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This thesis presents various formulations of finite dis-

tributed lag models. The objective is to demonstrate how 

prior restrictions may be imposed on econometric models in 

order to estimate the lag distributions. Four formulations 

are thus reviewed, namely, the arithmetic lag model, the 

inverted-V lag model, the Almon polynomial, and the cubic 

spline lag model. For the latter formulations, the inter

polation methods are reviewed. In addition, four models of 

consumption are estimated under the various lag models, for 

different lag lengths and orders of polynomials, in order 

to demonstrate the properties of each formulation. In the 

discussion of the results, certain inferences are made 

about the consumption functions. 
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I. INTRODUCTION 

In economic theory and applications it is often hy 

pothesized that the effect of a change in an independent 

variable does not occur all a t once but r ath e r t he ~mpa c t 

is distributed over a period of time. Such a situation i s 

referred to as a distribute d lag. When it is assumed that 

the impact is fully exhausted after a certain period of 

time, the distributed lag is said to be finite. Often this 

knowledge is incorporated into behavioral equations, most 

commonly those describing the behavior of firms and house

holds. 

The structure of the lag effect may take on a variety 

of shapes. The distribution f unction may be linear with a 

negative slope, or a "kinked" linear function. The assump-

tion of linearity is also not nece s sary, as the function 

may also be a polynomial of any d e gre e. 

The gen8ral formulation of a finite d i stribute d lag 

model is 

1 



or 

2 

n 
= ao + L Si xt-i + ut 

i=O 

where the Bi are the unknown lag coefficients or weights, 

xt-i are lagged values of the independent variable, and n 

is the lagged length. This formulation is used throughout 

this study. By imposing certain restrictions on the model, 

one can obtain various lag distributions, which is the 

topic of this research. 

Chapter two describes the early approaches to specifi-

cation and estimation of finite distributed lags, namely 

the arithmetic and inverted-V formulations. It begins with 

a discussion of the assumptions of the arithmetic models 

and proceeds to illustrate its properties. Two methods of 

estimation are presented, namely: a composite variable and 

a restricted least squares approach. The same format is 

used to present the inverted-V lag model. 

Chapter three presents polynomial distributed lag 

models. It begins with a general formulation and describes 

what is termed a direct approach to estimation. Almon, who 

originated the idea, suggested the use of Lagrangian inter-

polation in estimation. The method of Lagrangian interpo-

lation and estimation of the polynomial model using this 

technique are presented next. The use of zero constraints 
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to pre-determine the polynomial shape is also discussed. 

Both methods, the direct approach and the interpolation 

methods yield equivalent results. The chapter concludes 

with a restricted least squares approach. 

Chapter four focuses on a generalization of the Almon 

model, specifically, cubic splines. Cubic splines have 

been used in the most varied applications and their use in 

estimating a polynomial lag model is discussed. There are 

once again two methods of estimation. A direct approach, 

which employs dummy variables and an interpolation ap

proach. The mathematics of the spline interpolation are 

discussed next, followed by the method of estimation. The 

chapter concludes with a presentation of a restricted least 

squares approach. 

Chapter five presents various models of consumption, 

when the aforementioned formulations are imposed, under 

varying lag lengths and polynomial specifications. The 

objective of this chapter is to illustrate the properties 

and characteristics of each of the l ag formulations, when 

imposed on an econometric model. The chapter concludes 

with a summary of results and a few conclusions on the 

application of the lag models. 

Chapter six concludes the study with a general summary 

and some conclusions. 

discussed. 

Further topics for research are also 



II. EARLY APPROACHES TO THE SPECIFICATION AND 

ESTIMATION OF FINITE DISTRIBUTED LAGS 

This chapter is concerned with the earliest approaches 

that were taken to the specification and estimation of 

finite distributed la.g models. The first paper concerned 

with these problems was published by Irving Fisher in 1937. 

He introduced the arithmetic lag model which is the subject 

of the first section of this chapter. The statistical 

properties of the model are examined in the second section. 

