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ABSTRACT
Author: To-Choi Lau
Title: The Dynamics of The Generalized Manipulator
Institution: Florida Atlantic University
Degree: Master of Science in Electrical Engineering

Year: 1985

The concept of "generalized manipulator” is introduced, and
the closed form and recursive form dynamical models of the
generalized manipulator are presented in Newton-Euler
formulation. The physical meaning of each term in the

dynamical model is explained.

The dynamical models formulated by the Newton-Euler method
and the Lagrangian-Euler method are proved equivalent. The
dynamical model of the generalized manipulator is reduced to
ordinary manipulators. The reduced dynamical model is shown
jdentical to existing models. Futhermore, the reduced
dynamical model of the generalized manipulator can be used
to compute forces and torques components along any

direction.

Application of the model to problems of mobile robots and

flexible manipulators is shown.
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Notation List

A lower case letter represents a scalar.
Underlined of a lower case letter means a vector.

X, ¥y, 2z are the three components of a Cartesian vector.

T represents the homogeneous transformation operation.
A represents the rotation of a coordinate frame.

d represents the translation of a coordinate frame.

Superscript at the upper right corner of an operator:

The coordinate frame that is referred to before operation.

Subscript at the Tower left corner of an operator:

The coordinate frame that is referred to after operation.

The two subscripts at the lower right corner of an operator
separated by a comma: The first subscript refers to the
component of the subscript coordinate frame, and the second
subscript dindicates the component of  the superscript

coordinate frame.
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is the translational velocity.

is the translational acceleration.

v

is the rotational velocity.

IR

is the rotational acceleration.

1=

I<

ijs the sum of translational and rotational velocity.

f is the rotational velocity in matrix form.

is the force of a mass element.

I

is the tordue of a mass element.

(=]

im

is the force of a link.

is the torque of a Tlink.

1=

jor

is the generalized angle of rotational vector.

is the generalized translational vector.

I=

e ]

js the generalized velocity vector.
N is the generalized acceleration vector.

Ir is the generalized force vector.

v

is the Cartesian component selection vector.

r is the position vector of a mass element.
I is the inertial matrix of a link.
Superscript ,j at the upper right corner of r or I indicates

that mass element j is being referred.

X1



CHAPTER 1
INTRODUCTION

In this thesis, the dynamical model of a "generalized
manipulator" is derived and some applications of such model

are shown.

A generalized manipulator s an hypothetical model
whose main use is in facilitating certain analysis aspects
of robotics. A generalized manipulator can have arbitrary
number of links connected as an open chain by "generalized
joints"(fig.1). A generalized joint has three translational
and three rotational degrees of freedom which is the upper

1imit for any physical joint.

The closed form and recursive form dynamical models of
the generalized manipulator are derived jn chapters 3 and 5.
Newton-Euler formulation s wused. The equivalence to
Lagrange formulation s shown in chapter 4. The dynamical
model of the generalized manipulator can be specialized to
the one-degree-of-freedom-per-link rigid manipulator. The

reduction technique is also discussed in chapter 4.

The dynamica1.mode1 of the generalized manipulator can
be combined with other mechanical models to solve some
nontrival problems, such as the trajectory computation of a

1



Figure 1 : The N-Tink Generalized Manipulator



3
movable robot(chapter 6), and the static deflection of a

flexible manipulator(chapter 7).

Next Tlet us outline in more detail the contents of

each chapter highlighting the original contributions.

Three mathematical tools are required to derive the
dynamical model of a generalized manipulator(chapter 2).
These are the homogeneous transformation matrix, the
kinematic model, and the prepagation equations of static
forces and torques. The homogeneous transformation matrix
transfers the reference from one coordinate frame to the
other coordinate frame (section 2.1). The kinematic model
of manipulators provide the relationship between the set of
joint variables and the set of global coordinates of the end
effector(section 2.2). The propagation equations of static

forces and torques are shown in section 2.3.

The distributive property of orientation matrices
(equation 2-46) 1is shown to be valid only for orthogonal
coordinate frames, fhis important feature is wuseful in
simplifying the derivation of the dynamical model. In this
thesis, Cartesian coordinate frames are chosen for every

joint.

In chapter 3, the derivation of the closed form
dynamical model of the generalized manipulator is done in a
straight forward manner. The physical meaning of each term

in the model is explained. In the <c¢losed form dynamical
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model, each term can be found independently of the others.
A step-by-step procedure of writing the closed form
dynamical model for the generalized manipulator is

‘presented(section 3.3).

For deriving the dynamical model, the open kinematic
chain concept and the open dynamic chain concept(section
3.3) are employed. The entire concept of "generalized
manipulator" is new. The derivation of the model follows
similar derivations that have been done by others for
ordinary manipulators. Interestingly, the generalization is
conceptually simple and has the same level of complexity as

the derivation for ordinary manipulators.

Although the Newton-Euler method and the Lagrangian
method are proved equivalent[Go1d59], the dynamical models
derived by these two methods do not have the same
appearance. In chapter 4, the term by term equivalence of

these two formulations is shown(section 4.2).

The dynamical model of the generalized manipulator can
be specialized to the one-degree-of-freedom-per-link rigid
manipulator. The reduced model is shown to be identical to
existing models[Pau182]. Most importantly, the derivation
in chapter 4 shows that the reduced dynamical model may be
used to compute forces and torques components in any
direction(not necessarily along the principal axes  of

motion). This property has never been shown before.



The recursive form dynamical model of the generalized
manipulator is derived in section 5.2. The reduced
recursive dynamical model in section 5.3 is equivalent to

existing models[Luh80].

In this thesis, two possible applications of
generalized manipulator theory are introduced. Both utilize
the important feature of generalized manipulator, namely -
the ability to compute forces and torques along any
direction. The analysis of movable robots(chapter 6) and
the analysis of static deflection of manipulators(chapter
1), applying the generalized manipulator dynamics, is

original.



CHAPTER I1I
MATHEMATICAL BACKGROUND

The study of the dynamics of the robot manipulator has
three purposes. It is for helping us to discover some
important insights of the dynamical properties of the
manipulator. It is wused for simulation and it can be

applied in on-1%ne control,

Dynamical model can be written in various forms
employing different formulations. The closed form is
suitable for analysis and the recufsi?e form is good for

computational aspects, such as on-line control.

Lagrangian formulation dominated the field in the last
decade. Only recently, Newton-Euler formulation start to
become popular. Newton-Euler formulation is proved to be
more efficient computationally. It also eases the task of
visualizing the physical meaning of each term in the

equations[Luh80].

In this thesis, general algorithms for writing the
dynamical model in closed form and recursive form by the
Newton-Euler formulation are derived. This dynamical model
is even more gehera] than the existing ones because it
considers every force and torque components of each joint.

6



This is important in some applications, such as modelling
the movable robot(chapter 6) and flexible manipulator
(chapter 7).

For deriving the dynamical model, we need to develop
several mathematical tools. These are the transformation of
the reference to different coordiﬁate frames (homogeneous
transformation), the relationship between the movement of
the end effector and the joints of the manipulator(kinematic
model), and the changes of force and torque with reference

to another coordinate frame(statics).

2.1 Homogeneous Transformations

We need to develope a method for transferring the
reference from one coordinate frame to another, The
coordinate frames can be arbitrarily defined and different
sets of coordinate systems can be wused within the same

manipulator.

The notation which 1is wused 1in this thesis is

summarized in the notation table. For examples(fig.2):

q represents a generalized coordinate and d represents
a displacement. They have three components a, 8, 1t and are

referred to the coordinate frames i, j, k.



Figure 2 : Homogeneous Transformation
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T represents a homogeneous transformation. The
transformation is from the superscript coordinate to the

subscript coordinate.

1.tjx y (not shown in the figure) is the projection of
the unity vector of the y-axis in coordinate j on the x-axis
of coordinate i, and the projection is independent of the

translation of the coordinates.

For simplicity, any obvious or unimportant superscript
or subscript will not be written. For instance, we may
write

I

itx,y tx,y

if we have indicated in the text that coordinates i . and

are referred, or the relation is true for any coordinates.

2.1.1 Homogeneous Transformation Matrix

For a rigid body, the transformation from one
coordinate to another coordinate should consist of the
following scalars.

I -
T [ty

i t t t t , t

X’ XoY 7 X527 7 CY,x T TY,Y ¥s2

tz,x ’ tz,y ’ tz,z ! dx ’ dy , d }

We need to organize the above scalars such that the

transformation can be cascaded as the following:
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The projection of a component in coordinate k to any
axis of coordinate i via the coordinate j goes through three

different routes, and the following nine -equations are

obtained.
K
it X, X
= 43 k J k J k -
1t X, X jt X, X ¥ it X,y jt ¥, X ¥ 1t X,2 Jt Z,x (2-1)
K
it XyY
o 4] k j k J k -
it ity Tty it yy T itz gty (272
K
it X,2
= 4 k J K J k -
1t X, X Jt X,2 ¥ it X,y jt ¥,z ¥ 1t X,Z Jt 2,2 (2-3)
K
it Y, X
= 4 k J k J k -
ity it x Fithy,y ity Tty gt (270
k
it.y’y k - * .k k
_ i W . j i
tyx ity Yty gtyey Pty it 2,y (279
K
1t ¥,2
= 44 k J k J k -
iy itz ity ity Titly,z iz, (278
K
it.z,x )
S L gkt ¢k (2-7)
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k
it z,y
= 43 k j k J k -
it Uy ity it yy itz gty (278
k
it Z,2
= 43 k ] k J k .
it Z,X jt X,2Z ¥ it z,y jt Y,2Z ¥ it 2,2 jt Z,2 (2-9)

The displacement components of the origin from
coordinate k to coordinate i via coordinate j is not the sum
of their respective displacement coordinates because their
reference coordinates have different orientation. They are

calculated by the equations.

K
id X
- Jj j k j " j k -
de+1tX,XJdX+1tX,dey+1tx,ZJdZ(210)
K
id y
= .43 J k J k j k )
@y ity e ity gy ity g0 (B
K
id z
= dd v ) K+ td dk e ¢l d (2-12)

Combining equations 2-1:2-12 yields the following

matrix :




12

and the cascade of transformations is equal to the matrix

multiplication[Paul82].

I otk ok .
1.T jT 1.T (2-13)
r ¥or 1K
or: tx,x tx,y tx,z dx tx,x tx,y-tx,z dx
ty,X ty,y ty,Z dY tYaX ty,y ty,Z dy
tz,x z,y tz,z dz tz,x tz,y tz,z dz
0 0 0 1 0 0 0 1
il d jL d
. . 1k
= tx,x tx,y tx,z dx
ty,x ty,y y,2 dy
tz,x tz,y tz,z dz
0 -0 0 1 (2-14)
il .
This matrix is called the Homogeneous Transformation
Matrix.

The 3X3 matrix tx,x tx,y tx,z is called the

ty,x ty’y ty’z

i tz,x tz,y tz,z

Orientation Matrix. This matrix 1is independent of the

displacement between coordinate frames (This matrix is
somet imes referred to as the "matrix of directional

cosines").

The 3X1 vector [ dX dy dz ]T is called the



13

Displacement Vector[Paul82].

In order to reduce the complexity of the notation, we

define:
J
iA
J
¢
Thus
1

te,x tx,y Bx,z ay by ¢y
= hyax by by | T A By Gy (2-15)
i to.x tz,y b2,z ] B b, 2 |
dy
== dy (2-16)
Ldz |
_a b, ¢, d W
x °x “x %x
a, b, c, d
== y 'y vyy , (2-17)
3, by ¢, 4,
0 0 0 1
!

2.1.2 Inverse Homogeneous Transformation Matrix

The

reference

71 =

J

Due

inverse homogeneous transformation transfers the
back to the original coordinate. Hence

(4197 (2-18)

to the fact that the transformation is reversible,
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the following equalities must hold.

jtix,x ) itjx,x (2-19)
; "x’y = itjy,x (2-20)
jtix,z = itjz,x (2-21)
jt‘:y,x = itJ:x,y (2-22)
ity Tty (2-23)
jt‘:y’z - 1.tjz’y (2-24)
jt1z,x N itjx,z (2-25)
jtiz,y = 1.tjy’z - (2-26)
= L td (2-27)

Having used the above nine equations, the displacement

referred to coordinate j in terms of coordinate i are:

LA J - gl J - .qd J -

jd X id X it X, X 1d y it ¥, X id z it Z,X (2-28)
ool 4l J N J - qd J -

jd y id X it X,y id y it Y,y id z 1t z,y (2-29)
LN J - Y J - g9 j .

jd z id X it X,Z id y it y,2 1d z it z,z (2-30)

where the minus signs indicate that the direction of the
displacement vector is reversed in the inverse homogeneous

transformation.

Equations 2-18:2-30 & 2-15 identify the structure of

the inverse homogeneous transformation matrix as:



3, 3y 3, -a¢ 1
b, b, b, -bed
Tlaa | 0y 2 =7 (2-31)
Cx Cy g -ced
00 0 1
L d

y *a, dz is the scalar product of

the vectors a & d; and it is the same for bed and ced. Also

where aed = a, d, + ay d

-1 __ i
At == | b, b b, (2-32)

Refer to [Paul82].

2.1.3 Object Representation

An object is represented by a set of points. Each
point is treated as a vector p in a reference coordinate,
say j. The transformation of a vector to another

coordinate, say i, is:

iTJ & = iR (2-33)
_ .'j'. - - .
ay by ¢y dy Px | © ay Py * by Py * Cx P, * dy
3y by ¢y 4y Py 3y Px * By Pyt Cy Pyt dy
a, b, ¢, 4, P2 a, Py * b, Py *Cz Pz d,

0 0 0 1 1 1
it .j. d il d
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igJ + 1,AJ 2= iR (2-34)
Equation 2-34 indicates that a homogeneous transforma-
into the

tion of a vector can be decomposed translational

J - J
part, 19 , and the rotational part, iA jg.

The transformation of a set of points(an object) is :

abcdjj.— ri: [ ' ?‘.
X "X "X °X px qx °e px qx R {
ay by cy dy py qy ces py qy . ry
a, bz c, dz P, 4, - P, 4, --- T,
0 0 0 1 11 ... 1 1 1 ... 1
jL J jt J jl i

For a rigid object, a coordinate frame(four points) at

the objéct is adquate for the representation[Paul82].

2.1.4 Properties of the Orientation Matrix

Since A} A =1, we substitute equations 2-32 & 2-15

- to 2-1:2-9 and obtain

a, a, *a, 3 +ta,a, = ae = 1 (2-35)
a, bx + ay by ta, bZ = ash = 0 (2-36)
a, Cy tay c a0y s asc = 0 (2-37)
by a, * by ay * b, a, = bea =0 (2-38)
b, by * by by +b, b, =Dbeb=1 (2-39)
bx c, * by cy + bz c, = bec = 0 (2-40)
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=0 (2-41)

C, a, * cy ay +c,a, =ced
Cy by # <y by +c, b, =ceb=0 (2-42)
Cy Sy ¥ cy cy tC,C, = Lo = 1 (2-43)

These nine equations indicate that the three axes of

the coordinate frame are mutually orthogonal.

By using the equations 2-35:2-43, we can prove the
following equality.
J J g = -
ATjp e ATe Rt e (2-44)
This equation means that the scalar product of any two
vectors is independent of the orientation of the coordinate

frame.

Defining the vector product of any two vectors as:

Py 9z = Pz 9y
pXa=|0p,0q -0 q (2-45)
| Py Oy 7 Py O |

Since the cross product often appears in computing the
torque(discussed later), it is desired that the magnitude of
the cross product will be invariant under rotation of the

coordinate frame. In order words, we want

J J g2 ad -
AR X A5 jAT(R X i) (2-46)

By direct substitution and comparison between

corresponding terms, equation 2-46 holds when the following
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three equations are valid.

a=bXg (2-47)
b=cXa (2-48)
c=aXb (2-49)

This means that the three axes of the coordinates must
be perpendicular to each other. From now on, we restrict

ourselves to this kind of coordinate systems.

The Cartesian coordinate system fulfilles the
requirement of equations 2-35:2-43 & 2-47:2-49, and it is
suitable for modelling the dynamics of robot manipulators.
Now, we are reaay to compute the orientation matrix in the

Cartesian coordinate system.

Suppose the coordinate j rotates an angle @ in the
direction of x-axis and becomes the coordinate i(fig.3). By

definition, we get

tx,x =1
tx,y =0
tx,z = 0

for the unity vector on x-axis; and

ty,x = 0
ty,y = cos®
ty,z =-sind

for the unity vector on y-axis; and
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B " |

{;

Figure 3 : Orientation Matrix

- Rotate an Angle O Around the x-axis.
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tz,x = 0
tz,y = sin@
tz,z = cos?

for the unity vector on z-axis. Hence

. <]
Rot(x;0) = | 1 0 0 (2-50)
0 cos® -sin®
0 sin® cos®
jL J
Similarly,
- 13
Rot(y;0) = | cos& 0 sin® (2-51)
0 1 0
-sind 0 cos?d
il .
and .
- 13
Rot(z3;0) = | cos®@ =-sin®@ O (2-52)
sin@ cos® O
-0 0 1
jL .

Note that rotation operations do not commute[Paul82].

Differentiation of the Orientation Matrix

The differentiation of a matrix 1is carried by
differentiating every element. Therefore by the chain rule,
d de T 1]
— Rot(x;0) = — 0 0 0
dt dt [x-axis
0 -sind -cos®

0 cos® =-sind




21

- - -~ -J
= 0 0 0 1 0 0
0 0 Wy 0 cos® -sin@d
0w, 0 0 sind cosO
L J 5t i
- J .
nx 1.A (2-56)
where
do
- == W, (2-57)
dt [|x-axis
and
8, == [ 0 0 0 (2-58)
0 0 Wy
LO Wy 0 ]

are the angular velocity vector and matrix in x-direction

[Paul82].

Similarly
do
— == W (2-59)
dt |[y-axis y
and T ,
ny == 10 0 wy (2-60)
0 0 0
L-wy 0 0 |

are the angular velocity vector and matrix in y-direction.
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Also,
do
— == W, (2-61)
dt {z-axis
and - -
nz == 0 W, 0 (2-62)
W, 0 0
0 0 0
L J

are the angular velocity vector and matrix in z-direction.

