing Configuration of the System 

As indicated in the last section, the center of mass 

of the system has been used to compute the reaction movement 

of the base. The center of mass of the system varies as the 

ma~ipulator changes its configuration and it equals to: 

hx 

hy 

hz 

where H 

N 
= t H. 

. b 1 1= 

N 
= t H. 

. b 1 1= 

N 
= t H. 

. b 1 1= 

N 
= t H. 

. b 1 1= 

(E.i)x (6-96) 

(E. i ) y (6-97) 

(E.i)z (6-98) 

where Qi is the position vector of the center of mass of 

link i measured in the base coordinate, and h is the 

position of the center of mass of the system. 

6.2 Procedures of Solving the Problem of Movable Robot 

The above example has three wheels on the base where 

one is the free spinning type and the other two are the 

fixed type. The procedure to be presented shortly refers to 

this example. However, the procedures can easily be 
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extended to movable robots with any combination of wheels 

type. The procedure to solve for the reaction movement of 

the robot whose wheels are not actuated is summarized below: 

Step 0 : Measure the mass of the system and Izz of the body 

base of the movable robot. 

Step 1 : Set the coordinate frame of the base of the movable 

robot at the ground level where the origin is at the middle 

of the line connecting the two fixed wheels, and the x-axis 

points towards the free spinning wheel{6.1.1). 

Step 2a: Compute the force and torque at the first joint of 

the manipulator using the dynamical models derived in 

chapters 3, 4 and 5. 

Step 2b: Perform a statical transformation of force and 

torque from the manipulator base coordinate frame to the 

body base coordinate frame using equations 2-105 & 2-110. 

Make sure to reverse signs since reaction force and torque 

are assumed in the equations. 

Step 3 : Compute the horizontal position{hx, hy) of the 

center of mass of the movable robot{6.1.4). 

Step 4 : Check if the robot is stable dynamically or not by 

equations 6-38, 6-44 & 6-45. 
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Step 5 : If the robot is stable, use equations 6-37, 6-42 & 

6-43 to compute the reaction forces on the wheels. 

Otherwise, the robot is toppled down and the procedure 

should be aborted. 

Step 6a: Get the initial position of the angle of the free 

spinning wheel, 0, with respect to the body base coo~dinate 

(fig.13). This angle may be arbitrarily assumed if a 

position sensor is not avaliable. 

Step 6b: Obtain the inital angular velocity of the robot, w, 

with respect to the spatial axis of rotation. This angular 

velocity, w, can be computed from the angular velocity of 

any wheel by equations 6-46:6-48 if only rolling motion of 

the wheels is assumed. If the wheel has a postion sensor or 

tachometer, then this information may be measured; 

otherwise, it is estimated. 

Step 7 : Compute the induced angular acceleration of the 

robot using equation 6-88. 

Step 8 : Compute the frictional force, f, perpendicular to 

the fixed type wheels by equations 6-76, 6-79:6-81. 

Step 9 : Check if the robot is slipping or not by equation 

6-72. 
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Step 10: If the robot is not slipping but rolling only, then 

use equation 6-77 or 6-78 to compute dt(0). Otherwise, the 

model breaks down. 

Step 11: Update the estimation of 0 and n, or use these 

values for the feedforward control. 

Step 12: Go back to step 3. 



CHAPTER 7 

STATICS OF FLEXIBLE MANIPULATOR 

We have seen how the generalized manipulator model can 

be applied to the problem of mobile robot. It can also be 

used to study the flexible manipulator. The investigation 

of the flexible manipulator problem is still an open problem 

and is beyond the scope of this thesis. A simplified 

version, namely· "the static problem of flexible 

manipulators" is studied. The purpose is to show how a 

generalized manipulator model can be applied. 

There are two major static problems of flexible 

manipulators. One problem is to find how much the end 

effector is deflected when it approaches the target, and the 

other problem is to find whether the material is strong 

enough to sustain the operation of the manipulator. This 

thesis demonstrates how basic statics can be incorporated 

with the generalized manipulator model to obtain useful 

information for answering these two questions. 