The arithmetic lag specification assumes that the 

effect of a change in the independent variable on the 

dependent variable declires in each succeeding period after 

the c~ange occurs. This property of the arithmetic lag 

model is suitable for modeling a wide variety of economic 

phenomena. However, most researchers in the area of in

vestment expenditures expect that the effect of a change in 

the independent variable will rise for several periods 

after the change occurs (Eisner & Strotz, 1963). The second 

half of this chapter reviews the first attempt to model 

this type of lag structure, namely, the inverted-V model of 

De Leeuw (1962). Section three discusses the specifica-

4 
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tion of the mode l a nd the chapter concludes with an e xami-

nation of its statistical properties. 

The Arithmetic Lag Hodel 

The arithmetic lag model assumes that the effect of a 

change of the independent variable diminishes linearly over 

succeeding time periods. In other words, the adjus t me nt is 

the largest during the period when the explanatory variable 

changes and the subsequent adjustments are s rna ller, their 

effects diminishing linearly and by a constant amount until 

the change is exhausted. 

The general formulation of a finite distributed lag 

model was given in the last chapter as 

( 2.1) 
n 

= ao + L 
i=O 

where all Si must have the same sign and they must have a 

finite sum. For simplicity, it will be assumed that all S i 

are positive. The arithmetic lag model requires that S i 

satisfy the following equation 

( 2. 2) s. 
l 

(n + 1 - i) a 1 i = 0, 1, 2, ... , n 

The term (n+1-i) is positive for all values of i. This 

implies that the Si have the same sign as a 1 . The sum of 



the s i is 

( 2. 3) 

n 
L: 

i=O 

n 
2: 

i=O 

B. = 
l 

n 
L: 

i=O 

6 

(n+1-i) o.1 = 

= a 1 [(n + 1) 2 - n(n + 1 )/2] 

= a 1 (n + 1) [n + 1 - n/2] 

= a 1 (n + 1)[2n + 2- n]/2 

(n + 2)/2 

This is finite provided that a 1 is finite . 

n 
(n+1) - L: i] 

i =O 

The linear relationship among t he lag coefficients is 

more clearly evide nt if (2.2) is rewritten 

( 2. 4) 

This shows that Bi is a linear function of i with intercept 

(n + 1) a1 and slope- a 1 . 

Table 2 .1 gives the values of the lag coefficients. 



7 

TABLE 2.1 

LAG COEFFICIENTS lh~D WEIGHTS FOR ARITHMETIC MODEL 

i l 

0 (n + 1) a1 

1 

2 

n 

W· 
l 

2(n + 1)/(n + 1) (n + 2) 

2n/(n + 1) (n + 2) 

2(n- 1)/(n + 1) (n + 2) 

2/ (n + 1) (n + 2) 

Lag weights are also presented in the table. The lag 

weights are the coefficients divided by their sum: 

W· 
l 

n 
= S ·/ E S · = 

l i=O l 
(n + 2) 

using (2.4) and (2.3). The weigh~ for lag i is the frac-

tion of the total change of the dependent variable due to 

the change in the independent variable during the period i. 

A graph of an arithmetic lag structure for the case of 

n = 4 is given as figure 2.1. 

For this lag length, one-third of the total effect of 

x on y occurs simultaneously (i = 0), 8/30 of the effect 

occurs with a delay of one period (i = 1), 6/30 of the 

effect of i = 2, and so on. 



w. 
1. 

10/30 

8/30 

6/30 

4/30 

2/30 

0 

8 

i 

Figure 2.1 Weights fo r an arithmetic lag of 
length four. 



Estimation of the 
Arithmetic Lag Model 

9 

Two methods have been suggested fo~ estimating the 

arithmetic lag model: composite variables and restricted 

least squares. Substituting (2.2) into (2.1) yields 

n 
= ao + L 

i=O 

(n + 1 - i) xt-i + ut 

define a new variable zt as 

( 2. 5) 
n 
I: 

i=O 

the model becomes 

(n + 1 - i)xt-i 

The variable zt as defined in (2.5) is composite of the 

variables xt-i• The model (2.6) is a simple regression 

model that can be estimated by ordinary least squares. The 

estimators are 

- 2 I 2 a 1 -- S yz S z 
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If the ut are normally and independe ntly distributed with 

zero mean and contstant variance 0 2 (that is, ut - NID 

· · 'btd N( 0 2 /TS 2
2 ). Since (0, 02)), then a1 lS dlstrl U e as a 1' 

~ linear functions of ~ (see equation 2. 2) ' they the s · are a 1 . l 

are distributed as N (Bi, 0 2 (n + 1 - i)2/T s2z>· 

An alternative approach to estimation is to use 

restricted least squares. From table 2.1 it is clear that 

(2.7) S i = (n + 1 - i) i3n i = 0, 1, 2, ... , n - 1 

This provides a set of n linear homogenous restrictions on 

the regression coefficients. Equation (2. 7) holds for i = 

n, but this case is not a meaningful restriction because it 

only involves a single regression coefficient. 