It is easy to verify that the three angular velocity

matrices mutually commute:

ﬂx ny = ny 8, (2-63)
ny a, = R, 8 (2-64)
nz “x = “x nz » (2-65) .
Define
@ =Qa ny e, = 0 W, wy (2-66)
W, 0 "Wy
L-wy Wy 0 |
or
W= (W oW, w1t (2-67)
- X 'y 'z

are the angular velocity matrix and vector in any direction.

The time derivative of the orientation matrix can be
shown to satisfy :

di(A) =2 A ~ (2-68)
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and  dy,(A) = dy(8) A+ aa A (2-69)

It can be written in a vector form as:

]
><
b=

<.
e

J -
and st {ji BRI b . . (2-70).
dtt(iAJ)jﬁ = di (W) X 1'AJ.J°£ WX (5w X -iAJ.jf.)
= o X AV e+ Lw X (aw X JAYr) (2-71)
where = LA ==
;@ = di(3wW) (2-72)

is the angular acceleration of coordinate i.

If the reference coordinate rotates an arbitrary
angle, say 1.Aj, then the angular velocity vector becomes
W= LAY W (2-73)
and the angular velocity matrix changes to
= pd i -
i® = A j“jA (2-74)

2.1.5 The Displacement Vector

Let igj be a displacement vectorn from coordinate j to
coordinate 1i. To compute its 've1ocity and acceleration,
nonmoving coordinate frame is introduced denoted as

coordinate 0. So

OgJ - OA‘igJ (2-75a)
By = ol J iy 4d
dt(Og ) vodt(-iQ.) + dt(OA )1Q ‘
= A (5ad) ¢ gu x A dd (2-75b)

Jy = ad J J
dip(gd”) = A dge(497) * dp(gu) X 4d
WX (g X ;d0) + 20w X gATdi(4d9)  (2-75¢)

+

0
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Denote
o) = di(5d)) (2-76)
J 2 J -
RRENIUN (2-77)
and .v3 = A%, (4a) (2-78)

as the translational velocity, acceleration, and the total
velocity (translational and rotational) of the displacement

vector respectively.

0 and use

If we multiply equations 2-75b & 2-75c by iA
equations 2-46, 2-72, 2-76:2-78, then we arrive at the

following results:

i e wx Ll | ]
i¥ = Ut gu X gd (2-79)
dy(ju9) = jad ¢ ja x gl v gu X Gu X )

+ 2.0 X igJ (2-80)

The total acceleration of the displacement vector
consists of the translational acceleration, angular
acceleration, centrifugal acceleration and the Coriolis
acceleration(in the same order as in equation 2-80). Refer

to [Luh80].

Finally, let us introduce some useful vector
identities that will be used later in developing the
dynamical model of the robot manipulator. They can be

verified by direct substitution. (Refer also to [Spie71])
pX(gXxr)=I tr(rp)I - rp! 1q (2-81)
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pX(gXxr)=(perig-(pe9r (2-82)
(pXg) Xr=(perjg-(cegp (2-83)
(RX@) Xr=pX(gXr)+gX(rXag) (2-84)
pel(gXr)=ge(rXp)=re(pXq) (2-85)
pX (g X (rXs)) = (tr(ps))I - psT = jtr(I)I)(r X g)

¢ (r % (tr(psT)-psT)a) (2-86)

2.2 Kinematics

Kinematics relates the motion of joints to the
movement of end effector. The configuration of the
manipulator is gi?en by the position of all the joints. Each
joint(1ink) requires 'a coordinate frame to describe its
position and a homogeneous transformation matrix relates the
relationship between one frame and another. Every
coordinate frame has six degrees of freedom which includes
three translations and three rotations. Therefore, the
maximum number of degrees of freedom for a rigid link fis
six, and the total number of degrees of freedom of the

N-T1ink manipulator is 6N.

The computation of the spatial position(translation
and rotation) of the end effector from a given set of joint
positions is known as the forward kinematics. Computing the

joint variables from given end effector position and
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orientation is known as the inverse kinematics.

2.2.1 Coordinate System

The way of placing the coordinate frames of the
manipulator Tlinks influences the effectiveness of analyzing

the system. Here are some guidelines(fig.4):

1. Because most of the manipulators have their links
either perpendicular or parallel to each other, the
Cartesian coordinate frames provide an easy manageable

reference.

| 2. Origin of the coordinate frames should be placed at
some representative points. The intersection point of the
axes of motion 1is a popular choice. The coordinate frame
reflects the current position of that joint (after motion
has been made). Finally, we pick a nonmoving point for the
base coordinate as the global reference 6f the position of

the joints and end effector.

3. Always align one of the coordinate axes to the axis of
motion of that joint. For a revolute joint, the axis of
rotation is chosen; for a prismatic joint, the axis of

displacement is selected.
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!l ﬂiﬁfﬂ"&'ﬂ.’ i

Figure 4 : The Cartesian Coordinate Frames of the

Robot at the "Reference Position"
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4. When the neighboring links are perpendicular to each
other, align another coordinate axis in the same direction
as the axis of motion of previous 1link. In more general
situation, the axis is taken along thg common normal to the

two neighbouring axes of motion.

5. Given the right hand coordinate system, there are two
possible choices of the third axis(Notice that we have not

yet assign the positive sense to the direction of axes).

6. Finally, assign the z-axis of the coordinate frames.
For each coordinate frame, it has three possible choices and
there are two assignment strategies:

a2 Assign the axes in a unified way such that a general
transformation can be applied[Paul82].

ﬁ Assign the axes arbitrary in order to reduce the
complexities of the kinematic model of the manipulator(This

thesis).

2.2.2 Kinematic Model

The kinematic model of the manipulator relates the
position of the joints to the end effector position. The
geometry of the manipulator is embedded within the kinematic
model. Link is defined to be rigid, if the relative

position between any two points in the link is fixed. Then
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the transformation from one link frame to the next consists

of six elementary transformations.

Rotate an angle with respect to an axis of coordinate i.

Rot(a ; X;) = Rot(a;) (2-87)
Rot(8 ; Y,) = Rot(8,) (2-88)
Rot(t ; 1;) = Rot(ty) (2-89) .

By these three rotations, the orientation of link frame i

becomes the same as the orientation of the next link frame.

Three translations albng the axes of coordinate frame i are

required to align the origins of the two coordinate frames.

Tran(a ; Xi) = Tran(ai) (2-90)
Tran(b ; Y) = Tran(b,) (2-91)
Tran(c ; Zi) = Tran(ci) (2-92)

In [Paul82], the transformation from one link frame to
the next is done in terms of only two rotations and two
translations(the Denavit-Hartenberg An matrices), if a
certaiﬁ convention in placing the link frames 1is followed.
Equations 2-87:2-92 are a generaliztion of that method,

since here link frames are assumed to be arbitrarily placed.

Once the coordinate frames have been assigned to the
robot manipulator 1links, using- the above six elementary

transformations to move the reference from one frame to the
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other provides the homogeneous transformation between the
two frames(Note, there may exist more than one way to move
the reference of coordinate frame to align with the other
frame). As an example to the development of the kinematic

model, refer to figures 4 and 5 :

1

of = Tran(dy 5 Zg) Rot (0, ; Z;=I;)

= c0501 -sino1 0 0 (2-93)
sin@1 cos@1 0 0
0 0 1 d

0 0 0 1

—

E |
]

—
]
<]
=
—
(=1

—

; Yl) Rot(ﬁ2 ; Y2=Y1)

[ .
= c0502 0 s1n02 0 (2-94)

N
—'
n
-—
-3
[« 1]
=
—
[= 8
~N
“wse
1
><
~N>
—

=11 0 0 -d, (2-95)
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o

Figure 5 : The Cartesian Coordinate Frames of the

Robot After Moved
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This robot has three degrees of freedom, namely @1, 02
and dZ.The parameters d0 and d1 are the geometrical constant
of the system.
Based on equations 2-93:2-95, we can construct the
homogeneous transformation matrix for any pair of coordinate

frames. Hence,

2 _ 1 2 -
= [ cos@lcosw2 -sin@1 cos@lsin@2 -dlsin@1
sin@lcosﬂ2 cos@i sinolsinﬂ2 d1c0501
-sin@2 0 cos@2 d0
0 0 0 1
L .
3 _ 2 3 _ ‘ -
0T = 0T 2T = (2-97)
- -

cos@lcosw2 -sin@1 cos@lsinw2 -dlsinol-dzcosﬁlcos(b2
sin01c0502 coso1 sin@lsin@2 dlcos(bl-dzsin(blcos@2

-sin@2 0 cos@2 d0+dzsin02
0 0 0 1
L i
3. 2 3
177 =17 T
= cos(b2 0 sind, -dzcosoz (2-98)
0 1 0 d,

-sin@2 0 coso2 dzsinw2
0 0 0 1
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Equations 2-93:2-98 form the complete kinematic model
of the example robot manipulator. Similarly, for a N-link

robot manipulator, its complete kinematic model is

T where i, = 0,1,2....... N (2-99)

2.3 Statics

By statics, we refer to the computation of the
distribution of force and torque in an object at rest. For
a rigid object at rest, the total sum of external forces and
the total sum of external torques are zero at any point of
the object(Statical balance). When thé total sum of
external forces or torques is not zero, the object s
accelerated or vrevolved according to the Newton and Euler
equations, and the system is no longer statically balanced.
Nevertheless due to D'Alembert's principle[Beer62], one can
replace the acceleration of the object by the equivalent
reaction force and torque, to restore an "equivalent static

balance" of the systenm.

2.3.1 Force

By Newton's second law, the force is defined as:

f = di(p) (2-100)
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where

p=my is the momemtum of the object. (2-101)

Suppose a force is acting on a point that is at jﬁ in
coordinate j, or s L in coordinate i(fig.6). Recall
equation 2-34, we have

= .49 J (9.
T (2-10%)
= .pAd -

;¥ iA jx (2-103)

because the time differentiation of 1gj and 1.Aj are zero

provided that the coordinates i and j are not moving.

If the mass of the object is constant, then from
equations 2-101 & 2-100, the transformation of the static

force between coordinates is achieved as follows:

= ad
.p = ;A (2-104)
and ' ! jJ
Equation 2-100 can be written as:
f-d(p) =0 (2-106)
or
f - fr = 0 (2-107)

where fr is the reaction force and equation 2-107 provides

the statical balance condition for a moving object

(D'Alembert principle).
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Figure 6 : The Transformation of Static Force and

Torque Between Coordinate Frames
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2.3.2 Torque

Torque 1is defined as

j* = it X jf (2-108)

in coordinate j. If the reference is transferred to coor-

dinate i(fig.6),then

.n=.r X .f (2-109)
Since | =1
ro= .dd o+ A,
then U T j
o= g7 KA E AT X 3A%58
= qd J J
- qd J -
1g X ii + 1.A jﬂ (2-110)

after equations 2-46, 2-104 & 2-108 have been used.

Equation 2-110 describes the changes of the static

torque between coordinate frames.



CHAPTER 3
CLOSED FORM NEWTON-EULER DYNAMICAL MODEL OF THE
GENERALIZED MANIPULATOR

3.1 Introduction

The dynamical model of the manipulator describes the
relationship between the force/torque and the translational/
rotational acceleration of the manipulator at a given
position and velocity condition. The forward dynamical
analysis computes the force and torque of -each 1link by
knowing the translational and rotational acceleration of the
end effector. The inverse dynamical analysis provides the
velocities and accelerations of each Tlink, given the

external forces and torques.

The dynamical model of fhe manipulator can be written
in closed form or in recursive form. In the closed form
dynamical model, each link is treated individually. In the
recursive form dynamical model, each link is described with

respect to the previous link.

The closed form dynamical model has a clear
distinction of each individual effect and it 1is wused for

analysis and design purposes(table 1). The recursive form

37
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Dynamical Newton-Euler Lagrangain
Model Applications Method Method
Intuitive but | Derivations
Analysis derivations are straight-
require some forward but
Closed and innovations the physical
Form meaning of
Design [Ho1182] the terms are
[This thesis] not easy to
understand
[Pau182]
More efficiency| Less
Real-time on computation | efficiency on
Recursive | Appliications computation
Form ( on-1ine [Luh80]
control ) [This thesis] [Ho1182]
Table 1 : The Newton-Euler Method

The

Lagrangian

versus

Method
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suitable for real time applications, such as on-line control

of the robot manipulator.

For deriving the dynamical model of a manipulator, two
methods are commonly wused. The Lagrange formulation
achieves the dynamical model 1in a straightforward manner,
however the physical meaning of the terms is often hard to
interprete. The Newton-Euler formulation is intuitive and
more efficient, but .1ts derivation requires a three

dimensional view of the manipulator.

The general algorithm for constructing the dynamical
model in <closed form and recursive form by the Lagrangian
formulation can be found in [Paul82] and [Ho1180]. The
general algorithm for writing the dynamical model in
recursive form by the Newton-Euler formulation was derived
by [Luh80]. The dynamical model in closed form by the
Newton-Euler formulation can be found in[Ho1182]. 1In both
papers that deal with the Newton-Euler formulation, the
Acenter of mass of each link are wused as origins for the

respective coordinate frames.

There are two restrictions of the above dynamical
models. One is that those models compute forces and torques
only at the direction of motion but ignore the other

directions. This restriction is acceptable if the robot is
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assumed to be rigid and stationary. The other restriction
is that the coordinate frames have to be set in a specific
way such that their models can be applied(In other word, the

user must follow a fixed convention).

In this thesis, the derived dynamical models have the

following characteristics:

a. The derivation follows the Newton-Euler formulation.

The physical meaning of the terms will be explained and the

derivation seems to be simpler than in the Lagrange method.

b. The dynamical model can be used for computing the
force and torque in all directions for any joints. The way
to do it 1is to assume that each joint can translate and
rotate in all directions(fig.l). Such joints will be
referred to as “generalized joints". A manipulator consists
of N generalized joints is called the N-link generalized
manipulator and it has 6N degreeé of freedon. The
derivation of the dynamical model for the generalized
manipulator avoids the difficulties of identifying the
axis-of-motion of each joint(link). The model contains all
the possible information of any physical manipulator with
the same number of links(section III.3). This generalized

dynamical model can be reduced to (c).
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In

the dynamical model for the one-degree-of-freedom-

per-link manipulator. It is done easily by introducing the

direction selection vectors. The reduced dynamical model
has two advantages. The coordinate frames in it can be set
arbitrarily and "it can compute the force or torque at any
desired direction. The method of reduction is discussed in

detail in chapter 4.

d. The reduced dynamical model from Newton-Euler method
will be shown to be identical to the dynamical model wusing
Lagrangian method. It will be shown that the terms of the
dynamical model from Newton-Euler method can be visualized
but have each four different forms according to the four
possible combinations of translational joints and rotational
joints. The Lagrangian method however gives unique
expressions for any combination of joints but the physical

interpretation of the term is lost.

e. Futhermore, the unique expression for the reduced
dynamical model can be wused for computing the force and
torque in any direction. This is proved using the
Newton-Euler method but it cannot be shown wusing the

Lagrangian method.
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3.2 Derivation of the Closed Form Dynamical Model

The method of deriving the closed form dynamical model
is, first to compute the force for accelerating a mass
element of the manipulator. Second, we integrate the force
over all mass elements from the desired joint to the end
effector. This is the force demanded by that joint. The
computation of the torques follow the same procedures. We
first compute the torque. of a mass element, then we
integrate it to obtain the demanded torque from a joint.
The method is simple, and it will be demonstrated to be

efficient too.

~ The force of a mass element

The force for accelerating a mass element anywhere at
link j of the generalized manipulator in an dinertial
coordinate frame is described by the Newton's second law.

of = M G (o)) (3-1)

The subscript 0 indicates that the base coordinate has
been used and it is an inertial frame. The superscript ,j
means that that mass element is in 1link j of the

manipulator.

The computation of dtt(og’j) is as follows(fig.7):

T U R
or’" = gd" + gATyrd (3-2)
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Figure 7 : The Force of a Mass Element in Link j.
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d,(qr°d) = d, (pd!) + dy (gAl) red ¢ ald (r0d)
t(ol t(pd (A" )27 ¥ gATdi(yr
sJy = 1 1y,
e (or®") = dyg (o) * dyy(ghT)yr _
v2d, (A1) dy (1r0d) + gAldg, (grd) (3-4)

The superscript ,j will be supressed in the following

derivations. Recall equations 2-75:2-80 & 2-70:2-71, we

e dy (oﬁl) = gll = oEl ¥ oﬂl X oﬁl (3-5)
dpy (odh) = dy(prh) = gat + ool X o4
vogud X (gut X gdly e 2t x gl (3-6)
dp (gAM)yr = qu' X gAlyr . (3-7)
dip (oA = ga’ X oAl
e ont X (qut x galir) (3-8)
After substituting 3-5:3-8 into equations 3-3:3-4, we
obtain
dy (or) = qu' ¢ qu' X gdb v gl x Aty
+oAld (41) (3-9)
d(or) = g * ga’ X od' *+ gul X (qul X o
' 021 X 0A11E * oﬂl X (oﬁl X 0A11£)
gl X gl
2qut X gAldi(yr) + Aty (yr) (3-10)
sing equation 3-2, equations 3-9 & 3-10 become:
dy (or) = qu' * qu' X gr + gAldy(yr) (3-11)
1, 1

1 1
dpt (pr) 0% X gL + o¥ X (gw™ X or)
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1, .1 1, I
*2gu K gut + Zgws X gATdy(4r)

+ oAy (or) (3-12)

In equations 3-11 & 3-12, the variables Ogl, 031, 051

1 are the translational and rotational velocities and

and qa
accelerations of coordinate 1 with respect to 0. The
variable ,r can be solved by the inverse kinematic
method[Ho1183]. The variables dt(lg) and dtt(li) are unknown

to us but they can be represented in terms of dt(zg) and

dtt(ZL)
d, (ir) = qul + wd X e+ A%, (,r) (3-13)
g (10) = U7+ qwn Xgr + AT (pr
2 2 2 2
dep(qr) = 2" * g X gr +ws X (jw X gr)

2 x lAzdt(zﬁ)

2
+ A dtt(ZL) (3-14)

* zlﬁleﬂz t 2w

Here, the variables 132, 132, lﬂZ and 132 are the

translational and rotational velocities and accelerations of
joint 1 that can be determined by the planned trajectory of
the end effector wusing the inverse kinematic methods

[Ho1183].