The deflection of the end effector of the 

is treated first, and the computation of 

loading of the manipulator is considered later. 

149 

manipulator 

the critical 
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7.1 Static Deflection of the End Effector of the Manipulator 

When the manipulator moves, time varying forces and 

torques are exerted on each link. When the force or torque 

does not exceed the critical loading of the material which 

is used to construct the manipulator link, the link is 

deflected. Otherwise, the manipulator link will be broken. 

Since the forces and torques are time varying, they should 

be treated using dynamic analysis. This thesis assumes that 

the bandwidth of the signals that drive the actuators are 

well below the dominant structural frequency of the 

manipulator, such that statical analysis may be used as ari 

approximation. 

7.1.1 Deflection of a Manipulator Link 

Deflection of the manipulator link occurs whenever the 

relative position of any two points in the same link 

changes. The complete treatment of deflection is 

complicated. In order to simplify the analysis, the 

following three assumptions are made : 

1. Deflection occurs in a "beam" but not in a lump 

mass. The manipulator link is called a "beam" if its length 

is much larger than the width of its cross section. 
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Manipulator links which are not beams are categorized as 

lump masses. In figure 4, link 2 may be taken as a beam 

while other links are taken as lump masses. 

2. Deflection of a beam is mostly due to bending but 

not due to compression or twisting. Bending occurs 

perpendicular to the longitudinal direction of the beam. 

3. The effect of shear deformation is negligible. 

4. Deflection is insignificant along the axis of 

motion, but plays a major role in balancing the force and 

torque in the other directions. In other words, the beam is 

dynamically balanced along the axis of motion, but is 

statically balanced in the other directions. 

The first three assumptions are generally valid for 

materials used to build manipulators(typically steel). The 
• 

fourth assumption is a rough approximation, and .should not 

be made in general. 

Bending of a Cantilever Beam 

The cantilever beam has one fixed end while the other 

end is free(fig.15). If a bending force FY is applied, the 

bendi~g displacement(~) and angle(~) can be computed by the 

following equations[Timo72]: 
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Figure 15 Static Deflection of a Cantilever Beam 
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(7-1) 

(7-2) 

torque Nz is applied, then 

L3 
Fy (7-3) 

2EI 

L3 
Fy (7-4) 

EI 

where E is the modulus of elasticity and I is the moment of 

inertia of the cross section of the beam. 

Equation 7-1:7-4 can be written in a vector form 

as follows: 

L 
m = -- ( ( L X ( L X F ) ) (7-5) 

3EI 

L 
n = - L X F (7-6) 

2EI 

L 
m = -- ("!:,X~) (7 -7) 

2EI 

L ( ( N X L ) X h ) - -n = (7-8) 
EI L • L - -

The vector product of the bending force with the length 

vector of the beam eliminates the compression component of 
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the force, and the vector product of the bending torque with 

the length vector of the beam eliminates ·the twisting 

component of the torque. 

According to the second assumption, the deflection due 

to compression force and twisting torque are not considered. 

Therefore, the deflection of a beam is contributed by 

bending only and total bending displacement and angle are 

computed as follows: 

m = -

n = 

L 

EI 

L 

EI 

(b.X(b.Xf))/3 + (b.X~.)/2 ) . 

(LX F) 
( + 

2 L•L --

Bending of a Manipulator Link 

(7-9) 

(7-10) 

The generalized manipulator model provides for the 

forces and torques for each coordinate frame. For each 

manipulator link, two consecutive coordinate frames are 

located at both ends. The computed forces and torques on 

the coordinate frame at the end which is closer to the base 

are the force and torque that the actuator should supply. 

The computed force and torque on the coordinate frame at the 

other end are the reaction force and torque of the actuactor 

at that joint(refer to the open dynamical chain concept in 
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chapter III, secion 3). The forces and torques at the two 

ends are balanced by the gravity and the movement of that 

link. However, the movement of the link is only allowable 

along the axis of motion. In the other direction, no motion 

is allowed and the bending of the link provides for the 

balancing. This corresponds to the fourth assumption. 