The value of the restricted least squares formulation 

is that it enables the researcher to test the validity of 

the arithmetic lag specification. In effect, the unre-

stricted model (2.1) is estimated, and the restricted model 

(2.6) is also estimated. An F test of the significance of 

the restriction is based on the difference of the residual 

sums of squares of the two models . 

The preceding discussion assumes that the lag length 

is known. If the lag length is unknown, the estimator s 

will generally be biased (Judge et al. , 1980, p. 644) and 

will have unknown sampling properties. 
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The Inverted-V Lag Model 

As the time span that an observation covers decreases 

(i.e. quarterly vs. annual data), our assumptions about the 

lag effects and the lag distribution may change. It may be 

that a few time periods pass before any adjustments take 

place. The ari thmetic lag model cannot take this into 

account, in this case an inverted-V distribution curve of 

the weights is suggested (De Leeuw, 1962). 

De Leeuw's formulation of the inverted-V model is 

n 

= ao + ~ s i xt-i + ut 
i=O 

(2.8) Si = (1 + i) a 1 i = 0, 1, 2, ..• , s 

= (n + 1 - i)a 1 i = s + 1, s + 2, ... , n 

and s = n/2, n is even. All Si have the same sign as a 1 

and their sum is 

s n 
= ~ (1+i) 0.1 + ~ 

i=O i=s+1 
(n+1-i) o. 1 

n s 
= a 1 [ ~ 

i=O 
(l+i) + ~ (n+l-i)] 

i=s+1 
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s s n n 
= a 1 [ L 1 + L i + L n + L 1 

i=O i=O i=s+l i=s+1 

n 
L i] 

i=s+l 

= a1 [(s+1) + s(s+1)/2 + n(n-s) + (n-s) 

n s 
L i- L i)] 

i=1 i=l 

= a 1 [ (s+l) + s (s+1) /2 + (n+l) (n-s) 

- n(n+l)/2 + s( s+l)/2] 

= a 1 [ (s+l) + s (s+l) + (n+l) (n-s - n/2)] 

(2.9) = a 1 ( (s+l) 2 + (n +l) {n-2s) /2] = a 1 (s+l) 2 

since 2s = n. Once again this sum is finite provided a 1 is 

finite. 

The inverted-V lag structure can be thought of as the 

sum of two arithmetic lag models jo ined at lag i = s . 

Tabl e 2.2 gives the values of the lag coefficients and 

weights for the model. 
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TABLE 2.2 

LAG COEFFICIENTS AND I'IJEIGHTS FOR INVERTED-V MODEL 

i S· 1 
W· 

1 

0 a 11 ( s + 1)2 
1 

1 2a1 2 I ( s + 1) 2 

2 3a1 31 ( s + 1)2 

s - 1 s~ s l (s + 1) 2 

s (s + 1)C1.1 (s + 1) I ( s + 1)2 

s + 1 s a1 sl ( s + 1) 2 

n 1l(s + 1) 2 

Where s = nl2 is used to re-write the lasts values. The 

lag weights are the coefficients divided by their sum 

n 
W · = S·l 2: (3. = (1+i)l(s+1) 2 

1 1 i=O 1 
i < s 

+ (n+1-i) I (s+1) 2 n > i > s + 1 

using (2.9) and (2.8). Once again, the weight for lag i is 
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a fraction of the change of the dependent variable due to 

the change in the independent variable during period i. 

A graph of the inverted-V lag structure is given for 

the case n = 8 in figure 2.2. 

w . 
l 

5/25 

4/25 

3/25 

2/25 

1/25 

0 1 2 3 4 5 6 7 

Figure 2.2. Weights for an inverted-V lag of 
length four. 

8 
i 

For this lag length, only 1/25 of the total effect of 

x on y occurs simultaneously (i = 0), it increases to 2/25 

on the next period (i = 1), and continues to rise to a 

maximum of 5/25 of the total effect occurring with a lag of 

four periods, then decreasing in the same manner. 