Substituting equations 3-13 & 3-14 to equations 3-11 &
3-12, we get

de (pZ) = oL * o¥ X or
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+oA? 4, (pr) (3-15)

1 1
dtt(OE) = 08 + 0% X oL + o X (oﬂ

+0A1(122 * 122 XKoqr + qu- X (1ﬂ2 X 4r))
*gA? dyy (pr)

vt 1 A0(uh)
w2qut X gAt(pu® + qu
oA* 4y (or)
w2ght (g 1 uf)

+20g1 X

2, 12
2o Al (w2 X (A% (,r)) (3-16)

In equations 3-15:3-16, all the variables can be solved from
the inverse kinematic methods except for dt(zg) and dtt(zg).
We can expand dt(zg) and dtt(zf) in the similar manﬁer. The
expansion will be terminated at dt(jg) and dtt(jg) because
we have assumed that the mass element is in link j of the

manipulator. The equations for d._(.r) and d, . (,r) are :
t'j- tt'j-

A R A -
B RN £ SRR 13 RPN 15 S
+zjg3*1 X ng*l (3-18)

The physical interpretation of equations 3-17:3-18 is
that the movement(velocity and acceleration) of the latter
joints(joint j+1 to end effector) will not affect the
movement of the mass element in the preceeding joints. This

property characterizes open kinematic chains(One may take it
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as a definition of open kinematic chains).

By combining equations 3-15:3-18, one gets

Ik, ke k+1
G ton) = Eoh SRUAME P9 (3-19)
k+1. +
N ETARES ng*l)
2y AN x AT e W x s )
12k k=1 = = - 13=20)

where 811 equals to zero when k=1; otherwise it equals one.

From equations 3-1 & 3-20, the force of the mass

element on link j of the generalized manipulator is:

. j . hi . j J .
i’J = 7 ik’J + Oﬁkk,J + ¥ b3 Of.k]’J (3_21)
k=1 k=1 T2k k=1
K, j k
where of¥13 = m aK( kTt e KX (3-22)
kk,j . k
ofK T = ARt xSt X ) (3-23)
1, 1, 1
off 1T =am AR a2

are the inertial force, centrifugal force and Coriolis force
of the mass element on link j of the generalized manipulator

respectively.

The orientaion matrices are there to align the

direction of the joint coordinates to the base coordinate.
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If we define
k
O(kﬁ) == OA kL (3-25)
as the vector in coordinate k that is referred to the
direction of coordinate 0, then the expressions will be more

readable. For example, equations 3-11:3-24 can be written

as:
kyj _ k+1 k
RAL A I OPLAL I S (3-26)
k,Jj 1 k
oik J=m o(kﬂk+ X( W *1x r)) (3-27)
1,5 1 1 1+1
ofk I =2m o(k!k+ X (u 1 1" "X 1r) (3-28)

"The subscripts indicate the destination coordinates. They
cascade from the inner parentheses to the outer parentheses,
and all the subscripts within the same parentheses must be

the same.

The total force of a joint

For the open dynamic chains, the force of a joint is
the integration of forces of all the mass eTements from that
joint(denoted as Ji) to the end effector(denoted as E) plus
the payload(One may use it as the definition of open dynamic
chain). By integrating equation 3-21, we obtain the
demanded force of joint i.

N N

Ky e GERT) (3-29)
12k k=1

= | (.2 o**1 X .r) dn (3-30)
o(k2 k& kE



rE
kk k
oGE) = | ol X( ™ X p)) dm (3-31)
i
k1 [E 1 1
k+1 +
0GETY 22| gl qultt e T X ) dn (3-32)
7Ji

These are respectively the inertial force, the
centrifugal force and the Coriolis force of link j of the
generalized manipulator. The direction of each force is
referred to the base coordinate. If we want each force to
be referred to its own coordinate, we simply change the
subscript 0 to i that is equivalent to multiply the whole

equation by 1.Ao. Hence,

N N -
N I A T AI O S I (3-33)
k=1"" «=1 12k k=1
where :
[E
k+1 1
NANE N HOCOLR ISR ALl (3-34)
135
rE
k kel o, k+l
N e (O SALL (3-35)
133
rE
1 ‘1 141, 141
B 2 x et e T X s e (3-36)
J3i

Define the mass and center of mass of link j in

coordinate k as:
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.
Med = dm (3-37)
Jink j
J f J J J J
2= |l am sl = dd e Ap (3-38)
Nink j

where iR is the center of mass of Tlink j in its own

coordinate frame.

Then equations 3-34:3-36 can be written as:

N .
NN (K (3-39)
j=max{i,k}
kk _ N KK, j
AL kK (3-40)
j=max{i,k}
k1 _ N K1,j
AL A (3-41)
jemax{i,k!T}
where
Kod - owed o oK+l k+1 j
NI R - (3-42)
k’. ’. "
K15 _owsd , K+l 141 . 141 i
iE =2M L (T X (qu M .1 X §112°%))

are the inertial force, centrifugal force and Coriolis force
of 1link j acting on joint i due to the movements of 1inks k

and 1.

When k=i or 1=i, the force of joint i is due to the
movement of joint i itself. Conversely, the force of joint
i is due to the movements of other links, and this is the

coupling force.



51

The torque of a mass element

The torque of a mass element in link j of the
generalized manipulator is computed by equation 2-109.

= gr X f

where .f is according to equations 3-21 & 3-26:3-28.

Changing the subscript from 0 to i for referring the forces

to the local coordinate, one gets

: j ] N ;
k=1 k=1 12k k=1
where
’- - k )
SR I T (3-46)
; Ck+ 1

|-h

i
Then the torques on a mass e]emeht in link j of the

generalized manipulator are:

N T S AR )
k=1 k=1 12k k=1

where
PA RS SO RS 1) "~ (3-50)
PRSI SO (A i) (3-51)
K1eT com Ly (et x T u!

1+1
tqu X 8qqr) (3-52,)
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are the inertial torque, centrifugal torque and Coriolis
torque of the mass element on 1link j of the generalized
manipulator acting on joint i due to the movements of links

k and 1.

When k=i or 1=i, the torque of joint i is due to the
movement of joint i itself. Conversely, the torque of joint
i is due to the movements of other links, and this is the

coupling torque.

The torque of a joint

The torque of a joint is the integral of the torques
of all the mass elements onm that joint to the end effector
plus the payload. By integrating equation 3-41:43, we

obtain the demanded torque of joint 1.

N N N N
No=x e e g N (3-53)
k=1 k=1 12k k=1
where
N .
A Nk (3-54)
j=max{i,k}
kk _ N Kk, j
AL N<K (3-55)
j=max{i,k}
k1 N K1,
N L ELAER (3-56)

j=max{i,k13}
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K,i k+1 k+1
iN b= it X (2 * ke X yr)dm (3-57)
link j
o
Kk, j . k+l
N I S X( k"t X r))dn (3-58)
‘Tink j
.
N3 o x T et e Wt X s qqr)dn
i= i= " itk- k1= 1= k11—(3_59)
Jink j

Equations 3-54:3-56 are the inertial torque, the
centrifugal torque and the Coriolis torque of link j of the
generalized manipulator acting on joint 1 due to the

movements of links k and 1 respectively.

a. the inertial torque

The integrand in equation 3-57 has two terms, the

first term is _

f +1 (o] 1y

;L X 'i(kg ) dm = M (1'2 X ’i(ki )) (3-60)

link j
after using equations 3-37 & 3-38. Since kgk+1 is the
translational acceleration of Tink k, so M’ji(kgk+1) is the
force to achieve that translational acceleration of Tink j
in coordinate i, and equation 3-60 is the} torque that is

observed at the origin of coordinate i.

The second term is
(

| ir X il
JMink j

k*1x .r) dn
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[

- J J k+1 J J
(347 + A%50) X 5(a” " X (d” + (A%;r)) dm
Mink j
[ . .
- J k+l J
197 X jla” " X d7) dm
JMink j
[ .
k+1
¥ 1QJ Xyl X kAJjE) dm
‘link j.
[ .
J k+1 J
| A X e T X)) dn
‘Tink j
[ .
k+1
. iAJjg X 58 X kAJjg) dm
Fink™j

where [2-34] means "refer to equation 2-34",

The first term of equation 3-61 is

[ .
dd x (et x gd) dm
Tink j

= pd qd k+1 i
H 1g X ] X kg )

ilk

where the torque depends on the distances
coordinates j, i & k(fig.8). This 1is a version
"parallel axis theorem"[Beer62].

The second term is

: Ek+1 X

J
40 X 40y A¥;z) dm

K
k+1 s
-3 X kAJjE !)

and the third term is

[2-34]

(3-61)

[3-37]

(3-62)
between

of the

[3-37]

(3-63)
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: The Inertial Torque

Figure 8
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[ )
k+1
iAJjg X 50" X dd) dn [3-38]
link j
T (o1 .
= N9 1.AJJ.R Txoet T xd)) (3-64)

where the torques in equations 3-63 & 3-64 are due to the
fact that the center of mass of Tlink j is not at the
origin of either coordinate frame i or k [fig.7].

The fourth term is

[, .
J k+1 J
‘link j
[ . .
kK k+l
= iAJjg X (A% e X 1.Mjg) dm [2-46]
Mink j
[ : . . .
= |[tr((.AJ.r)(.AJ.r)T)I - Gy ATy Tk
it =Mt j- it o j='viv - itk 2-81
Jlink j [2-81]
r |
= A Ler (s T - (s lemy (AD T (AN
11nk J
= padpsdp adZT k k+l
= ATDTGAT) T (AT )
where
i T T
1°J =-J [triseye )T = (jrye0)] do (3-65)
link j

is called the inertial matrix of link j measured at the
origin of the local coordinate frame(here the inertia matrix
of the 1link includes the inertia of the actuators).
T

1.l\jI’j(iA‘j) is the inertial matrix of link j under rotation

of 1.Aj(f1'g.8). iAkkgk+1 is the angular acceleration of joint
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k measured in the direction of coordinate i. So the fourth

term is the torque to rotate a 1ink at an arbitrary angle.

So the inertial torque represented in equation 3-57 is

the combination of equations 3-60:3-65, hence
(

k+
rX (e
1ing i

(ks 1

k+1
i- X

k+1 k!k+1)

+

k2 kD N

23 4d
ML T R 1V

Ek+l X kgj)
»J gl k+1 I oaedy
oo dad e )
PR, - .
wowd Y X (et x )
i v0dy kK k+l
+ DI T AR e
where
1°d - f [tr(orar )T = (orar')] dm
Lt SIS
Mink j

[, 5 | r
(y"+z2")dm xy dm xz dm (3-67)

‘Tink j ‘link j Jlink
[ [ [
yx dm (x2+22)dm yz dm
T1ink j ‘T1ink j 1ink j

( [ (
zx dm zy dm (x2+y2)dm

| Jrink j o Dvink j o Jtink g
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== I, Ly 1, (3-68)
Lyx Lyy lyz
X L2x Ly 122 ]

b. the Coriolis torque

The Coriolis torque of link j for joint i due to the
movements of joints k and 1 is computed by equation 3-58,

where the operator 811 is suppressed in the derivations.

: [
k1, k+1 1+1 1+1
iN b =2 i K (ew * (14 MR X qr))dm

‘Tink j

[
k
= 2] srdm X (W *1 k(]E]+1))

1
NMink j

[

. . )
#2[(yd + a05r) X (m "

S X gl e Al ) ) dn
Mink § [2-34]
[ . .
r2| odd xSt X LT ad)) am (3-69)
NMink j
[ .
1
+2 igJ X i(k!k+1 X k(]! +1 X ]AJjﬁ)) dm
Nink j
[ X
1 ]
r2] Adie (T X qu T X))
Nink
[ .
j k+1 141 ]
*2| A X (i X (e " X qA%5r)) dm

link j
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= 9j 3j k+1 1+1
= 27 ,ptT X (W X (qu 7))
sJ j k+1 1 j
+24°9 igJ X 5(w "X (¥ 1y ]QJ)) [3-37]

ST co1 O
e d gl (ot ('L (A iprd))3-38]

PR ' : .
e adpd Ly ('t xydd))re-38]
[ . .
kK 101
w2 A rx (A8 Ix(alw +1X1AJj£))dm [2-46]
link j
SR K+l 1
= aed g d T e

G o1 .
+2M°9 1QJ X (kW "X k(1!1+1 X ]QJ))
i kel o', 141 i
ad e oy kel 141 ]
+2M J.iA{jB { X (¥ . X (1w X 1QJ))
+2[1AJI’J(1AJ)T-§tr(I’J)][(1A11ﬁ1+1XiAkkgk+1)]

r2(A A I A T1GA D (3-702)

Equation 3-70 is the Coriolis torque of link j for
joint i due to the movements of joints k & 1. This equation
has six terms all caused by the fact that joint k is
revolute. If joint 1 is prismatic(fig.9), the Coriolis
force is then ZM’ji(kﬁk+1Xk(1g]+1)) at the center of mass of
link j(3-44). Therefore, the arm of torque is iE’j in the
first term. The next five terms exist only if joint 1 s
revolute. The physical explanation is not obvious but the
meaning is understood by following the derivations that s
similar to the explanation for the inertial torque. Anyway,
the geometrical interpretation of such variables are

presented in fig.9.



Firgure 9

60

: The Coriolis Torque
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If k=1, then Sk is zero and equation 3-70a becomes:

K103 _ pysd o] kel y o 1
N3 e d e d T X (e *hy) (3-70b)

c. the Centrifugal torque

The equation for the centrifugal torque is achieved by
letting the coordinate frames k & 1 coincide, without
considering the translational velocity and the factor 2 in
(3-57:3-58). Hence
[

ykks 3

k+1
N X

k+1
L X (T X
Tink j

ST k+1 K+l o
H>e .4 X (e X (¥ X 4%))

(L)) dn

»J j k+1 k+1 i o sd

erd g Xt e )
S Sl

AR PN WU (WA RN ERTE

The fourth term of equation 3-70 vanishes since the
cross product of two identical vectors js zero. The last
term is due to the generalized Euler equation. The rest of
the terms treat the 1link as a point mass due to the
variables of separatioh of coordinate frame origins and the

position of center of mass.
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The gravity force and torque

The gravity force of a mass element in link j of the
generalized manipulator in the base coordinate is:

ofg = M7 o8 | (3-72)

where g is the gravity acceleration.

If one refers to a local coordinate, then

ifq " wd g (3-73)

For the open dynamic chains, the total gravity force
acting on joint i is the sum of the gravity force of all the

mass elements from that joint(Ji) to the end effector(E).

Therefore,
(E N j
iFg = | qgdm=z ;E° (3-74)
Ji I=

or

£l gl

itg il (3-75)

according to equation 3-37.

The gravity torque of a mass element in link j of the
generalized manipulator at the origin of coordinate frame i
is:

= e X f = X Lf (3-76)

The total gravity torque acting on joint i in the

local coordinate is:



(E N j
iNg = | sodm X 49=1 ;N7 (3-77)
Ji =1
where
»J o el e
= W (a0 ) X g (3-78)

3.3 Algorithm For Constructing The Closed Form Dynamical

Model of the Generalized Manipulator

In the previous section, we have derived the closed
form dynamical model for the generalized manipulator. The
following step-by-step procedures summarize the derivation

of the model:

A. Link Variables

Measure :

a. The mass of each Tlink (M’j).

b. The center of mass of each link(in terms.of “the Tink
coordinate frame(jg’j)).

c. The inertia matrix of each link (in Tink's coordinate
(9.

B. The Kinematic Model

Find the geometrical parameters of each link, then
establish the kinematic model according to the

procedures of section 2.2,
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C. Joint Variables

Specify :

. The translational ve]ocity(kgk+1) & acceleration(kgk+1

k+1

)5
) of

1=

. The angular ve]ocity(kgk+1) and acce]eration(kg

joint k, k

"

—
-

N
-

.

.

.

L]

.
-

=

D. Construction of the dynamical model

The total force of joint i is the sum of equations

3-33, 3-74 & 3-79.

N N NN
A S A A A s
k=1 k=1 12k k=1 g -
where
N .
NS Nk (3-82)
j=max{i,k}
w N Kk, j
¥ =g pKKs (3-83)
j=max{i,k}
N .
AL TN (3-84)
j=max{i,k,T}
N ; |
iLg  =.I.4kq (3-85)
J=1
and .
Koi . wed ¢ oK+l k+1 §
O =@ el ) (3-87)
Kkod o wod , ok+1 k+1 ]
G = e et x ) (3-88)
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k1L k+1 1

i-

N

] 1+ 1+1 i
oM (o (T X sqqpt)

The total torque of joint i is the sum of -equations

3-52, 3-77 & 3-80.

N N N N
R At R LT SRt P R CRL)
k=1 k=1 12k k=1 g
where
N . :
M= N (3-91)
jemax{i,k}
kk _ N KK, j
KK 2 kKo (3-92)
j=max{i,k}
k1N k1, j
N = N (3-93)
j=max{i,k,1}
W
N =1 .N° (3-94)
Lit!] j=11_g
and

ewd Ll et xdd)
v q 1Qj X 1(k2k+1 X kAij’j)
ewed g d e x g
v MTI(AT (kg0

AT e el gl xRt x (t xad)) e
+ W 1Qj X i(kﬂk+1 X (k!k+1 X kAij,j))
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] i ] k+1 k+1 j
LSS S O )
o (AR XA I ) TR )
If 12 k, then
g
NKTd 2o d ped y ST x L) (3-98a)
= , .
TEL. igJ X i(kﬁk+l X k(]ﬂ +1 X ]QJ))
Jo g4l k+1 141y i gad
+2n> 19{ X i Gf ™ ™t X At {)’
s2u 1AJjE’J X 1(k!k+1 X k(1ﬁ1+1 X ]QJ))
vl T3 (a0 Toaer (1) 30 AT A

If 1 = k, then
ﬂk1,j

k+1 y 1+1

TR, ig’j X (M ) (3-98b)

i
iﬁg’J YER 1E’J X ;g (3-99)

k(12
where I’j is the inertial matrix of link j measured at the
coordinate origin of joint j.

The derivation of the dynamical model is based on four

concepts:

a. The Rigid Body Assumption

The relative position of any two points 1in the link

does not change while the link moves.

b. The Open Kinematic Chain Concept

The kinematic variables of a mass element do not

depend on the kinematics of those mass elements which are
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closer to the open end of the chain.

c. The Open Dynamical Chain Concept

The overall required force(torque) at joint i is
the sum of all forces(torques) that act on all mass elements

from link i to the end effector.

d. The Generalized Manipulator Concept

The generalized mainpulator is constructed by the
generalized joints which can be translated and rotated in
any direction. In other words, their direction of motion

are arbitrary.