A manipulator link is not a cantilever beam, so 

equations 7-9:7-10 can not be used directly. If one end of 

the link is chosen as reference, that means the deflection 

is measured with respect to that coordinate frame, then the 

deflection of the other end should compensate for the 

difference of forces and torques at both ends of the link. 

It is equivalent to substituting the net force and torque to 

equations 7-9 & 7-10 to compute the bending displacement and 

angle. 

Since the bending displacement and angle of a link ·is 

a relative measure, it requires a non-moving point as a 

reference. The base of the manipulator is assumed to be 

stationary, and is a natural choice for a reference. Thus 

the deflection of the end effector consists of two parts: 

the deflection that each link contributes and the 

propagation of each deflection to the end effector. 
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Denote the deflection of link i as .m and .n, and the 
1- 1-

net force and torque is ;(~f) and ;(~~). The length of link 

i is .di+l. Then equations 7-9 & 7-10 can be written as: 
1-

.di+l 
.m =- 1

- ((.d 1 + 1 x(.d 1 + 1 x.(~F))/3+(.d 1 + 1 X.(cSN)/2) 
1- EI 1- 1- 1 - 1- 1 -(7-11) 

.n = 
1-

i~i+l (;&i+1xi(~f)) 

EI 2 

According to assumption 3, the component of the forces 

and torques that cause the motion do not produce deflection. 

Thus they need to be eliminated. The elimination is done by 

the following vector manipulation. 

Let! be the.unity vector in the direction of motion, 

fer a vector y, the vector cross product ( ! X y ) X s will 

eliminate the component of y along the direction !; the 

vector scalar product (Y•!)! keeps only the component along 

s . 

If joint i is prismatic, then both the applied and 

reacted force along the direction of motion have to be 

eliminated. The net bending force is: 
1+1 

;(cSf) = ( s X ( ;A i+1E- ;E) X s (7-13) 

For most of prismatic joints, the actuators are 

located along the axis of motion. Therefore there is no 



157 

deduction of the net torque. 
i+1 

.(\SN) = .A . 1
N- .N 

1 - 1 1+ - 1-
(7-14) 

If joint i is revolute, and the axis of motion is 

perpendicular to the longitudinal direction of the beam, 

then only the force component along the axis of motion will 

cause deflection. Hence the net force is: 

i+1 
i ( 6 f) = ( ( i A i + 1E - i E ) • ! ) ! (7-15) 

For the torque, the component along s has to be 

eliminated. Hence, 
i+1 

;(IS!!J = ( s X ( ;A i+ 1!!- ;!! ) ) X s (7-16) 

Equations 7-11:7-16 compute the deflection of a 

manipulator link under the four previously stated 

assumptions. The orientation matrix iAi+1 is introduced to 

transfer the reference of vector in coordinate frame i+1 to 

coordinate frame i. 

The above equations are not complete for calculating 

the deflection of a manipulator beam because gravity bending 

of that link has not been considered(as yet). 

The gravity effect 

Each manipualtor link will be deflected by gravity. 

Let gravity acceleration be i~' the mass of link i is 
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denoted as iH and the center of mass is i2'i, then the 

bending displacement and angle are computed by the following 

two equations[Timo72]: 

iH( 3i&i+l - ;2'i ) 
-i.!!!. = (( i2,i X ( i2,i X g_')) (7-17) 

6EI 

.n = ,_ 
• M ·2, i 
1 1 ( ll' i X g_' ) 

2EI 

wher ~· is the bending gravity. 

(7-18) 

The bending gravity is computed as above. If link i 

is a prismatic link, then the bending gravity is: 

n, -;.or. - ! X i~ ) X ! (7-19) 

and if link i is a revolute joint, then the bending gravity 

is: 

.n' = ( .n • S ) S ,.,. ,.,. - - (7-20) 

Equations 7-17:7-20 compute the bending displacement 

and angle by gravity under the above four assumptions. 