Estimation of the 
Inverted-V Lag Model 

15 

Two methods have been suggeste d for estimating the 

inverted-V model: composite variables and restr icted least 

squares. Substituting (2.8) into (2.1) yields 

s n 
= a o + r (1+i) a1xt-i + r a 1(n+1-i)xt-i + 

i=O i=s+1 

Define a new variable zt as 

(2.10 ) 
s n 
r (1+i) xt-i + r 

i=O i=s+1 

The model become s 

(n+1-i) xt-i 

The variable zt as defined in (2.10) is co mpos i te of 

the variable xt-i· The model (2.11) is a simpl e regression 

model that c an be estimated by ordinary leas t squares. The 

estimators are 

= s2 ;s2 yz z 

If ut- NID (0, a 2 ), then a 1 is distribute d a.s N( a 1 , 

T s 2
2

). Since the Bi are linear functions of a 1 (see 
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s 
equation 2.8), they are distributed as N(Si,a 2 ( L: (1+i) 2 

i=O 

n 
+ L: (n+1-i) 2 /T s 2 ) z 

i=s+1 

Once again, restricted least squares can be used as an 

alternative approach to estimation. From table 2.2 it is 

clear that 

(2.12) f3 . 
l (1 + i) Bn = 0 i = 1, 2, ..• , s 

Bi - (25 + 1- i) Bn = o i = s + 1, ... , n = 2s 

This provides a set of n linear homogenous restrictions on 

the regression coefficients. Equation 2.12 holds for 

i = n, however, as in the cas e of the arithmetic lag it is 

not meaningful since it only involves a single regression 

coefficient. Using the restricted least squares formu:a-

tion as described previously, it is then possible to test 

the validity of the inverted-V spe~ification. 

The problems associated with estimating an inverted- V 

model are quite similar to those encountered with the 

arithmetic lag. Again , the preceeding discussion assumes 

that the lag length is known. If the lag length is un-

known, the estimate will generally be biased (Judge et al., 

1980, p. 646) and will have unknown sampling properties. 



III. POLYNOMIAL DISTRIBUTED LAGS 

The main problem of the arithmetic and inverted-V lag 

models is the inflexibility of the lag distribution func

tion. The shape of the function is rigorously determined 

a priori by the formulation of the model, making there

gression very restricted. In other words, the data may be 

too constrained to allow the researcher to gain any in

sight. It then becomes necessary to find a less restric

tive method of estimating the model. Such a method may be 

found by assuming that the lag distribution function is 

actually a polynomial. 

Section one of this chapter describes the general 

formulation of a polynomial distributed lag model along the 

lines first presented by Almon (1965). The model may be 

estimated in a number of different ways. The "direct 

approach" (Cooper, 1976) involves the use of composite 

variables and is described in the second section. Almon's 

original estimation procedure was an application of Lagran

gian interpolation methods and is explained in section 

three. The equivalence of the direct and Lagrangian meth

ods is shown in the fourth section. Almon originally 

17 
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specified endpoint constraints and the methodology for 

estimating such models is outlined in section five. The 

chapter concludes with the presentation of restricted least 

squares approaches to e stimating poly n omial distributed 

lags. 

The Polynomial Dis
tributed Lag Hode l 

The gene ra l formulation of a polynomial dist r ibuted 

lag model is 

n 
Yt 

( 3 .1) • • + 

i = 0, 1, 2, •.. n 

so tha t the Si are the values of a polynomial of the Qth 

d e gree in the lag index i with coefficients a 1q. Defining 

the vectors f3 (contain i ng the n + 1 f3 i values), a (con

taining the Q + 1 a 1q v alues), a.nd the (n+1) x {Q+l) matrix 

H, the relationship between S a nd a is 

f3 = H a 

and 
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(3.2) H = 1 0 0 . . . 
1 1 12 . 
1 2 22 . . . 
1 3 32 . 

Hence, the model is 

y=x s +u 

S = H a 

This formulation of the model assumes that the polynomial 

is not subject to endpoint constraints (see figure 3.1). 

s . 
l 

- 1 

/ 
/ 

/ 

/ -

n n+l 

polynomial with endpoint constraints 

--polynomial without endpoint constraint s 

Figure 3.1. Polynomial distributions . 

i 
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Figure 3.1 is an illustration of the difference between a 

free polynomial and one with zero left-hand and right-hand 

constraints. Almon originally imposed each constraints on 

the model but they are no l o nger commonly used. A further 

discussion of the endpoint constraints is given below. 