Example

The robot in figures 4-5 1is used as an example. In
order to demonstrate the multiple degree-of-freedom 1link,
joint 2 is thought of having two degrees of freedoms. It
can rotate w.r.t. Yz-axis and can translate along -Xz-axis
too. Thus it is a two link robot that has three degrees of

freedom.

The derivation of the dynamical model consists of the

following steps :

Step A. Specifying all the link variables

The mass of Tlink 1 is M1 and its center of mass is

lTocated at the frame origin(p, = 0). The inertial matrix of
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link 1 is I1 and it can be derived by equation 3-67. Since

link 1 1is a flat cylindical mass, the inertial matrix of

link 1 is:
- 2 . (13-
Iy =M 6778 (3-100)
- 2 -
Iy = M 40 /2 (3-101)
- 2 .
I,,, = M d;° /¢ (3-102)
ley - Ilyx : Ilyz - Ilzy = Tiyg = T1gx = 0 (3-103)

where M1 is the mass of link 1 and d1 is the radius of the
cylindrical mass.

Let d0 be the thickness of the top.

The mass of link 2 is M2 and its center of mass s
situated at the middle of the h’nk(g2x =-d2/2 = varying).

Since link 2 is a slender rod, the inertial matrix of 1link

2(12) is:
Toxx =0 (3-104)
Layy = M2 dy 1 12 (3-105)
Iypy = My 40 1 12 (3-106)
Toxy = Toyx = Toyz = Tazy = Toxg = Togg =0 (3-107)

Step B. Writing the kinematic model

The open kinematic chain concept dimplies that the
kinematic model is established from the base to the end

effector.
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= | cosb; -sind; 0 0 (3-108)

sin@1 cos@1 0 0

T, = Tran(d; ; Y;) Rot(@, ; Y,=Y;) Tran(d, i-Xp)

1
= c0502 0 sin@2 -d2c0502 (3-109)
0 1 0 d1
-sin@2 0 cos@2 dzsinﬂ2
0 0 0 1
!
Thus:
0l2 = Tran(dj ; Zy) Rot (0, 3 1) Tran(d; ; Yq)

Rot (8, ; Y,)Tran(d, ;-X,) = (3-110)

cos@lcosﬂ2 -sinﬂ1 cos@lsino2 -dlsinﬂl-dzcosfblcosw2
sinolsinm2 cosGJ1 sinolsin@2 dlcoswl-dzsinﬂlcosﬁ2
-sino2 -0 cos@2 do +~dzsiQ02

0 0 0 1

L

Step C. Specifying the dynamical variables of each joint

The angular velocity and acceleration of link 1 are
indicated by the vectors [0, O, ﬂl]T & [0, 0,'51]T.

The angular velcoity and acceleration of link 2 are
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represented by the vectors [0, Wy, 0]T s [0, Qs O]T, and
the translational velocity and acceleration of link 2 are

specified by the vectors [-gz, 0, 0]T and [-gz, 0, O]T.

Step D. Constructing the dynamical model

Because of the open dynamic chain concept, the
dynamical model is constructed from the end effector to the

base.

The gravity terms

The gravity vector in the Tlocal coordinate is:
T

0d = [0, 0, -g] (3-111)
Al g - _qT )

19 = (gA") e = [0, 0, -g] (3-112)

2d = (OAZ)TOQ = g[sind,, 0, -cos@2]T (3-113)

The gravity force of joint 2 is:

F o= F?

22 o : T
Ll LA M*",g = Mzg[s1n02, 0, -cos@z] (3-114)

The gravity force of joint 1 is:

’2 - ’2 - T
15 g =M l.g. = -Mzg[o’ 0’ 1]

’1 - gl - T
1B'0g = W70 = -Mpolo, 0, 1]

= 92 ,1 - - ']' .

1Eg T E gt Er g = - (Mrhp)gl0, 0, 1] (3-115)
The coordinates of the centers of mass are:
22’2 = [-id,, 0, 01" (3-116)

,2

1P [-1dycos0,, dy, bd,sind,]’ (3-117)
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12’1 =[0,0, 017 (3-118)

The gravity torque of joint 2 is:

= N22 o Ml s
=N ' H>™ op*" X g

=-M2gd,[0, cosd,, 01' (3-119)

The gravity torque of joint 1 is:

22 _ el 2
1y g MT et X g
=-}M,g[d;, d,cos0,, 017
!‘1 - ,1 ,1 _ T
N5y = W7 e’ Xy = [0, 0, 0]
)2 1 T
lﬁg - ]-ﬂ g * ].ﬂ lg --inzg[dl’ dzcoswz, 0] (3"120)

The inertidl terms

Let:
252’2 = My(ay + ap X py)
= 4 r'az -
0
Liazdz-
MR P I M

-

- aldlsinﬁ2 |

Then the inertial force of joint 2 is:



12

2,2
1 = 2F

1,2

Im
|

2 * ok

-
= M2 -az-aldlcosﬂ2 (3-121)

Similarly:

2,2
1k

2
My 1A7(23p * g5 X Bp)

0

L azsin02+§d2a2cos@2 |
1,2 _
£ = My ey X gR o

a
= My |-djay

0
L -

1,1

£ My W Xpp =20

Then the inertial torque of joint 1 is:

2,2 L2, gl

1B =B ¢ 4E

-;dzsinOZal

L azsin@2+§d2a2coso2 -
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The dinertial torque of joint 2 s

follows:

2,2 _ »2
= Hylpy X 25) * I*%sy

N

=10

I2yy°‘2
0

L
1,2

=
|

_ 1 2 2
My(py X pA (g X 47)) * I"7phyay

[ ,
M,d,d,5in0,

2
LQﬂz(dz) cosoz+1222cos@2-

_ 2,2
1712

1,2
2 N

= (§M2d1d2c0502-1

2xxsinoz)al

Izyya2+§H2d1dzsin02u1

; (iﬂzdldzsin02+1222c0502)a1.

Similarly, the inertial torque of joint 1:

2,2 _ 2
(N°0T = My (1R o X 1AT3,)
My 4

2 2
X 1A%(gy X py)
2

2 41, 42
SLIR LI STt

calculated as

(3-123)
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'r . 4
= szl(a251n02+§d2a2cos@2)

2
My (dy) eyl ey

g Mzdl(azcosﬂz-idzazsinﬂz);
= My(,d2 X (g; X 12°%))

2 2
+Mz(1A Bo X (21 X 1g ))

2:,2 ,1
+1A I ZA ¢4

1,2

[ 2 .
ay (Nz(dz) +(IZZZ-IZXX))c050251n@2

-3/2M2d1dzsin@2

2 . 2 2
! Hz(dl) +szx(s1n@2) +IZZz(cos@2) ‘

1}
r—
L J
Q
—

| "122%1 |

(3-124)

1-1 ~ 1- 1= 1=

= [ Mzdl(azsin02+§dzuzcosoz)
ray [,y (85) 24(T,,,-Tp, ) c0S0,s100,
Mzdl(azcoswz-;dzazsinaz)+{n2(d1)z
L2
+1,, (sin0,) +1,, (cos0,) 241, Yoy
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The centrifugal and Coriolis terms

The centrifugal and Coriolis terms can be computed in
a similar manner. In this example, we assume that the robot

is moving in slow speed, thus these two effects are

insignificant.



CHAPTER 4
EQUIVALENCE BETWEEN THE NEWTON-EULER AND THE LAGRANIAN
METHODS

In the previous section, the <closed form dynamical
model for the generalized rigid robot manipulator has been
derived. In this section, we 1limit ourself to rigid
manipulators that have only one degree of freedom per link.
Joints that have more than one degree of freedom are
decomposed into multiple of Bne degree of freedom joints,
and each "subjoint" is described by one coordinate frame.
This 1is done for the sake of properly identifying the

generalized variables of the Lagrange formulation.

If the joint has only one degree of freedom, then only
the component along the axis of motion is of interest. Thus
the complexity of the dynamical model is  reduced
significantly. Also, since the’ links are rigid, we have
either force or torque along the axis of motion of that
link. That makes the dynamical model even simpler. If the
link has a prismatic joint, the force component is of
interest. If it has a revolute joint, the torque component

is considered.

76
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4.1 The Generalized Variables

Before reducing the closed form dynamical model of the
previous chapter to the single degree of freedom per 1link
case, let wus define the generalized variables(needed for

Lagrange formulation).

The selection vectors are chosen as follows:

s == [1, 0, 017 if x-component of the joint (4-1)
s == [0, 1, 0]' if y-component of the joint (4-2)
s == [0, 0, 1]T if z-component of the joint (4-3)

is selected.

The Qenera]ized angle of rotation is(fig.10):

o

0 if the joint/link is prismatic. (8-4)
A

[ T; if the joint/link is revolute. (4-5)

The selection vector s specifies the axis of rotation of the
original coodinate, and the vector § is the direction of the
axis of rotation in the destination coordinate where A is

the orientation matrix between the two coordinates.

The generalized displacement vector is(fig.11):

yo==Als if the joint/link is prismatic.  (4-6)
u == AT(gxg) if the joint/link is revolute. (4-7)

If the joint is prismatic, then the selection vector s

specifies the axis of translation of the original coodinate,
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Figure 10 : The Generalized Angle of Rotation
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Figure 11 : The Generalized Displacement Vector
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and the vector p is the direction of the axis of translation
in the destination coordinate where A is the orientation
matrix between the two coordinates. If the joint is
revolute, then the selection vector s determines the axis of
rotation, and the displacement equals to s X d where d is
the displacement vector and A is the orientation matrix

between the two coordinates.

The generalized velocity is:

n

us if the joint is prismatic. (4-8)

n

ws if the joint is revolute. (4-9)

The generalized velocity is defined as the component along

the direction of the axis-of-motion.

The generalized acceleration is:
N == as if the joint is prismatic. (4-10)
== g5 if the joint is revolute. (4-11)
The generalized acceleration is 'defined as the component

along the direction of the axis-of-motion.

The generalized force is:

r Fs if the joint is prismatic. (4-12)

r Ns if the joint is revolute. (4-13)
The generalized force is defined as the component along the

direction of the axis-of-motion.
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For the dynamical model derived by the Newton-Euler
method, different mathematical expression; result when using
different ordering of prismatic and revolute joints(when
representing a multi-degree of freedom joint by a sequence
of single degree of freedom joints), and each mathematical
expression can be interpreted physically. However, when
generalized coordinates(equations 4-1:4-13) are used, all
combinations of prismatic and revolute joints 1lead to the
same mathematical equation. In this "generalized” equation,
the physical interpretation of the various terms is implicit

and sometimes cannot be visualized.

4.2 Equivalence Between the Newton-Euler and the Lagrangian

Methods

Lagrange formulation yields a unique dynmaical model.
Ip this section, we shall prove that the dynamical model
derived from the Newton-Euler method can be transformed into
the same unique dynamical model. Hence, the Newton-Euler and

Lagrangian methods are equivalent{Ho1182].

In the following derivations, the superscripts of the
prismatic and revolute velocity and acceleration will be
mitted since they are always Tlarger by one than the

subscripts and the subscripts indicate the joints which are
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k+1l _
referred. For example, Ll = (¥, etc.

The inertial terms

If we assume that both joints k and i are revolute,

then from equations 4-1:4-7, we obtain

8= (A Ts (4-14)
8= (A Ts (4-15)
ad = Al TGs x e (4-16)
ad = (T x ) (4-17)

In equation 3-96, both joints k and i are revolute,
then the inertial torque is |
s Wd = el el s e
+igj X iAk(kE X kAij’j)
M iped X AR(s X2
+iAjK’jjAkk§ b (4-18)

where k23 == 123 / w2 (4-19)
is the unit mass inertial matrix of link j measured at the

coordinate origin of joint j.

Using the definition of generalized force and acceler-
ation, equation 4-19 can be written as:
LTS ) -
. . . K .
where D 23 = W3 {45 e (57 X jAT(s X 49 (4-21)

. ) .
tis 0 (387 X AT (s X kAJjg )
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i3 K .
+is® (1AJjE J x iA (ki X ng))

T pdgsd gk
A ERR LA ST | }

The fourth term of equation 4-21 is:
T pdgsd pk
EAR LIS L
- IWT T g T
(AT 58) " K3 ((AY) s)

= (shT xed (89 (4-22)

The first term of equation 4-21 is:
oo (el xoakgs el
- s Gad X I T o dd)
= ga e Gl x Al )
- (Mad) ¢ e x e
- (hH A T(Gs ¢ gd)
= () T(ud)
=l e (4-23)
where equations 2-44, 2-46 and 2-85 have been used and they

will be wused very often in the following derivations as

well:

The second term of the equation 4-21 is:
. " P

= .5 (igJ X iA (ki X kAJjE J))
= k j !j j

AT (s X A j& ) ¢ (8 X 347)

g P . .

= iAJ(kAJ) (ki X kAJjR J) ° iAJ(iAJ)T(ii X ig
- (M) 0 W d) e ahTGs 1))
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= (DT x o« A TGe X))

The third term of equation 4-21 is:
L RN () .
= AT s e T AN s 1Y)
= (M) Tis e Ged 1 (D TGs x )
- ) e el x )
= ot et e - (2

After combining equations 4-22:4-25, equation 4-21
becomes

D S . M"] { (iiJ)T kY (ng) + kEJ ° 'HJ

i=

»J J J J J -
+ip70 e (qut X 8T 4wt X p80) (4 26)

Assume that both joints k & i are prismatic, then from

ik

equations 4-1:4-7, we obtain

AR (4-27)
& =0 (4-28)
wd = (ahTis (4-29)
@l = (A s (4-30)

In equation 3-87, if both joints k & i are prismatic,

then the inertial force is:

kod o ysd pk
LA L

= k’j = ’j ) -
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3 ()1 A s}
w9 (LA s LA s
H’J' {(-i}_l:J)Tkl_l,J.}

) J
where Dik

Using the definitions of 4-27:4-30, equations 4-32 &
4-32 equal to equations 4-20 & 4-26 respectively but the

definition of the terms is different.

Assume that joint k is vrevolute and joint i is

prismatic, then from equations 4-1:4-7, we obtain

1§j = 0 (4-33)
S = (A Ts (4-34)
ad = ahTis (4-35)
kgj = (kAj)T(kz X kgj) (4-36)

In equation 3-87, if joints k is revolute and joint i
is prismatic, then the inertial force is:

i FOT = ks x et
=> irk,J Dik'j N (4-37)
where Dik’j = M’j { ;S ° 1.A.k(k§ X kp_’j)} .
nd (ise a¥ (axdd) + ii'iAk(kixkAijhl)}
RENPULFENOOHFS I

(A s e ADTs x p0d)

sj j j j i i
WU et e g d el x sl 3 ee3e)
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With the defintions of 4-33:4-36, -equations 4-37 &

4-38 equal to equations 4-20 & 4-26 respectively.

Assume that joint k s prismatic and joint i is

revolute, then from equations 4-1:4-7, we obtain

80 = ahTis (4-39)
Sl= (4-40)
J . T J -
= (A TGs 1 dd) (4-41)
ad = (AT s (4-42)

In equation 3-96, if joints k is prismatic and joint i

is revolute, then the inertial torque is:

i= i

- kyJ »] -

v o yed s k
where Dik J =y { i$°¢ (i X i ki) }

s N = wd pd iy

Ce

M’ {ii.(igJXiAkki) + 15.(1AJjE’JX1Akk§)}

N . . . .T
wd (A seGsxgad) o (D) Tyse I adY )}
B3t Tese (AN Tsxgad) + jade (e Ixeat)))
ER { kuJ . iEJ + jB:J e (kHJ X 1_QJ) ] (4-44)

With the definitions of 4-39:4-42, equations 4-43 &
4-44 equal to equations 4-20 & 4-26 respectively.

In conclusion, the following equations work for any

combination of joint k and i, providing the generalized



87

terms(4-1:4-7) are used accordingly.

kod - p. »d -
et (4-48)
B R
where K*9J = [tr(jE’J(jﬁ’J)T - jE.J(jEsJ)T] A ER (4-47)

In equation 4-45,  1if both joints k & i are revolute,
then the first term is due to the arbitrary angle of link j;
the second term is due to the "parallel axes theorem"; the
last two terms are due to the fact that the center of mass
of Tlink j does not coincide with the coordinate origin of
joint j. If joints k & i are in different combinations, the
explanation of the terms 1is not obvious since the

definitions of the variables are altered.

The Coriolis terms

In computing the Coriolis force and torque(equations
2-82:2-83), joint k is always taken to be revoiute. Let

joints 1 & i be both révo]ute, then according to equations

4-1:4-7, we obtain:

I (alyT i

ol = A s (4-48)
kgf = (kAf)Tkg (4-49)
8= A Ts (4-50)

.
]

wd = MY T(s xad) (4-51)
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wl = (AT x  g)) (4-52)
(AT (s x qad) (4-53)

If both joints 1 & i are revolute, according to

equation 3-98a, the Coriolis torque is:

wv

R
@ K X TG 1 el

rodd x Ak 1 AT(s X 1Ajjg’j))

+ad 500 x A s % A Gs 1 ged))
+[1A§K’j(iAj)T-;tr(K'j)](1A1]§ X AKs)

v At dganTiga ) b
k1,5 . g6 i
where °1k1’J = MY (4-55)

| ] |
50 G X A5 Gs 0 h s 1)

H .,(igf X iAk(ké KA (s X 1Ajj2’?)))'

s 0 (A0 x s X A Gs 1 el

ris o ([iAJK’J(iAJ)T-itr(K'J)](iA]15 X A s))
s o (GAs) X (padked () TI Ak ) }

In equation 4-55, the last term is:
L
50 (A x At dad) Tiak s))
C i AL
M Tser (Al ah Tsixpaded (ad) 1A
(A Ts o 1A Ts) x eIl s)]
1£J ° (]_6_‘] X K’jkﬁj) (4-56)
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The fourth term of equation 4-55 is:
o A
oo (Gl d ) Tgerce 1Y s x s
(A s o tked-gtr (e ) 1000 Ts X (AN T s)
&l e pedagered el x 8 (4-57)

The first term of equation 4-55 is:

50 (;ad x Ak(ks X A(gs X 1))

[ ak (s X kA (15 X 1dJ))] ¢ (5 X dJ)

LA Tes X (A TGs x qgh1 e (g )T (15 % 1)
(RGJ X 1uJ) . 133
(83 o Gud xgud) - (4-58)

The second term of equation 4-55 .is:

50 a3 x At x W Tgs x e

(A (s X AT s X AT I T e (s 1 yad)

LA s X (A Tqs X 501 e (A TGs xef)

(8 % el x eI e

AR OT L N O R ) (4-59)

The third term of equation 4-55 is:

500 AJ 23y A (s X kA (15 X ]dJ))

(A s o (23 % () Ts x ()T e ¥ )
eJ o (223 X (e Xl

i2 p*d e (igJ X () X 89)) (4-60)

After substituting equations 4-56:4-60 into equation
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4-55, we obtain
D'ik'l’J = N2 { iiJ o (]QJ X KsJkiJ) - (4-61)
+'i£J ° [K’J-itr(K’J)](]g‘] X ké.J)
J
- - il ) .
.,,jEsJ o (]Q,J X (ng X iEJ))
eptd e (el et ety

+k§J . (1£J X

Now assume that both joints 1 & i are prismatic and

joint k is revolute, then

O
Cde
1]

is g : (4-62)
8= (M) Ts (4-63)
FUETE I (4-64)
1gj = (iAj)Ti§ (4-65)
ad = (A T(s x 2 | (4-66)
15j = (1Aj)T1§ (4-67)

If both joints 1 & i are prismatic and joint k is
revolute, then from equation 3-89, we get:

i=

k1, j Jj ok 1
s o JFCUd = 2w AS(s X AT s) W qu
- kl,.] sj n n -
=> ir 2 Dijk kAo (4-68)

13 (s o WG X s
3 LA s e (AN s (A1) T 53
wd el e ud xod) (4-69)

sJ
where Dikl
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Under definitions 4-62:4-67, equations 4-68 & 4-69
equal to equations 4-54 & 4-61 respectively.