7.1.2 Propagation of Static Deflection 

In the last section, the equations to compute the 

bending displacement and angle of a manipulator link have 

been derived. How does this deflection propagate to the end 

effector? The propagation of ~eflection is caused by 
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translation and rotation. These can be expressed by a 

single equation that is derived as follows: 

In figure 16, link i & link i+1 have a fixed angle 

between them. Suppose link i has a small bending 

displacement i~ and bending angle in• Then, link i+1 will 

have the following bending displacement and angle . 

and 

i +1~ = 

i+1n = 

. Ai+l ( .m + .n X .di+ 1 
1 1- 1- 1-

.Ai+l .n 
1 1-

(7-21) 

(7-22) 

where the orientation matrix iAi+ 1 transfers the reference 

from coordinate frame i to coordinate frame i+1. Note that 

the sum in equation 7-21 is a vector sum, and it shows the 

rotational effect of the coordinate frame. 

7.1.3 Computation on the Deflection of the End Effector 

It is more efficient to compute the end effector 

deflection from the base towards the end effector since 

deflection propagates in that direction(refer to the open 

kinematic chain concept in chpater III, section 3). For 

closed form dynamical model, it is computed after the forces 

and torques are computed. For the recursive dynamical 

model, the kinematic model is computed from the base to the 

end effector, and the dynamical model is computed from the 

end effector to the base that complete a computational cycle 
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Figure 16 Propagation of the Static Deflection 
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for a task point. The computation of deflection can be 

t~ought of the correction factor for the next cycle of 

kinematic model calculation. In this model, deflection is 

treated as a static effect(not a time vary.ing signal). This 

means that it does not depend on previous state. The static 

deflection should be of concern only when approaching the 

target or when moving close to an obstacle. Note, the 

deflection from one computation to the next one are not 

related by a recursion formula, so there is no advantage in 

computing deflection elsewhere. These are of no practical 

use. 

7.2 Critical Loading of the Manipulator Link 

In selecting the material of the right strength to 

construct the manipulator, one assumes that the mounting is 

sufficiently strong. Attention is focused on the strength 

of the link itself. 

Book[Book74]. 

Refer to the dissertation by 

The· generalized manipulator model can be used at the 

design phase for quick approximated evaluation of the 

strength of a manipulator. Normally, the slender the 

manipulator link, the more likely it may break. The 

derivation of the formula for computing the critical loading 
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of a slender manipulator link is shown. 

The manipulator link can break due to torsion, strain 

or stress. Most materials(metallic alloy) can sustain more 

torsion than strain or stress. Therefore, bending is more 

likely to be the major cause in a manipulator link breaking 

rather than twisting. In mechanical engineering literature, 

such as [Timo72], this subject is discussed under "elastic 

buckling of columns". 

The critical elastic buckling load of a column is 

inversely proportional to the sqaure of the modal shape 

number of the column(fig.17). Considering the worst case, 

then the critical elastic loading(Pcr) of a column of mode 1 

is: 

(7-23) 

This equation does not consider the shear deformation 

energy which is stored when the column is bent. The 

deflection curve remains the same but the critical load 

reduces a little bit[Spie68]. 

The critical elastic loading does not depend on the 

property of the material and the deflection of the column. 

It does not depend on the material because it assumes 
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· Figure 17 Critical Elastic Loading of a Column 
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buckling can occur at any point of the column. Definitely 

more sophisticate treatment should be done. One example is 

to consider buckling at a localized area, for instance, to 

find out where does the maximum stress occur, this local 

buckling problem can be found in Book's 

disserataion[Book74]. 

The critical elastic loading does not depend on the 

deflection of the column based on the same reason. This 

thesis suggests to assign a safety factor in the design. 

The generalized manipulator model is applied to this 

problem in the following way. The transverse force and 

torque will deflect the link according to the equations 

derived in the last section. Then the net longitudinal 

force is the buckling loading that should not be larger than 

the critical buckling load at any operation. 



CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 

Four major results have been achieved in this thesis. 

1. The closed form and the recursive form dynamical 

models of the generalized manipulator have been derived 

using Newton-Euler•s method(chapters 3 and 5). These models 

extend existing models for robot arms. 