Direct Estimation of 
the Polynomial Model 

Direct estimation of the polynomial lag model is 

accomplished with the use of composite variables 

Z = XH 

and the model becomes 

The ordinarly least squares estimators of the polynomial 

coefficients are given by 

and the lag coe fficient s are obtained from 

6 is a linear transformation of &, therefore it is a best 

linear unbiased estimator of s provided the disturbances Ut 

satisfy the assumptions of the Gauss-Markov theorem. The 

variance-covariance matrix of 6 is 

= E (Ha - Ha l (H& - Hal' 
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-- E [H( a - a ) (-I a H' - a' HI)] 

= ,., [H(a - a ) (a' - a ') H'] ~ 

= H E (a - a ) (a - a ) 'H' 

= H v ( a lH' 

= H (0 2 (Z'Z) - l)H' 

If t~e Ut are NID (0, 0 2 I), then & is N( a , 0 2 (Z' Z)-l), 

and B is N {p , H (0 2 (Z' Z)-1 )H'). 

Estimation Using Lagran
gian Interpolation 

Almon's original approach to estimation u s ed 

Lagrangian in t erpolation polynomials. The effec t of thi s 

procedure is to employ a different set of compo s ite 

variables and the coeffi c ients that are estimated are a 

subset of the lag coefficients Bi rather than "che 

polynomial coefficients a li" 

Given two points on a straight line, simple arithmet ic 

can be employe d to solve for t he coef f icients of the line, 

namely, the int.ercept and the slope. A line is a 

polynomial of degree one. When the degree of the 

polynomial is greater than one, say Q, Lagrange's 

interpolation formula can be used to obtain the polynomial 

coefficients, given the coordinates of Q + 1 points. Th i s 

is best seen through the use of an example (see figure 

3 • 2) • 
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Consider the case where the lag coefficients lie on a 

second degree polynomial and the length of the lag is six 

periods. 

f3 • 
]_ 

0 
1 2 3 4 

f 
5 

Figure 3.2. Quadratic distributed lag over 
six periods. 

6 
i 

Suppose the initial three coordinates that we have are 

Thus, we have the required 

three points from which to interpolate a polynomial of 

degree 2. Using Lagrange's interpolation formula, which is 

Q 
P(i) = L: 

j=l 

Q 
n 

j k=l 
k;ij 

(i - k) 
( j-k) 
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we may specify the interpolation polyno mial for this 

example as; 

(i-2) (i-3) (i-1) (i-2) (i-1) (i-3) 
P(il = 6 1 + 6 2 + 13 3 

(1-2) (1-3) (2-1) (2-3) (3-1) (3-2) 

Notice that p ( 1) = 13 1, because 

(1-2) (1-3) (1-1) (1-3) (1-1) (1-2) 
p ( i) = 13 1 + 132 + 63 

(1-2) (1-3) (2-1) (2-3) (3-1) (3-2) 

= 131 + B 2 ( o) + 6 3 ( 0) = 131 

It can also be demonstrated that P(2) = 13 2 and P{3) = 13 3 • 

Therefore, the interpolation function P(i) takes on the 

known values of the unknown function at the given points. 

Evaluating the function at i = 4, 5, 6; yields 

(4-2) (4-3) (4-1) (4-3) (4-1) (4-2) 
P(4) = 13 1 + B2 + 6 3 

(1-2) (1-3) (2-1) (2-3) {3-1) (3-2) 

= 131 - 3 13 2 + 36 3 

(5-2) (5-3) (5-1) (5-3) (5-1) (5-2) 
p ( 5) 

(1-2) (1-3) (2-1) (2-3) (3-1) (3-2) 
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(6-2) (6-3) (6-1) (6-3) (6-1) (6-2} 

p ( 6) 

(1-2) (1-3) (2-1) (2-3) (3-1) (3-2) 

This example could have been expressed in matrix form as 

= 

Notice that 

= 

or S* * = Q1 B* 

3 - 4 

1 0 0 

0 1 0 

0 0 1 

1 - 3 3 

3 - 8 6 

6 -15 10 

1 - 3 3 

3 - 8 6 

6 -15 10 

= 

-P(O) 