Let joint i be prismatic and joints k & 1 be revolute,

then
igj = 0 (4-70)
& s (4-71)
8= ahTs (4-72)
awd = A Tos (4-73)
= (AT x2d) (4-74)
wd = (A T(gs 1 ad) (4-75)

If joint i s prismatic and both joints k & 1 are

revolute, then from equation 3-89, the Coriolis force is:

i= i

- k1, od 2 R
=> i . 2 D517 0 4f (4-76)

where Dy 23 = w03 s o k(s AT Gs X et

k],'_ ,. k ] 9.
s FCd = 2w AN (s X AT (s X qp?T)) W g

03 (AN T s (A s x (A TGs x )
() s (AN s X (A s ¢ 29
M g iEJ ¢ (kiJ X 1£J)
+iﬂj . (kij X (1ij X jE’j)) }
med g8 e (qud x ) (4-77)
vl e el x el x )

Under definitions 4-70:4-75, equations 4-76 & 4-77

equal to equations 4-54 & 4-61 respectively.
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Finally, assume that joint 1 is prismatic and joints k

& i are revolute, then

1§j = (iAj)Tii (4-78)
kﬁj = (kAj)Tki (4-79)
8= 0 (4-30)
wd = A TGs v ed) (4-81)
ad = (AT(s 1 ad) (4-82)
wd = ) Tos | (4-83)

Since joint 1 is prismatic and both joints k & i are

revolute, then from equation 3-98, the Coriolis torque is:

where

equal

o W= d e d x s ot s g
A PR AN (4-84)
wrtd =3 s e e X G X e

w3 (AR s X A 9100 X Gadead eI

wd (o A s x (AT s1e0 AN T(s 1 el
(A s x (AT isTe (AN s X p0 9

wd el xowd) e

el s xoprd
wd gt e (Gut x ) (4-85)

o
-
[ &)
L] \ 1]

Under defintions 4-78:4-83, -equations 4-84 & 4-85
to equations 4-54 & 4-61 respectively.
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So no matter what kind of combination of joint 1 & i,
we still get the same equation for computing the Coriolis
force or torque 1if the generalized variables(4-1:4-7) are
applied correctly. The equation is:

B R PRI I (4-86)
where Dy 003 = w3 gl e (g8 a0 k0T, gd) (4-87)

ried o ped-per e 9187 x (8
)
+stJ . (]QJ X (kiJ X iEJ))

+j2’j ° (iij X (]Ej X kij)) }

The centrifugal terms

The centrifugal terms are a special case of the
Coriolis terms. If we Tlet k=1 and divide the equation by 2
of the Coriolis terms, we get the -expression for the

centrifugal terms.

k1sJ = 9j 9 i | : -

)

where D\, Med iij . (kij X K’jkij) (4-89)
rsd o (ud X ud)
*jE’% . (kii X (kif X i!i))
+stJ . (iiJ X (kEJ X ng)) }

and the variables are defined according to equations 4-1:4-7,



94

The gravity term

where

=>

1

If joint i is revolute, then

8 = (a)Ts | (4-90)
= (A T(s x Lad) (4-91)

1

Referring to equation 3-99, the gravity torque is:

’j = ’j ’j
i §N'7g = M 4R X 40

ped = p,ed (4-92)

it g i
»J = ) J ) J
D; M s e (5077 X 59)

]
=
-
Cde
iy
[ T=]
[ J

(32 X (iﬁi * iAJjEtJ))
AILGAD s X 4e))
r(A)T

"
=
b
o
[ J

;s X ja’j)l

If joint i is prismatic, then

i~ -
awl= (AT (4-95)

According to equation 3-89, the gravity force is:

I o el
i£ F77g = M7 40

g

ir’j - p.»J (4-96)

g 1

2d 2 Ml
where Di M 13 . 19

PR
md g e GANLGAT) 5]

1=

Y O R LA S A (4-93)

s < g (4-94)

Wl oge At (4-97)
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4.3

form

rigid

where

and

95
Under defintions 4-94:4-95, equations 4-96 & 4-97
to equations 4-92 & 4-93 respectively.

The Closed Form Dynamical Model For The One-Degree-of-

Freedom-Per-Link Rigid Manipulator

Based on definitions 4-1:4-7, we have a unique closed
dynamical model for the one-degree-of-freedom-per-link

manipulator, and it can be written as:

N N N
.r =D, +:D, AN+ LD, A .A+ Ia, R (4-98)
i LI ik k 1=1 k=1 ikl k1 ii
N .
D, =1 Di’J (4-99)
j=i
N .
Dy =.E D »J (4-100)
j=max{(1i,k)
! j
D. = L D.pq? (4-101)
1k j=ma}%1,k,1}
Di’J = N°J K iAJ(iEJ + iiJ X jB’J) (4-102)
Dik’J = MN2J {'(igJ)T K9 (kiJ) + k}lJ ° iEJ

»J J J J i -
rprd e Gud xyed et xgst) b e-103)

If 12 k, then

ik1
wi8d e pedgtr e 187 189
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&l el v
+jE,J o (]QJ X (kiJ X iEJ))
.,.anJ o (iﬁJ X (]‘_‘.J X kiJ)) }
If 1 < k, then
’j = aj ' -
Dk Dy (4-105)

Notice that equation 4-104 will be different if we
exchange the indices k and 1 and it works only when 1 2 k.
‘If k > 1, equation 4-105 is used. Under this arrangement,
the index 1 in equation 4-98 runs from 1=1 to 1=N instead of
from 1>k to 1=N. When 1=k, it is the case of generalized

centrifugal force.

Equations 4-98:4-105 form the dynamical model for the
one-degree-of-freedom-per-link rigid manipulator. This same
dynamical model has also been derived by the Lagrangian
method [Paul82]. Hence, we demonstrated that the

Newton-Euler and the Lagrangian methods are equivalent.

Example

The robot in figures 4 is again used as an example.
The coordinate frames are set according to fig.5. The
procedures to derive the dynamical model are the same as the
example in chapter 3, but with less amount of computation

because it is a one-degree-of-freedom-per-link rigid
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manipulator.

Step A. Specification of all link parameters

The mass of link 1 s M1 and its center of mass
locates right at the origin(g1 = 0). The inertial matrix of
Tink 1 is I1 and it can be derived by equation 3-67. Since
link 1 is a flat cylindical mass, thus the inertial matrix

of link 1 is:

N 4,% 1 4 (4-106)
Ly = M 4% 1 2 S (4-107)
I,,, = M 4,274 (4-108)
Lixy = Tiyx = Tiyz = Yizy = Tixe = Diax =0 (4°109)

The mass of link 2 is zero(M2=0) because there 1is no

mass from joint 2 to joint 3.

The mass of Tlink 3 is M3 and its center of mass is
situated at the middle of the h’nk(g3x =-d3/2 = varying).
Since the iink 3 is a slender rod, the inertial matrix of

Tink 3(1,) is:

I,4 = 0 (4-110)
- 2 -

I3,y = M3 d3° /7 12 (4-111)
- 2 -

I,, = M3 435 / 12 (4-112)

I3xy ) I3yx B I3yz N I3zy = I3gz = I354 = 0 (4-113)
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Step B. Establishing the kinematic model

The kinematic model of the robot of figures 4 & 5 is

given by equations 2-92:2-98.

Step C. Specifies of the dynamical variables of each joint

The variables of link 1 are [0, O, !1]T & [0, O, gl]T.
The variables of Tink 2 are [0, w,, 01" & [0, a,, 07'.
The variables of link 3 are [-gz, 0,0]T & [-32, O,O]T.

Step D. Constructing the dynamical model

The more convenient way to construct the dynamical

model of a robot is from the end effector to the base.

The vectors of the center of mass are:

03 = [hdy, 0, 017 (4-114)

0" = [4dgc0s0,, 0, -1d,sind,]’ (4-115)

(273 = [4dgcos0,, dj, -1d,51n0,1" (4-116)
2 T

p’5 = [0, 0, 0] (4-117)

2522 = [0, 0, 011 (4-118)

1p*° = [0, 0, 0] (4-119)

The gravity terms

The gravity vector in the local coordinate is:
0d = [0, 0, -g]" (4-120)

I

14 = (oAl)Tog = [0, 0, -q] (4-121)
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(,A9) Tog = alsing,, 0, -cos0,]’ (4-122)

3, T
(OA ) 0l

24
34

glsind,, 0, -cosd,] (4-123)

Since joint 3 1is prismatic along the X3-axis, then

8 =10, 01
88 =10, 0, 01
= (A4 s = 1, 0, 01
so 03 = w3 g e A%y’ = Mygsing,
Hence 3Fg = D3’3 = M3gsin@2 (4-124)

Joint 2 is revolute(having Yz-axis as the axis of

rotation), therefore

25 = [0, 1’ O]T

280 = (AT s = 10, 1, 01

w0 (AN (s x pdd) = 0, 0, 4]
so 0,00 = M3 g e a3t ¢ L8t X gpr?) = - iMgadycoso,
since 0,2 = 0
Hence ,r . = 0,3 + 0,2% = -yM3d;cos0, (4-125)

Joint 1 is revolute(having the Zl-axis as the axis of
rotation), therefore

18 ° (o, 0, 1]

3,7 . T
(lA ) 18 = [-s1n@2, 0, cos@z]

I

T
wd = ((ANT(s X (a0 -[djcos0,, dycos0,, dysing,]
3

I N 3, 3 3 23y -
So D =7 ,g ¢ 4A (u” + 48" X 4p°7) = 0
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2

Since Dl’ =0
and  0;*! =0
Hence 1Tg = 0 (4-126)
The inertial terms
Under the above :
s =101,0,01
38 =0, 0,00
' = A Ts =, 0, 007
s = [0, 1,01
80 = (AT s =10, 1, 01
T
) = AT X 8% = 10, 0, 4y
1§ = [0’ 0’ I]T
88 = ((AT)s = [-sing,, 0, coso,1’
123 = (1A3)T(1§ X 1g3)= -[dlcosﬂz, dzcosoz, dlsinwz]T
so 03300 = w3 (T (geh) gt e
RO G R NS FIO N
= M3
- »3 -
so 03,3 = (TR peh) ¢t e "
et e (X p80e  x g )
= [0, 0, 01"
P
and D32 = D33 =0



So

and

So

and

So

and

So

and

So

and

31

31

Hence

101

T K,3

M3 (587)
, 3 3
+377 ¢ (qu7 X 487 ¢ qu” X 38
‘M3d1C0502

3 ..
031 = M3d1C0502

the total inertial force for joint 3 is:

D33 -a3 * D3y ap + D3q ag

M3(al + GldICOSQI) (4-127)
=0
_ K
= Dy3’" = 0
= I, + My(d,)?

3yy 33
=0

3 22 _ 2

= Dpp * Dyt = Igyy*(ds)
= H3 (§d1d3sin@2)
= 0
- »3 22 :
- DZI + 021 - £M3d1d351ﬂ@2

the total inertial torque of joint 2 is:

Dp3 =33 * Dpp 95 * Dpy oy
2 .
[IBYY + M3(d3) ]az + iM3d1d3s1n02Q1 (4'128)

H3 (-dlcoswz)
3

1]

013, = 'M3d1C0501
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S0 Dy, = My (-}d dysing,)
0y,°% = 0
and Dy, =0, “12’2 = -}M3d1d3s1n0
so D, = 3xx(s1n02) 3zz(coso )2
+hy(d))2 + Hy(dg)P(cos0,)?
;7% = 0
Dll’1 N Ilzz
and 0y =0yt enyt? e gt |
= Hy(d))? + I3, (sin0,)7 + [1,,,+(d,)%1(cos0,)?
+Ilzz

Hence the total inertial torque of joint 2 is:
Np = Dy3 a3 * Dy ey * 0y o
M3d1c0501a3 §M3 1 3s1n02a2
2,
+{ My(d))

v 1, (sind, )2 4 [I3ZZ+(d3)2](c0502)2

The centrifugal and Coriolis terms

The centrifugal and Coriolis terms can be computed 1in
the similar manner. In this example, we assume- that the
robot 1is moving in slow speed, thus these two effects are

insignificant.
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Conclusion

The result of the last example is identical té the
result from the generalized dynamical model(chapter 3). 1In
the example of last chapter, link 2 of the robot was assumed
to have two degrees of freedom. In the example of this
chapter, it was assumed to be two separate links, Tlink 2 &
3, and the two links are separated by a distance d3 in the
(-X3)-axis direction. For the sake of comparison, the

following terms of equations 4-124:4-129 are identified:

M1 by Ml

d1 by d1

M3 by MZ

d3 by d2

I3xx by Loxx

I3yy + M3(d3)2 by IZyy (parallel axis theorem)
13ZZ + M3(d3)2 by IZzz (parallel axis theorem)

then equation 4-124 equals to the x-component of equation

3-114, and so on.

One important remark is that equations 4-98:4-105 may
be used to compute the component of the generalized force in
any direction since these are a version of the general
dynamical model of the previous chapter. If the -equations
4-98:105 are derived using the Lagrangian method, they are

valid only along the principal axes of motion.



CHAPTER 5
RECURSIVE FORM NEWTON-EULER DYNAMICAL MODEL OF THE
GENERALIZED MANIPULATOR

5.1 Introduction

The recursive'form dynamical model for an open chain
robot manipulator computes all the dynamics values of a link
in terms of the neighbouring link dynamic values. Usually,
it computes the translational and rotational displacement,
velocity and acceleration from the base coordinate to the
end effector's coordinate; then it computes the force and
torque at each coordinate origin backwards from the end
effector to the base[Luh80][Ho1180]. The computational
complexity of the recursive form dynamical model can be
shown to increase linearly with the number of links. As we
have seen in the previous two chapters, the computational
complexity of the closed form dynamical model increases in a
much faster way. Hence, the recursive form dynamical model
is used for problems which require intensive computation,

such as in on-1ine control of the manipulator.
There are two common ways to derive the recursive form

104
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the Lagrangian formulation[Luh80]. The reason that
Newton-Euler 1is more efficient is that the rotational
velocity and acceleration are represented as vectors in the
Newton-Euler formulation, but are represented in matrix form
in the Lagrangian formulation[Ho1182]. Both methods as
appear in the above cited references use the center of mass
of the link as the reference for balancing the force and the
torque. Both deal only with the one-degree-of-freedom-

per-link rigid manipulator case.

In this chapter, the recursive form dynamical model is
derived for the generalized manipulator, and the coordinate
origin of the link is used for balancing the forces and the
torques and can be at arbitrary location. The generalized
recursive form dynamical model will be specialized to the
one-degree-of-freedom-per-link rigid manipulator, and will
be shown to be equivalent to the model where the centers of

mass of the link are used as the reference points.

5.2 Derivation of the Recursive Form Dynamical Model

The key idea in obtaining the recursive form dynamical
model s to align all the local coordinate frames to have
the same orientation as the base coordinate frame(fig.12).

The reason for that will become evident later.
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Figure 12 : The Coordinate System for Deriving the

Dynamical Model for the Generalized Manipulator
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The recursive formula of rotational displacement, velocity

and acceleration

since  oAT*T = gttt (5-1)

then dy (oA'"1) = d(gA') + oAld (ATt (5-2)
i+l _ i i i+l

+

0A1dtt(iA”1) (5-3)

The recursive formula of the displacement, velocity and

acceleration of the coordinate origin

. i+l
Since 0d

TRV L (5-4)
vl i i i+l i i+l
then dt(og ) = dt(og ) *+ dt(OA )1Q + OA dt(iﬁ )
i+l i i i+l
and  dyy (o’ )= dpplgd) * dpy(ghT)yd

v2dy (gA)d, (07T + W la (T (506

The recursive formula of the displacement, velocity & accel-

eration of a position in link j w.r.t. the base coordinate

Since of = ogi + oAiig (5-7)

then  dy(gr) = dyl(od') *+ dy(gA')4r + gA'dy(5r) (5-8)

and  dyy () = dyy(gd') * dpp (AT )in + 24, (A)E(41)
rohidyy (50) (5-9)

where the superscript ,j of the position vector r has been

suppressed.

The recursive formula of the displacement, velocity & accel-

eration of a position in link j w.r.t. the local coordinate

; . 41+l i+l
Since jb = ;d + A ie1l (5-10)
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. o1 -
then dy(r)=dy (58" 71+ du(AT ) qn ¢ AT

i+1)

s410) (5-11)
N i+l
and  dpp(gr)=dpy (4 7) * dip (A )yt
i+l i+l
+2dy (A7) (44qr) + A i (yan) (5-12)
where the superscript ,j of the position vector r has been

suppressed.

Recursive formula of the force

Let's define

. (E .
1 == N -
(oA 51-1’1) == tht(oﬁ ) dm (5-13)
i
as the force of link i acting on link i-1, that is the total

force accumulating from joint i to the end effeétor. The
orientation matrix oAi adjusts the direction from the Tocal

coordinate i to the base coordinate 0.