2. The Newton-Euler formulation has been shown to be 

equivalent to the Lagrange formulation(chapter 4). The 

transformation between these two formulations is given in 

chapter 4. 

3. The dynamical model of the generalized manipulator 

can be reduced to describe any one-degree-of-freedom­

per-link rigid manipulators. The model applies not just 

along principal axes of motion. 

~Two applications have been given: the computation 

of the trajectory of the mobile robot driven by its 

manipulator•s arm(chapter 6), and the static deflection of 

the flexible manipulators(chapter 7). 

This thesis proves t~at the concept of the generalized 
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manipulator is very useful, and is easy to handle 

mathematically. Because the generalized manipulator has no 

restriction in its motion at the joints, the difficulties of 

handling the boundary conditions(constraints) are avoided in 

the derivations. The boundary conditions(constraints) are 

considered when the dynamical model of the generalized 

manipulator is actually applied to the physical 

manipulators. This property is very useful when the 

dynamical model combines with the other models, because it 

can match to any boundary conditions. 

The generalized manipulator concept offers a great 

deal of potential for develop~ng sophisticated models. Here 

are some future directions. 

1. We addressed the problem of flexible manipulators 

through using some results that are taken from a dynamical 

model for rigid bodies. This approximation must be tested 

via simulation and compared against Book's model. Future 

treatment of flexible · manipulators(using generalized 

manipulators theory) should include the consideration of 

shear and torsion. 

The dynamical model of 

should include the structural 

the flexible manipulators 

resonance frequency as a 
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parameter. Refer to the dissertaion of [Book74] to see how 

structural frequency is expressed, and structural rea~onance 

frequency is determined. In Book•s dissertaion, the 

solution is for the two link planar manipulators. More 

general solution, such as for generalized manipulator, is of 

interest. 

2. In deriving the dynamical model in this thesis, the 

ma~ipulator arm is assumed fixed(clamped) in the base and 

the open kinematic chain concept can be applied. Further 

extensions of the model may arise when 

boundary conditions of the base. In 

considering 

chapter 6, 

other 

the 

generalized manipulator is equipped with a movable base, and 

the application of generalized manipulator dynamics to this 

kind of problem is shown. In chapter 6, only rolling of the 

movable robot is considered. Future studies should address 

sliding. Other combinations of wheels that are discussed in 

chapter 6 should be considered including actuated wheels. 

One may address the issue of surface of motion(for 

instance, a situation where some wheels roll and the other 

slide, due to different frictional conditions). Including 

in this topic are subjects as : motion on a rail, motion on 

top of a moving platform, etc. 
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~The open dynamic chain concept is valid only for 

free ended end effector(no external forces or torques acting 

on the end effector). This boundary condition for the end 

effector is no longer valid, if the end effector interacts 

with an object. The dynamical model of the generalized 

manipulator should be extended to accept any boundary 

condition for the end effector. This is the compliance 

problems in robotics. 

4. In this thesis, we treated "generalized 

manipulator" as a mathematical abstraction that is useful in 

gaining some insight about difficult dynamic problems, such 

as flexible manipulators and movable robots. Do generalized 

manipulators physically exist ? Examples are not easy to 

find. Robot arms may be cascaded one to another(in an open 

kinematic chain). Taking, for instance, a robot manipulator 

that uses a single multi-degree-of-freedom finger, can such 

a robot be considered as a "two-link generalized 

manipulator" ? Not until the "Rigid Body assumption" is 

relaxed to allow for links that consist of finitely many 

rigid "sub-links". Such "generalized links" may form a tree 

if, for example, one studies robots that have two or more 

multi-degree-of-freedom fingers. However, such analysis 

requires a major extension of the generalized manipulator 
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model since both the "open kinematic" and "open dynamic" 

assumptions break down. The problem becomes even more 

difficult when two fingers interact in grasping an object. 

Such situation requires "Closed Kinematic Chain" analysis. 

Extension of the generalized manipulator model to such 

problems is a major task, that may or may not be possible. 
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