Simi]ariy, the force of link i+1 acting on link i is:

[E .
J== | dpi(or®Y) dm (5-14)
J

i+l

i+l
(A" "Ei 401
By sustituting equations 5-7:5-9 to equation 5-13, and
suppress the superscript ,j of the position vector r in the
following derivations, we obtain

(oA'Eqoq, )
[E

S [0 8 (g8') + dyy(A)4r + 20, (A ) e, (41)

i
J+0A dig (5r) Ydm

i [5-9]
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rJ1-+1 - » - 3 -

= L dpy(ad') * dyp(aAl)sr? !+ 2d, (AT )d (500 )
ttlof ) 7 Yetlot ik tloh J9¢4E

+oAld  (5r) Ydm
JJi
(€
*| U dgelod) * dyp(ghl)m + 205 (gA1)d (1)
+gA dgy(5r) }dnm

JJj+1

(5-15)

Recall equation 3-38:
(

1 o 1
link i

then the first term of equation 5-15 is:

9541
Ldeo(nd?) + dyy (WA Tyt v 20, (A d, (e )
tt(od ttloh )iE ¢(oh )4y (4

+oAldy  (5r77) Ydm

J.:
I
= W0 dy (o) * dp (A1) 50" *2d, (pAT)d (40 )

oM dyy (52 (5-16)

By using equations 5-1:5-12 & 5-14, and suppressing the
superscript ,j, the second term of -equation 5-15 can be

rewritten as follows:
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[E

£ dyyod)) * deploAl)ir + 20 (pA1)dg(4n)
*gAld; ¢ (4r) Y

Ji41

(E
= |1 dggloeh) * gl et dg(gh A"
+24 (A1), (471) v2dy A‘)dt(iA‘*l)
vad, (A1) ;AT e
i i+1)

i+1£
i+l

1+1r) ¥ tt(1— )

r +20A'd ( AN, Gugr)

+

1
oh deg(Gh )yt
i i+l
*oh i deelagt) o b dm
Hin

(€

[ dig(gd ) *+ dii (oA
+ A1+1

0 15 } dm

i+1 i+1)

i+l
i+1L +2d ( A )dt(1+1 )

dyy(or) dm

i+1
i+l '
(oA F1 is1) (5-17)

After substituting equations 5-16:5-17 dinto -equation
5-15, we obtain "the following recursive equation for the
force.
( A —1 -1, 1)
T dpy o)) * (oAt v2d (A1) (o)
*oh'dyy (500 7) }

i+l
+(0A Ej’i+1) (5-18)
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Recursive formula of the torque

Define

LA j
== | oA ir) ¥ dyelor? ) dm (5-19)
1

as the torque of link i acting on 1link 1i-1, that is the

i
(oA Nioq,4)

total force accumulating from joint i to the end effector.
The orientation matrix oAi adjusts the direction from the
local coordinate i to the base coordinate 0.

Similarly, the torque of link i+l acting on link i dis:

i+l . i+l
(A" "Ny 5a1) = So“

i+l

ie1l?d) X dyp(ore?) dm (5-20)

By substituting equation 5-9 into equation 5-19, and
suppressing the superscript ,j, we get

i
(oA Ni-1,4)

I:
| orti X U lod) ¢ (AT 4r +2(ph ) dg(4r)
+oh'dg(4r) 3 dn
JJ1
(9541

U S TR LI T (VS W)
(L ttlof ttloh }4iL .
+2dt(0A1)dt(i£’1) + 0A1dtt(i£’1) } dm




where
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(E
i i+l i i
(gA 34 7) X { dii(pd’) + diy(gh )40
+2d, (oA )dy (5r)
+oh dpy(5r) 3 dn

Jia

(€
i ,i+l . i
(OA iA i+1£) X { dtt(oﬂ_) + dtt(OA )i£
+2d, (pA1)dg (5r) *+ gATdy, (5r) ) dm

Ja, (5-21)

Recall equation 3-38, then
[J,

i+l
i1 i M i _,i i
(gh'4r’ ) X dyy(d’) dm = W {pA7up* " X dyy(pd )}
Ji (5-22)
Recall equations 2-71, 2-81, 2-86 & 3-65, then
9541

(A e ) X gy (AT am

¢J'|
BRI iy gi,i i iy 2™ Hdm
| (oA’ ’) X fga X ghiyrt ) + g X (qu Xghs

Tink i

SIS PIVLES SL RO EFERSPL PO PRVR IS SO
0 oh ) e * on X [ (gh") o

I’i ijs the inertial matrix of link i measured at the

origin of coordinate frame i.

Since link i s rigid, then the translational and

rotational Velocity and acceleration of all the points in
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the 1link i are the same(i.e the rigid link).

equation 2-77, we have:

¢, (o' =4y (a'h

iy . i+,
dep (527 ) = dge (44 ) = 52
then  [d;,4 |
(pA'r*") X (204 (oA )dg(4r)) dn
IOF
AR i
= 2| (A'52") X dpgA) u dm
Slink T :
= 2 A ip ! X d(ghT) )
and 95,4

(oA'5e") X oA dpi (5r) dm

K
= | al.eely x ata

(A2 o 42
Mink i

Then, by

(5-24)
(5-25)

(5-26)

(5-27)

Combining 5-22:5-23 & 5-26:5-27, the first term on the

right hand side of equation 5-21 is:

fai+1

(140 ) X L dyylqd') + dy(ohl)sr”

15

v2d (oA gy (rr T+ gAldg et )
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= WAt X dyy(gd')}
somr g At pe T x g, (A7
oh 42 t(oh )4}
- ,o . (] L] : " - T 3
*oATI (oA Tga' + qu' X [T (pAY) ]o¥1
where 021 and 0ﬁ1 is the vector form of dt(0A1) and dtt(0A1)

respectively.

Based on equations 5-9, 5-14 & 5-17, the second term
on the right hand side of equation 5-21 is:
(E
(oAi191+1’ X dtt(oﬂi) + dyy(ohh)yr
424, (gA )4 (1)
+gAldei(5r) ) d

i1

il i+1
= (ph 34 ) X (A TRy 54q) (5-29)

Based on equations 5-17 and 5-20, the third term on
the right hand side of equation 5-21 is:

[
i+1 i i
(g™ “qanft) X {dpglod ) * diploh)yr
+2dy (oA )dy(50) ¢ gA'dyy(5r) ) dm
J3;
_ i+l
= (oA Y4441 (5-30)

After substituting equations 5-28:5-30 to equation

§5-21, we achieve the following recursive equation for
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computing the torque.
(o 3 N;- -1, i)
= weiggatip T X dy(od'))
g ot x gl i)
same iy Ai1g’i X dy(gh');u)
+gA 1"( A Toal + gl x gt T pat) Trgw!
#(gh ‘*1) X (A Ey jay)
N A“‘IN1 ie1) (5-31)

Recursive dynamical model of the generalized manipulator

Equations ©5-1:5-6, 5-18 and 5-31 establish the
recursive dynamical model of the generalized manipulator.
The rotational displacement/velocity/acceleration, then the
total displacement/velocity/acceleration of the 1link are
computed from the base coordinate to the end effector; The
force and the torque are computed backwards from the end

effector to the base. The boundary conditions of the model

are:
od” =2 (5-32)
dy (od") =0 (5-33)
di(gd”) = g (5-34)
Al = (5-35)
(A% =0 (5-36)
tt(OAO) =0 (5-37)
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o"mﬁu,nq is the external force (5-38)

AN+1

0 EN,N+1 is the external torque (5-39)

acting on the end effector.

The gravity effect is taken into account 1in the
boundary condition 5-34, the gravity acceleration is thought
of as an external acceleration acting on the base, and it
will propagate throughout the whole manipulator via the

recursive formulas 5-1:5-6.

5.3 The Recursive Form Dynamical Model of the One-Degree-

of-Freedom-Per=Link Rigid Manipulator

The recursive form dynamical model of the last section
is not very efficient 1in computation, and it can Dbe
simp]ified.by the following two modifications:

a. In Tlast section, the rotational velocity and
acceleration are represented in matrix form that has a lot
of redundancy. In fact, the rotational velocity and
acceleration can be represented by vectors, then the
efficiency is three times larger[Ho1182].

b. In last section, we have assumed that every joint can
be rotated and translated in any direction. In pratical

applications, the joint is either prismatic or revolute in a

specfic direction. Hence the dynamical model can be
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simplified.

Recursive formula of rotational velocity and acceleration in

vector form

The rotational displacement can not be represented in
the vector form(section 1.4), but the rotational velocity

and acceleration can.

-From equation 2-68,

di(A) = 2 A
then dy (A1) = pa’*! A (5-40)
and  di(ph') = 0% oA (5-41)
and  dy ;A1) = a7t AT (5-42)
hence equation 5-2 becomes:

09i+10A1+1 . oniOAiiAi+1 . oAiini+liAi+1 (5-43)
after substituting equation 5-1 to equation 5-43, it becomes

08T gat e gatiatt Al (5-44)
then by equations 2-66, 2-67, 2-72 & 2-73, we obtain

0“'_‘-1'+1 - 0!1 R 0A11E1+1 (5-45)

By differentiating equation 5-45, we obtain

. . . i1
dt(0!1+1) - dt(oﬁl) + dt(0A1)iﬁ1+
hence ga'*l = gat ¢ qu' X (AT 'h) 4 oAl (5-46)
Equations 5-54 and 5-46 are the recursive formula of

T OAIdt(1!1+1)

rotational velocity and acceleration in vector form.
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Note that the presence of the orientation matrix oAi
is to align the local coordinate frame to the same direction

i+
W) 1==-w and

as the base coordinate frame. Recall that .u ¥

121+1==ig are the revolute velocity and acceleration of link
i in local coordinate frame.
Since joint i can be either prismatic or -revolute in

the direction 80 therefore,

= 0 if joint i is prismatic (5-47)
je = 0 | (5-48)
and '1! = ;8 ;A if joint i is revolute (5-49)

Substituting equations 5-47:5-50 into equations
5-45:5-46, the recursive formulas of the revolute velocity

and acceleration are ‘achieved as follows:

RTAEIE L if joint i is prismatic (5-51)

UL (5-52)

and  gu'*h = wl + (gAT;s),A if joint i is revolute (5-53)
1 . . . )

o2 T e *gH X (gA'ys)iA + (gh'8) 4 (5-54)

Equations 5-51:5-54 are the recursive formulas of the
revolute velocity and acceleration for the one-degree-of-

freedom-per-link rigid manipulator in vector form.

Recursive formula of the displacement/velocity/acceleration

Since the revolute displacement cannot be simplified,



119

the recursive formula of displacement remains

unchanged(equation 5-4).

Define the total velocity and acceleration of the

origin of coordinate frame i w.r.t. to base coordinate as:

dy (091) == 0!1 (5-55)
dyy(gd!) == o€’ (5-56)
Using equations 2-70:2-71, equations 5-5:5-6 become:
0li+1 } oli . oﬂi X 0A11g1+1 . oAidt(igi+1)
Og1'+1 - ogi . 021 X 0A11g1+1 . 0!1 X (0!1 X
v20d X oAidt(i91+1) * oAidtt(iii+1) (5-58)

which are the recursive formula of the total velocity and

acceleration of the origins of local coordinate frames.

Recall equations 2-79:2-80, the following equations

are derived:

4y (;a*1) = qu if joint i is prismatic (5-59)
i+1
dpp (387 =52 (5-60)
and  dy (1Q1+1) = 5u X ig1+1 if joint i is revolute (5-61)
i+1 i+l i+1
dg(477) = qe X5 v X X (5962)

Now, suppose that the joint has only one degree of

freedom, then

4 % 42 4
a = .s oA (5-64)

=1

if joint 1 is prismatic (5-63)

1= 1= 1
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and .U =

=)

if joint i is revolute (5-65)

a=0 (5-66)

By using equations 5-59:5-66 and 5-51:5-54, equations
5-57:5-58 become:

011+1 - oli . 0!1'+1 X OAiigi+1 . (OAiii)iﬁ . (5-67
0§i+1 . 051 . ogi*loniigi*l . 0!1+1x(0!1+1x°x}4“‘)
+ 2(0H1+1x0Aii§)iﬁ * (OAiii)iN (5-68)
if joint i is prismatic.
0lm . 011 R OEi+1 v 0Ai_gm (5-69)
og1'+1 - 051 . Ogi+1x0Aiigi+1 . 0!i+IX(0!1+lx
if joint i is revolute. (5-70)

Equations 5-67:5-70 are the recursive formulas of the
the total velocity and acceleration of the origins of Tocal
coordinates for the one-degree-of-freedom-per-link rigid

manipulator in vector form.

Recursive formula of force

Equation 5-18 is the recursive formula of force, where
i9’1 is the position vector of the center of mass of link i

in local coordinate frame.

(gh'Eq-q,1)
LA dt?(091) +,dtt(0A1)iE'1 +2dy (oA )¢ (527"
*oh dpy(127) J

(oA IE

Ei,i+1) [5-18]
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If we assume that joint i is prismatic and it consists
of a single piece of mass, then the velocity and

acceleration of the center of mass of link i is:

dy (12”1’ = 38 4 | (5-71)
i+l, _
dp(i2 ) = 38 4N (5-72)

Because of equations 5-51:5-52, fherefore .
i sl 4 i 41 {1,y PP

dep(gh) iR’ = ga' XAt e gu IR XA L )

at(gh )dg (4o ") = (gu' ™t X gAlys)yh (5-74)

Substituting equations 5-71:5-74 into -equation 5-18,
and using the equation 5-68, one gets
(oA'Es-q,4) .
et ot gt e 0!1’+1x(0£1‘+1X0A1‘iﬂ2"’)}
(oA Mg qu1)

1 __ i+l o i i+l
where 4 .p* == (jA' ) (47 - 34 7) (5-78)

(5-77)
is the position vector of the center of mass of Tink i but
it is refered to the i+1 coordinate frame.

Assuming that joint i is revolute, then the velocity

and acceleration of the center of mass of link i are:

i+l i+1
dy (27 7) = 4 X 4P (5-79)
i+l i+l i+l
dyp (57 7)) = 42 X 4B t X (G Xoyp ) (5-80)
" i i i i i i

d . . . . .
(oA )y (iR T) = (gu' X (Aliw X prT)) (5-82)
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If using equations 5-18, 5-53:5-54, 5-70, 5-79:5-82
and 2-84, then one can prove that equations 5-77 & 5-78 are

indeed valid for revolute joint.

Recursive formula of torque

Substituting equations 5-56 and 2-70 into equation 5-31,
(o AN =i-1, i)

= M"{OA 5] Ty (og" + oAiig + 20!1 X OAiil) }
+0A1I’1( A1)Toa1 . 0w1 X [0A1I’1(0A1)T]0!1
(oA d ™) X A’*lr1 ie1)

N A”IN1 ie1) (5-83)

Since Ogi + 0A1ig + 20!1 X oAiil is the acceleration of

the center of mass of link i, therefore the term
y 1 i i i i i i

M2 {gh 4R X (o€ * oA 42 * Zgu X gA ' ¥)}
is the torque at the origin of coordinate frame i due to the
acceleration of the center of mass of 1link i. This term
will not appear if we use the center of mass of the link as
the reference to balance the torque[Luh80], however, some

other terms will appear in the equation.

In general, the following equation is used when the
reference point for balancing the torque is not at the

center of mass.
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N o= dp(L) + 2o X dg(H) (5-84)
where N is the torque at the reference point, L is the total
angular momentum, and M is the total linear ‘momentum of the
body. The vector r. is measured from the reference point to

the center of mass of the body.

5.4 Algorithm for Constructing the Recursive Dynamical Model

The results of this section suggest the following

algorithm:

Given the following information:

. the kinematic model of the manipulator.

IU’ "D

. the joint variables, iS 1.r'u & 3s iN for i=1,2....,N

c. the boundary conditions:

ot =10
oﬁo =0
ogo =0
olo =0
0§0 =9
0AN+1£N,N+1 the external force acting on end ef%ector
0AN+1EN,N+1 the external torque acting on end effector

then the algorithm of construction the recursive dynamic

mode1:
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Step
0: Set i=1
1: Compute Oﬁi, 021’ 031 and Ogi by equations 5-51:5-54
and 5-67:5-70.
2: if i=N, then continue to step 3;
Otherwise, set i=i+1 and return to step 1.

3: Compute 0AiF. . and oAiﬁi-l by equations 3-77,

-i-1,i
3-78 and 3-83.

o1

4: If i=1, then stop;

Otherwise, set i=i-1 and return to step 3.



CHAPTER 6
DYNAMICS OF MOVABLE ROBOT

In the 1last three chapters, we have derived the
dynamical model for an arbitrary open chain manipulator.
From the dynamical model one is able to compute the force
and torque required of the actuactors at each joint. Above
all, it is possible to compute forces and torques that are
not necessarily in the direction of motion. These are the
constraint forces and torques of each joint respectively,.
The constraint force and torque are normally not considered
in a stationary rigid robot manipulator. However, if the
robot 1is movable(i.e. has a nonstationary base. Note also
that we deliberately use the word ‘"movable" and not
"mobile"), or the manipulator is flexible, then the
constraint forces and torques become important. This thesis
will present an example of each case to illustrate the
significance of the constraint force and torques. No
attempt has been made to thoroughly investigate these two
problems. We just want to demonstrate possible applications

of "generalized manipulators".

This chapteﬁ deals with the first application of the
.dynamical models, namely the analysis of movable robot.

125
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6.1 The Problems in Modelling the Movable Robot

There are three problems in modelling a movable robot:
a. Constraints on the wheels b. Coupling effects between
the moving base and the other robot links. c. The changing

configuration of the system.

These three problems will be discussed in the above
order and the equations that describe the effects will be.
derived. These equations are very complicated and require
numerical solution. The Tlast section of this chapter
presents an algorithm to solve a class of the problems

related to movable robots.

6.1.1 The Constraints on The Wheels

The movable robot uses its wheels to travel on the
ground through the frictional force. The frictional
force(F) is proportional to the reaction force(N) from the
ground to the wheel. The constant of proportionality u is

called the "frictional coefficient".
W — (6-1)

The wheels can either roll or slide on the ground as

different frictional forces on the wheels are encountered.
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Usually, the rolling fricitdna] force is much smaller than
the s1iding frictional force. Since all the frictional
forces are proportinal to the reaction force, the rolling
fricitonal coefficient(ur) is much smaller than the sliding
fricitional coefficeint(us).

¥ << oug (6-2)

r

The robot will encounter stronger resistance to start
moving than to maintain 1its speed(sticking effect). Thus
the statical frictional force(denoted by uN) is larger than
the dynamical frictional force(denoted by u'N). In terms of
the frictional coefficients, the following inequality holds:

W< (6-3)

The above frictional coefficients provide the maximum
resistance force of that kind for which the ground can hold
the wheels. If the applied force is not big enough, the
magnitude of the frictional force is exactly tHe same as
that of the applied force. This: till the applied force.
overcomes the friction, then the frictional force will be
constant according to equation 6-1. Mathematically, denote
the applied force by F, then the frictional force(f) will
be:

f = -F if F<uN (6-4)

f=unuN if F2uN (6-5)
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a. The Fixed Type Wheels

Fixed type wheels are restricted to roll in one

direction, although sliding may occur in any direction.

Let v and a be the linear velocity and acceleration of
the robot base respectively, and w be the angular velocity
of the wheels. The the equations of motion of the wheels

along the direction of rolling are:

PfF<uN<uN, then v=0 (6-6)
and a=0>0 (6-7)
if uNSF<uN,then v=Rw (6-8)
and Ma=F-=-u N (6-9)
if u N <uN SF,then Mas=F-y N (6-11)

where M is the total mass of the system and R is the radius

of the wheel,

Equation 6-6:6-7 imply that if the force is not large
enough to move the system, no motion is expected. Equation
6-8:6-9 say that the force is sufficiently large to roll the
wheels but not large enough to make the wheels slide. The
last equation indicates that the force is 1large enough to

roll as well as to slide the wheels.

The equations of motion of the wheels in the direction



129

that is perpendicular to the direction of rolling (due to a

perpendicular planar applied force F,;) are:

ifFy < uN then v, =0 (6-12)
and a; =0 (6-13)
ifFy 2w, then M ay = F - ug N (6-15)

The rolling frictional coefficient does not enter the

equation because rolling is not permitted in this direction.

The equations which relate the 1linear and angular
velocities are the kinematical constraint equations; and the
equations which relate the acceleration and the force are

the dynamical constraint equations.

b. The Free Spinning Type Wheels

For the free spinning type wheels, the wheels always

align themselves along the direction of the applied force.

Therefore, along the direction of the applied force,

the constraint equations are :

PfF <uN<yuN, then _v=0 (6-16)
and a=290 (6-17)
if u N SF<uN, then v =Ru (6-18)
and Ma=F -y N (6-19)

F - N (6-21)

if “rN < uSN $F , then N a

where M is the total mass of the system and R is the radius
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of the wheel.

But, perpendicular to the direction of the force, the
constraint equations are:

vy =0 (6-22)

aj =0 (6-23)

6.1.1.1 Dynamical Stability of The Robot

Consider an example. Let us assume that the two Tink "
with three degree of freedom robot(fig.4) is equipped with
three wheels at its Base(fig.13). One of the wheels is of
the free spinning type and the other two are of the fixed
type. The method of solving this particular movable robot
indicates the direction of approach to this kind of
problems. This thesis does not attempt to derive a general

solution to the problem of mobile robots.

The first consideration of a movable robot is to
investigate whether the robot is dynamically stable while it
is moving(What we mean by that is - what are the conditions
for the robot and the motion, such that the robot maintains
an upright position while moving and does not topple down).
In order to reduce the complexity of the equations, let us
place the x-y coordinate plane on the ground and z-axis

vertically upwards(fig.13).
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Figure 13 : Coordinate Frame of the Mobile Base

of a Movable Robot
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Note, none of the wheels is actuated. The base may
move just as a reaction to motion of the robot 1links. Let
Nl’ N2 & N3 be the ground reaction force to wheel 1, 2, 3
respectively(fig.13), and hx’ hy be the horizontal position
of the center of mass of the robot in the base coordinate.
Let s be the distance of the free spinning wheel from the
origin of the base coordinate, and d is half the distance of

the two fixed wheels. Assuming that the robot does not

topple while moving, the following equations should hold:

Fo- Mg - Np- Ny - Ny =0 (6-31)
Ny - Hgh +Nyd-Nyd =0 (6-32)
Ny + Mg (s-h)-Ns =0 (6-33)

By the stability assumption,

Ny 20 (6-34)
N, 2 0 (6-35)
Ny 2 0 (6-36)

Thus from equation 6-33,

N1 = Ny + MNg(s - hx) ) /s (6-37)
which implies
hx s + Ny /I ( Mg) (6-38)

From equations 6-31 & 6-37 and 6-32, we get

Ny *+ Ny =F ¢+ (Mgh ) /s=-N /s (6-40)
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N2 - N3 = (Mg hy ) / d - Nx / d (6-41)
then

=
1]

) 3 Fz + Mg (hx/s + hy/d) - (Ny/S + Nx/d)} (6-42)

and Ny = §{ F, + M g (h,/s = h /d) = (N /s - N,/d)} (6-43)

Using equations 6-35, 6-38 & 6-42, we obtain

hy 2 Nx /I (Mg) - ( Fz d)/ (Mg)-d (6-44)
Equations 6-36, 6-38 & 6-43 will yield
hx < Nx /.( Mg)+ ( Fz d)/ (Mg)+ d (6-45)

Equations 6-38, 6-44 & 6-45 define the dynamical
stability region of the center of mass for a moving robot.
If the system is stable, equations 6-37, 6-42 & 6-43 provide

the reaction force of the three wheels respectively.

In the above inequalities, N N, and F_ are the

x> Uy z
external inputs.

6.1.1.2 The Spatial Axis of Rotation

If the robot is stable when it is moving, then it is
restricted to travel on the horizontal plane only. Assuming
that all the wheels are rolling without slipping, then the
robot rotates about a certain common spatial axis. This
spatial axis of rotation of the robot can be shown to be the
vertical line coming out of the unique intersection point of

all planar normals to the wheels directions(fig.14). The
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Figure 14 : Spatial Axis of Rotation of the

Three Wheels Movable Robot
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wheels travel along a circle whose center 1is the above
intersection point since no rolling is allowed along the
radial direction. Such common intersection point may not
always exist. In that case, the robot's travel involves not
just rolling but also slipping. Analysis of this problem is
very involved. Here, the wheels of the robot are assumed to
be well aligned such that a spatial axis of rotation indeed

exists.

6.1.1.3 Kinematic Constraints of Rolling Robot

The robot in fig.14 has three wheels. Wheel 1 is the
free spinning type and wheels 2 & 3 are the fixed
type(fig.14). Assuming that the robot rolls only, then the
position of the spatial axis of rotation is determined by
the angle of wheel 1, 0. The angular velocity and
acceleration of the robot with respect to the spatial axis
of rotation is w and a« respectively. The radius of the

wheels is denoted by R and they rolls at an angular speed 8.

The distances that the wheels travel on the circles
equal to the total 1length that the wheels have rolled
respectively. Denote by ris Ty & rs the distance between
each wheel to the spatial axis of rotation. Then the

following equations hold:
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R1 By = ryw=s csch w (6-46)
R2 By = ry W = (s cotd - d ) w (6-47)
R3 By =TIy W= (s cotd +d ) w - (6-48)

These are the kinematic constraint equations of the wheels

of the robot.

Since the Newton-Euler equations are referred to the
center of mass, a kinematic constraint equation of the

center of mass (denoted by subscript m) of the robot is

needed.
Since Vo = Tp ¥ (6-49)
where r_ = ( n?+ (s cotd - hy)2 y (6-60).
and ﬂm = arc cot ( ( s cotd - hy ) 1 hy )] (6-61)
wo=d.(8,) = (s sinzﬂm dy(8) ) / ( h, sin ) (6-62)
Q == d,(0) (6-63)
then v, == (vm)x =T cos@m ] (6-64)
and vy == (vm)y =T sin0m ] (6-65)
hence a, = dt(vx)
= dt(rm) cos(bm Woorp sin@m Wortro cos@m a (6-66)
and ay = dt(vy)

= d(rp) sin, w + v cosd W+ ry sind o  (6-67)

m
By differentiating equation 6-50, one gets:

dy(rg) = -( s 8 (s cotd -h ))/ (ry sinZ0 ) (6-67)



137

After simplications, equations 6-66:6-67 become:

- (s / sin0)aw+ (s cotd-h

a, y)e  (6768)

a, =h, e (6-69)

Equations 6-68 & 6-69 describe the relationship
between a,, ay and w, . In forcing mode application, the
wheels are actuated(thus w, @ are inputs), then a a, are

x* Uy
determined from the equations. In non-forcing mode
application, the wheels are not actuated and are rolled by
the reaction force/torque from the manipulator. Then w, Q

a

are computed from the dynamical model(6-62:6-63) and 3y, y

are determined by equations 6-68:6-69.

6.1.1.4 Dynamical Constraints of the Non-slipping Robot

The robot in fig.14 has three wheels. The wheel 1 s
the free-spinning type, therefore, there is no frictional
force perpendicular to it. On the other hand, wheels 2 & 3
are of the fixed type, so that there exists a frictional
force in a perpendicular direction. The perpendicular
frictional force of the two fixed wheels keep the robot on
the circumference of the circle(fig.14) and prevent the
robot from sliding away from it. The magnitudes of these
two frictional forces are described by the constraint

equations of the non-slipping robot as follow:
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f, < ug Ny (6-70)

We may combine equations 6-70 & 6-71, since we exclude
the possibility of one wheel rolling while the other wheel
is slipping. 1In this case, then the -constraint equation of
the non-slipping robot becomes:

fo=f,+ fysug (Ny+ Ny) (6-72)

6.1.1.5 Horizontal Movement of the Robot

If the robot in motion is stable(6.1.1.1) and there is
no slipping, then the wheels of the robot are just
rolling(6.1.1.3) around a vertical axis in space(6.1.1.2).
In this example, assuming that there is no external force,
so that the robot moves purely by the reaction to motions of

the robot links.

The coordinate frame of the base of the robot is set
at the horizontal plane on the ground. Under  this
convention, the forces and torques are separated into two

functional groups where Fz, N N determine the stability

x? y
of the system and Fx, Fy, NZ control the horizontal movement
of the robot.

Refer to fig.14. According to Newton's second law, the
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acceleration of the center of mass of the system is:

M a, = Fx '™ N2 - u, N3 -, N1c050 (6-73)
M ay = Fy - f1 - f2 - B, sind
= Fy - f - ' sind (6-748)

According to Euler's equation, the balance of torques

with respect to the spatial axis at point 0 is:

2

M a, (s cbt@ - hy ) + (Ma,h + I+ Ms cotzw )a

y "X 22

= Nz + Fx s cotd -y Nz(s cotd - d) - M. N3(s cotd + d)

r
'™ N1 s csch (6-75)
where IZZ ijs the inertial moment w.r.t. the z-axis at the
coordinate origin. Notice that the cross inertial moments

are assumed negligible.

After substituting equations 6-37, 6,42, 6-43, 6-68 &

6-69 into equations 6-73:6-75, we obtain:

Cip ot Ci3 = -f (6-76)
Chpa v Cypp 2w+ Cpy = 0 (6-77)
C3p @+ Cyp @ W+ Cqy = 0 (6-78)
where
Cip = Mh, (6-79)
Cip =0 (6-80)
C13 = B, ( Ny/s + Mg (1 - hx/s))sinﬂ - Fy (6-81)
Chy = Ms ( cot o - hy /S ) (6-82)

Cpp= - M s / sin’0 (6-83)
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C23 = ¥, ( Fz - N/s + Mg hx/s )

y
tu, ( Ny/s + Mg (1 - hx/s))c050 - Fx (6-84)
Cyp = 1,, + M h 2+ H(s coto - hy)2 + W slcot?o (6-85)
Cyp = - Ms (s cotd - h) / sin0 (6-86)
c -

33 = Hp [(FZ s - Ny + Mg hx) - Fx s]cotd
' U, [ Ny + Mg (s-h) Jcscd

*u. ( Nx + Mg hy ) - N, (6-87)

In non-forcing mode applications, we are interested in
estimating the react horizontal movement of the system due
to the motions of the links so that control Tlaw for the
wheels can be designed. In this case, F, N are determined
x® hy are derived from the
kinematical model, and M, s, d are the given syétem's

from the dynamical model, h

parameters together with the physical constants ”r’ and gq.
Therefore, there remain three wunknowns in equations
6-76:6-78, namely, w(t), w(t) & f. So solution to this set
of coupled nonlinear differential equations is possible only

numerically.

The solution of the equation set is easier to obtain
if it the -equations are solved iteratively. Multiplying
equation 6-77 by (s cot® - hy) and subtracting from equation

6-78, one obtains:
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a = { Nz + Fy hy * o, (Mg hy - N,)
M, ( Ny + Mg (s - hx))( sind + hy sind / s ) }

11, +Hnl e s2 cot?e ) (6-88)

Given. the dinitial conditions @(t=0) & w(t=0); then
equation(6-88) will provide the values of a(t=0) and w(t=1).
From equation 6-76, we obtain f to verify whether the
ﬁo-s1ipping condition is met or not. If slipping does not
occur, we can use equation 6-77 or 6-78 to estimate q and

update @ for the next computation cycle.

One disadvantage of iterative solution is that error
accumulates. The estimation may be supported by introducing
a position sensor at the free-spinning wheel such that 0(t)
is measured. The position control algorithm is implemented
to hold the system on track. The above iterative algorithm
provides the estimation of @ for feedforward control. The
value of @ can be easily controlled within a certain

required tolerance.

The following three difficulties must be resolved
before solving the above set of equations. The first is
that the links are actuated(i.e. external energy is provided
to the robot). Thus the system cannot be considered to be a
passive mechanical system as was assumed throughout. This

is a problem for future studies.
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The second difficulty is the coupling effect between
the links and the base. The motion of the links cause the
system to move, while motion of the base influences back the
motion of the links. This interaction can be resolved by a
simple algebraic manipulation of the dynamical equations as

will be shown in section 6.1.2.

Finally, the center of mass of the system depends on
the robot configuration. Thus it s time varying. The
exact equation showing this phenomenon is presented in

section 6.1.3.

6.1.2 Coupling Effect Between the Links and the Moving Base

In the dynamical models derivation of chapters 3-5, it
has been assumed that the base of the robot is stationary.
If the base of the robot is not firmly fixed, then the
reaction force and torque(6.1.2) from the motions of the
links will make the base move(6.1.1). The problem of
movable robot is not completely solved .by the above two
sections since the motion of the base affects back the
movements of the 1links. This coupling effect will be

addressed next.
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a. The Coupling Force

Consider a particle, dm, in one of the links. It has
an acceleration, a,. The acceleration a, of the particle
consists of two components. The acce1erat1’on_gO if the base
does not move, and the acceleration a, of the base.
According to the Newton 2nd law, the total force F, on the
base is:

(€ | (€
Fy = JJEt dm = jdgo dm + Jdib dm (6-89)
0 0 0

So the reaction force to accelerate the base is:

(€ (€
My ap = -Fy = "]JQO dm - ngb dm (6-90)
0 0
(€ (€
hence ( My + | dm ) ap = - | 3 dm
Jg J
hence ¥ a, = - F, (6-91)

where M is the total mass of the system and F, is the force
of the joint at coordinate 0 where the minus sign indicates

the reaction force.

b. The Coupling Torque

The total torque of the joint at the base is:
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|
=Ny * JOE dm_X ap
0
\ i
= Ny +1§0M1 (g X 3p) (6-92)

According to Euler's -equation to the origin of
coordinate 0 that does not coincide with the center of mass

of the base:

N .
Cw i
- Np= - Mg - T M (R X ay )
i=0 '
= dy(1y W)+ My (g2’ X gy ) (6-93)
N i

hence - EO = dt(Ib W) +i§bni ( 0l X 2, ) (6-94)
= dy(I, W) + H gh X 3 (6-95)

where -No is the reaction torque from the base to the
manipulator, M is the total mass of the system and Oh is the
position of the center of mass of the system. Ib is the

inertial matrix and w is the angular velocity of the base.

One final remark is: in equations 6-91 & 6-95, M is
the total mass of the system ana Ib is the inertial matrix
of the base that has not been obvious to forsee that
coupling occurs only with regard to mass but not with regard

to inertia.
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6.1.3 Changing Configuration of the System

As dindicated in the last section, the center of mass
of the system has been used to compute the reaction movement
of the base. The center of mass of the system varies as the

manipulator changes its configuration and it equals to:

N .
_ i
h, -izbni (2), (6-96)
N .
) i : -
hy -iEbMi (2)y (6-97)
N .
h, =i§bni (21)2 (6-98)

N
where M = ¢ Mi
i=b

where Ei is the position vector of the center of mass of
1ink i measured in the base coordinate, and h is the

position of the center of mass of the system.

6.2 Procedures of Solving the Problem of Movable Robot

The above example has three wheels on the base where
one is the free spinning type and the other two are the
fixed type. The procedure to be presented shortly refers to

this example. However, the procedures can easily be
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extended to movable robots with any combination of wheels
type. The procedure to solve for the reaction movement of

the robot whose wheels are not actuated is summarized below:

Step 0 : Measure the mass of the system and IZz of the body

base of the movable robot.

Step 1 : Set the coordinate frame of the base of the movable
robot at the ground level where the origin is at the middle
of the line connecting the two fixed wheels, and the Xx-axis

points towards the free spinning wheel(6.1.1).

Step 2a: Compute the force and torque at the first joint of
the manipulator using the dynamical models derived "in

chapters 3, 4 and 5.

Step 2b: Perform a statical transformation of force and
torque from the manipulator base coordinate frame to the
body base coordinate frame using equations 2-105 & 2-110.
Make sure to reverse signs since reaction force and torque

are assumed in the equations.

Step 3 : Compute the horizontal position(hx, hy) of the

center of mass of the movable robot(6.1.4).

Step 4 : Check if the robot is stable dynamically or not by
equations 6-38, 6-44 & 6-45.
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Step 5 : If the robot is stable, wuse equations 6-37, 6-42 &
6-43 to compute the reaction forces on the wheels.
Otherwise, the robot 1is toppled down and the procedure

should be aborted.

Step 6a: Get the initial position of the angle of the free
spinning wheel, 8, with respect to the body base coordinate
(fig.13). This angle may be arbitrarily assumed if a

position sensor is not avaliable.

Step 6b: Obtain the inital angular velocity of the robot, w,
with respect to the spatial axis of rotation. This angular
velocity, w, can be computed from the angular velocity of
any wheel by equations 6-46:6-48 if only rolling motion of
the wheels is assumed. If the wheel has a postion sensor or
tachometer, then this information may be measured;

otherwise, it is estimated.

Step 7 : Compute the induced angular acceleration of the

robot using equation 6-88.

Step 8 : Compute the frictional force, f, perpendicular to
the fixed type wheels by equations 6-76, 6-79:6-81.

Step 9 : Check if the robot is slipping or not by -equation
6-72. '
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Step 10: If the robot is not slipping but rolling only, then
use equation 6-77 or 6-78 to compute dt(ﬂ). Otherwise, the

model breaks down.

Step 11: Update the estimation of & and @, or use these

values for the feedforward control.

Step 12: Go back to step 3.



CHAPTER 7
STATICS OF FLEXIBLE MANIPULATOR

We have seen how the generalized manipulator model can
be applied to the problem of mobile robot. It can also be
used to study the flexible manipulator. The investigation
of the flexible manipulator problem is still an open problem
and 1is beyond the scope of this thesis. A simplified
version, namely  "the static problem of flexible
manipulators" is studied. The purpose is to show how a

generalized manipulator model can be applied.

There are two major static problems of flexible
manipulators. One problem is to find how much the end
effector is deflected when it approaches the target, and the
other problem is to find whether the material 1is strong
enough to sustain the operation of the manipu1ator. This
thesis demonstrates how basic statics can be incorporated
with the generalized manipulator model to obtain useful

information for answering these two questions.

The deflection of the end effector of the manipulator
is treated first, and the computation of the critical
loading of the manipulator is considered later.

149
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7.1 Static Deflection of the End Effector of the Manipulator

When the manipulator moves, time varying forces and
torques are exerted on each link. When the force or torque
does not exceed the critical loading of the material which
is used to construct the manipulator link, the link is
deflected. Otherwise, the manipulator 1ink will be broken.
Since the forces and torques are time varying, they should
be treated using dynamic analysis. This thesis assumes that
the bandwidth of the signals that drive the actuators are
well below the dominant structural frequency of the
manipulator, such that statical analysis may be used as an

approximation,

7.1.1 Deflection of a Manipulator Link

Deflection of the manipulator link occurs whenever the
relative position of any two points in the same Tink
changes. The complete treatment of deflection is
complicated. In order to simplify the analysis, the

following three assumptions are made :

1. Deflection occurs in a "beam" but not in a Tump

mass. The manipulator link is called a "beam" if its length

is much larger than the width of its cross section.
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Manipulator links which are not beams are categorized as
lump masses. In figure 4, 1ink 2 may be taken as a beam

while other links are taken as lump masses.

2. Deflection of a beam is mostly due to bending but

not due to compression or twisting. Bending occurs

perpendicular to the longitudinal direction of the beam.
3. The effect of shear deformation is negligible.

4. Deflection is insignificant along the axis of
motion, but plays a major role in balancing the force and
torque in the other directions. In other words, the beam is
dynamically balanced along the axis of motion, but is

statically balanced in the other directions.

The first three assumptions are generally valid for
materials used to build manipulators(typically steel). The
fourth assumption is a rough approximation, and .should not

be made in general.

Bending of a Cantilever Beam

The cantilever beam has one fixed end while the other
end is free(fig.15). If a bending force Fy is applied, the
bending displacement(m) and angle(n) can be computed by the

following equations[Timo72]:
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Figure 15 : Static Deflection of a Cantilever Beam
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L3

m, = " Fy (7-1)
L3 :

n, = . Fy (7-2)

If a bending torque NZ is applied, then

L3

my = 2l Fy (7-3)
I_3

n, = - Fy - (7-4)

where E is the modulus of elasticity and I is the moment of

inertia of the cross section of the bean.

Equation 7-1:7-4 can be written in a vector form

as follows:

L

m=-—— ((LX(LXE)) (7-5)
3EI
L

n= —— (LXE) (7-6)
2EI
L

m=-—— (LXN) (7-7)
2EI
Lo (NXL)XL)

n = (7-8)
EI L.L

The vector product of the bending force with the 1length

vector of the beam eliminates the compression component of
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the force, and the vector product of the bending torque with
the length vector of the beam eliminates ~the twisting

component of the torque.

According to the second assumption, the deflection due
to compression force and twisting torque are not considered.
Therefore, the deflection of a beam is contributed by
bending only and total bending displacement and angle are

computed as follows:

L
m= - Ty ( (LX(LXE))/3 + (LXN)/2 ) . (7-9)
L (LXE) ((NXL)XL)
n = ( + ) (7-10)
EI 2 LeL

Bending of a Manipulator Link

The generalized manipulator model provides for the
forces and torques for each coordinate frame. For each
manipulator 1link, two consecutive coordinate frames are
located at both ends. The computed forces and torques on
the coordinate frame at the end which is closer to the base
are the force and torque that the actuator should supply.
The computed force and torque on the coordinate frame at the
other end are the reaction force and torque of the actuactor

at that joint(refer to the open dynamical chain concept in
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chapter III, secion 3). The forces and torques at the two
ends are balanced by the gravity and the movement of that
link. However, the movement of the link is only allowable
along the axis of motion. In the other direction, no motion
ijs allowed and the bending of the link provides for the

balancing. This corresponds to the fourth assumption.

A manipulator 1link 1is not a cantilever beam, so
equations 7-9:7-10 can not be used directly. If one end of
the 1ink is chosen as reference, that means the deflection
is measured with respect to that coordinate frame, then the
deflection of the other end should compensate for the
difference of forces and torques at both ends of the link.
It is equivalent to substituting the net force and torque to
equations 7-9 & 7-10 to compute the bending displacement and

angle.

Since the bending displacement and angle of a link “is
a relative measure, it requires a non-moving point as a
reference. The base of the manipulator is assumed to be
stationary, and 1is a natural choice for a reference. Thus
the deflection of the end effector consists of two parts:
the deflection that each Tink contributes and the

propogation of each deflection to the end effector.
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P and the

net force and torque is 1.(<s§) and 1-("S_INL). The Tlength of link

Denote the deflection of link i as .m and

i is 1gi+1. Then equations 7-9 & 7-10 can be written as:
g+l ) ' _ :
e (PR (O I N DV IO L WETIE)
El (7-11)
A7 G e (e hxd'™h
N = T T
= El 2 e g™ (712

According to assumption 3, the component of the forces
and torques that cause the motion do not produce deflection.
Thus they need to be eliminated. The elimination is done by

the following vector manipulation.

Let s be the unity vector in the direction of motion,
fcr a vector V, the vector cross product ( s X V) X s will
eliminate the component of V along the direction s; the
vector scalar product (Ves)s keeps only the component along

i.

If joint i is prismatic, then both the applied and
reacted force along the direction of motion have to be
eliminated. The net bending force is:

- i+l

;(8E) = (5 X ( ;A

j+1E-4E) ) X s (7-13)

For most of prismatic joints, the actuators are

located along the axis of motion. Therefore there is no
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deduction of the net torque.

i+l

1(5ﬂ) = 1A N -

R (7-14)

i=

If joint i is revolute, and the axis of motion is
perpendicular to the Tlongitudinal direction of the beam,
then only the force component along the axis of motion will
cause deflection. Hence the net force is:

J8E) = (AT E - B es s (7-15)

i+l=-

For the torque, the component along S has to be
eliminated. Hence,

M) = (s X (AT N ) ) XS (7-16)

Equations 7-11:7-16 compute the deflection of a
manipulator 1link under the | four previously stated
i+l

assumptions. The orientation matrix A is introduced to

i
transfer the reference of vector in coordinate frame i+l to

coordinate frame 1i.

The above equations are not comp]éte for calculating
the deflection of a manipulator beam because gravity bending

of that link has not been considered(as yet).

The gravity effect

Each manipualtor link will be deflected by gravity.

Let gravity acceleration be .g, the mass of Tink i is
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denoted as ;M and the center of mass 1is 1E’i, then the

bending displacement and angle are computed by the following
two equations[Timo72]:

i+l , 1
MC34 " - 420 )

-0 = p ({ ,-2’1 X ( 1-2” X g’)) (7-17)
.M.B’i .
i = 1-;;-}— (ip*' x g’ ) (7-18)

wher g° is the bending gravity.

The bending gravity is computed as above. If link i
is a prismatic link, then the bending gravity is:

@2 =(sX39) Xs (7-19)
and if link i is a revolute joint, then the bending gravity
is:

@ (ges)s (7-20)

Equations 7-17:7-20 compute the bending displacement

and angle by gravity under the above four assumptions.

7.1.2 Propagation of Static Deflection

In the last section, the equations to compute the
bending displacement and angle of a manipulator link have
been derived. How does this deflection propagate to the end

effector? The propagation of deflection is caused by
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translation and rotation. These <can be expressed by a

single equation that is derived as follows:

In figure 16, 1link i & link i+1 have a fixed angle
between them. Suppose link i has a small bending
displacement .m and bending angle ;n. Then, Tink i+l will
have the following bending displacement and angle.

PR LG RSN L (7-21)

- AL g (7-22)

and 40 = i=

where the orientation matrix 1.Ai+1 transfers the reference
from coordinate frame i to coordinate frame i+1. Note that
the sum in equation 7-21 is a vector sum, and it shows the

rotational effect of the coordinate frame.

7.1.3 Computation on the Deflection of the End Effector

It is more efficient to compute the end effector
deflection from the base towards the end effector since
deflection propagates in that direction(refer to the open
kinematic chain concept 1in chpater III, section 3). For
closed form dynamical model, it is computed after the forces
and torques are computed. For the recursive dynamical
model, the kinematic model is computed from the base to the
end effector, and the dynamical model is computed from the

end effector to the base that complete a computational cycle
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Figure 16 : Propagation of the Static Deflection
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for a task point. The computation of deflection can be
thought of the correction factor for the next cycle of
kinematic model calculation. In this model, deflection is
treated as a static effect(not a time varying signal). This
means that it does not depend on previous state. The static
deflection should be of concern only when approaching the
target or when moving close to an obstacle. Note, the
deflection from one computation to the next one are not
related by a recursion formula, so there is no advantage in
computing deflection e]sewherer These are of no practiqa]

use.

7.2 Critical Loading of the Manipulator Link

In selecting the material of the right strength to
construct the manipulator, one assumes that the mounting fis
sufficiently strong. Attention dis focused on the strength
of the Tink itself. Refer to the dissertation by
Book[Book74].

The- generalized manipulator model can be used at the
design phase for quick approximated evaluation of the
strength of a manipulator. Normally, the slender the
manipulator 1link, the more 1likely it may break. The

derivation of the formula for computing the critical loading
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of a slender manipulator link is shown.

The manipulator link can break due to torsion, strain
or stress. Most materials(metallic alloy) can sustain more
torsion than strain or stress. Therefore, bending is more
likely to be the major cause in a manipulator Tlink breaking
rather than twisting. In mechanical engineering literature,
such as [Timo72], this subject is discussed under "elastic

buckling of columns",

The critical'e1astic buckling load of a column is
inversely proportional to the sqaure of the modal shape
number of the column(fig.17). Considering the worst case,
then the critical elastic 1oading(Pcr) of a column of mode 1
is:

wZEI

P . = —————— (7-23)

cr 4L2
This equation does not consider the shear deformation
energy which 1is stored when the column is bent. The
deflection curve remains the same but the critical load

reduces a little bit[Spie68].

The critical elastic loading does not depend on the
property of the material and the deflection of the column.

It does not depend on the material because it assumes
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buckling can occur at any point of the column. Definitely
more sophisticate treatment should be done. One example is
to consider buckling at a localized area, for instance, to
find out where does the maximum stress occur, this local
buckling problem can be found in Book's

disserataion[Book74].

The critical elastic 1loading does not depend on the
deflection of the column based on the same reason. This

thesis suggests to assign a safety factor in the design.

The generalized manipulator model is applied to this
problem in the following way. The transverse force and
torque "will deflect the 1link according to the equations
derived in the 1last section. Then the net Tlongitudinal
force is the buckling loading that should not be larger than

the critical buckling load at any operation.



CHAPTER 8
CONCLUSIONS AND FUTURE DIRECTIONS

Four major results have been achieved in this thesis.

1. The closed form and the recursive form dynamical
models of the generalized manipulator have been derived
using Newton;Euler's method(chapters 3 and 5). These models

extend existing models for robot arms.

2. The Newton-Euler formulation has been shown to be
equivalent to the Lagrange formulation(chapter 4). The
transformation between these two formulations is given in

chapter 4.

3. The dynamical model of the generalized manipulator
can be reduced to describe any one-degree-of-freedom-
per-link rigid manipulators. The model applies not just

along principal axes of motion.

4. Two applications have been given: the computation
of the trajectory of the mobile robot driven by its
manipulator's arm(chapter 6), and the static deflection of

the flexible manipulators(chapter 7).

This thesis proves that the concept of the generalized

165
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manipulator is very useful, and is easy to handle
mathematically. Because the generalized manipulator has no
restriction in its motion at the joints, the difficulties of
hand1ing the boundary conditions(constraints) are avoided in
the derivations. The boundary conditions(constraints) are
considered when the dynamical model of the generalized
manipulator is actually applied to the physical
manipulators. This property is very wuseful when the
dynamical model combines with the other models, beﬁause it

can match to any boundary conditions.

The generalized manipulator concept offers a great
deal of potential for developing sophisticated'models. Here

are some future directions.

1. We addressed the problem of flexible manipulators
through using some results that are taken from a dynamical
model for rigid bodies. This approximation must be tested
via simulation and compared against Book's model. Future
treatment of flexible - manipulators(using generalized
manipulators theory) should include the consi&eration of

shear and torsion.

The dynamical model of the flexible manipulators

should include the structural resonance frequency as a
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parameter. Refer to the dissertaion of [Book74] to see how
structural frequency is expressed, and structural reasonance
frequency is deterﬁined. In Book's dissertaion, the
solution 1is for the two 1link planar manipulators. More
general solution, such as for generalized manipulator, is of

interest.

2. In deriving the dynamical model in this thesis, the
manipulator arm is assumed fixed(clamped) in the base and
the open kinematic chain concept can be applied. Further
extensions of the model may arise when considering other
boundary conditions of the base. In chapter 6, the
generalized manipulator is equipped with a movable base, and
the application of generalized manipulator dynamics to this
kind of problem is shown. In chapter 6, only rolling of the
movable robot is considered. Future studies should address

s1iding. Other combinations of wheels that are discussed in

chapter 6 should be considered including actuated wheels.

One may address the issue of surface of motion(for
instance, a situation where some wheels roll and the other
slide, due to different frictional conditions). Including
in this topic are subjects as : motion on a rail, motion on

top of a moving platform, etc.
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3. The open dynamic chain concept is valid only for
free ended end effector(no external forces or torques acting
on the end effector). This boundary condition for the end
effector is no longer valid, if the end effector interacts
with an object. The dynamical model of the generaiized
manipulator should be' extended to accept any boundary
condition for the end effector. This 1is the compliance

problems in robotics.

4. Iq this thesis, we treated "generalized
manipulator" as a mathematical abstraction that is useful in
gaining some insight about difficult dynamic problems, such
as flexible manipulators and movable robots. Do generalized
manipulators physically exist ? Examples are not easy to
find. Robot arms may be cascaded one to another(in an open
kinematic chain). Taking, for instance, a robot manipulator
that uses a single multi-degree-of-freedom finger, can such
a robot be considered as a "two-link  generalized
manipulator" ? Not wuntil the "Rigid Body assumption® is
relaxed to allow for links that consist of finitely many
rigid “"sub-links". Such "generalized links" may form a tree
if, for example, one studies robots that have two or more
multi-degree-of-freedom fingers. However, such analysis

requires a major extension of the generalized manipulator
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model since both the "open kinematic" and "open dynamic"
assumptions break down. The problem becomes even more
difficult when two fingers interact in grasping an object.

Such situation requires "Closed Kinematic Chain" analysis.

Extension of the generalized manipulator model to such

problems is a major task, that may or may not be possible.



[Beer62]

[Book74]

[Book84]

[Ches79]

[Go1d59]

[Ho1180]

[Ho1182]

[H01183]

[Luh80]

[Pau182]

[Spie7l]

170

- References -

Beer, F.P., and E.R. Johnson. Vector Mechanics for
Engineerers: Statics and Dynamics, McGraw Hill, New
York, 1962, 108.

Book W.J. Modelling, Design and Control of Flexible
Manipulator Arms. Ph.D. Dissertation, MIT Press,
April 1974.

Book W.J. Recursive Lagrangian Dynamics c¢f Flexible
Manipulator Arms. The International Journal of
Robotics Research, vol 3, no. 3, 1984. pp.87-101.

Chester, W. Mechanics. George, Allen & UNWIN LTD.
London, 1979.

Goldstein, H. Classical Mechanics. Addison Wesley,
Reading, Massachusetts, 1959,

Hollerbach, J.M. A Recursive Lagrangian Formulation
of Manipulator Dynamics and a Comparative Study of
Dynamics Formulation Complexity, IEEE Transaction
on System, Man, and Cybernetics SMC-10, vol 11

(Nov. 80), pp. 730-736.

Hollerbach, J.M. Dynamics, pp51-72 of Robot Motion,
by Brady M., et. al.(ed.), The MIT Press, 1982.

Hollerbach, J.M., and G. Sahar. Wrist-Partitioned,

‘Inverse Kinematic Accelerations and Manipulator

Dynamics, The International Journal of Robotics
Research, Vol. 2, no. 4, 1983, pp61-76. :

Luh, J.Y.S., M.W. Walker and R.P.C. Paul. On-line
Computational Scheme for Mechanical Manipulators.
Journal of Dynamic Systems, Measurement, and Control
vol. 102(1980), pp.69-76.

Paul R.P.C. Robot Manipulators: Mathematics, Pro-
gramming and Control. The MIT Press, 1982, 2nd ed.

Spiegel, M.R. Advanced Mathematics for Engineers and
Scientists. McGraw-Hill Book Company, 1971.



171

[Timo72] Timoshenko S.P. and J.M. Gere. Mechanics of Materials.
Van Nostrand Reinhold Company, 1972.

[Zieg68] Ziegler H. Principles of Structural Stability.
Blaisdell Publishing Company, 1968.