P(1) 

p ( 2) 

p ( 3) 

p ( 4) 

p ( 5) 

_P ( 6) 

Now suppose the initial coordinates a re (4, 6 4), (5, B5 ), 

(6, 66 ). The interpolation formula is: 

(i-5) (i-6) (i-4) (i-6) (i-4) (i-6) 

P (i) = B 4 + B 5 ------

(4-5) (4-6) (5-4) (5-6) (6-4) (6-Sj 
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The result is: 

- - -
8 4 P(O) So 15 -24 10 

131 10 -15 6 13 5 = P(1) 

132 6 - 8 3 _ 13 6- p (2) 

= 

133 3 - 3 1 p ( 3) 

13 4 1 0 0 p ( 4) 

s5 0 1 0 p ( 5) 

s 0 0 1 _I p ( 6) 
- 6- -

In this case 

s 1 10 -15 6 13 4 

s 2 = 6 - 8 3 6 5 

_ S3- 3 - 3 1 l_s 6-

or S* = Q2 S** 

Notice that Q1 is the inverse of Q2 and vice-versa, since 

-
10 -15 6 1 - 3 3 1 0 0 

6 - 8 3 3 - 8 6 = 0 1 0 

3 - 3 1 6 -15 10_1 0 0 1 

or Q1 Q2 I implies Q2 = (Q1)-1 
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In general then, 

,- Q Q Q s 1 

I IT 0-k IT 0-k IT 0-k 
k=1 1-k k==1 2-k k=1 Q-k s 2 

Sa krf1 krf2 krfQ 

Q Q Q 
IT 1-k IT 1-k IT 1-k 

k=1 1-k k=1 2-·k k=1 Q-k _s ~_l s1 = kf1 krf2 k~Q 

Q Q Q 
IT n-k IT n-k IT n-k 

k=1 1-k k=1 2-k k= 1 Q-k 
_ s n - - krf1 kF2 krfQ 

The implication he~e is that it does not matter which 

points are selected. We may interpol ate the polynomial 

using subset of the points of size one plus the degree of 

the polynomial. This is e xpresse d as 

s = Q s * 
where S* is the vector of known abcissa values. 

Estimation of this model also requires the use of 

composite variables . Let 

C = XQ 

The model becomes 
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The difference between this approach and the direct 

approach is as follows. The polynomial coefficients a 1 i 

are estimated by .ordinary least squares in the direct 

approach, and the lag coefficients Gi are obtained from 

s = H o. 
For the Lagrange interpolation approach, a subset of the 

lag coefficients S * ( in the ex a m p l e S 1 , B 2 , s3 ) a r e e s t i -

mated by OLS and the entire vector of lag coefficients is 

estimated from 

Ordinary least squares estimates of the polynomial are 

given by 

The lag coefficients are obtained from 

s = Q s* 

~ is a linear transformation of s* , therefore it is a best 

linear unbiased estimator of provided the disturbances ut 

satisfy the assumptions of the Gauss-Harkov theorem. The 

variance-covariance matrix of B is 

If the Ut are NID (0, a 2 I), then S* is N ( S* , a 2 (C'C )- l), 
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and B is N ( 3 , Q (a 2 { c 1 c) -1 ) Q 1 
) • 

The Relationship Between the 
Direct and Almon Me·thods 

The relationship between the direct and Almon me thod s 

is easily derived if the matrix H is partiioned as follows. 

Consider the case where the subset of points in the Almon 

method consists of s 4 , s5 , and s6 . The H matrix can be 

partitioned into those rows involving s0 , 6 1 , s 2 , s3 and 

1 0 0 

H = 1 1 1 H1 
= 

1 2 4 J 

1 3 9 
-----------

1 4 16 

1 5 25 

I_ 1 6 36 

Let the lag coefficients ;3 0 , s1 , 6 2 , 6 3 be denoted S *, and 

B 4 , s5 , S 6 be de no ted S * * . 

that 

( 3. 3) 

( 3. 4) 

S * = H1 a 

6 ** = J a 

Then because S = Ha it is true 

where a is the v e ctor of the polynomial c oefficients. J is 

a square nonsingular matrix, called a Vandermonde matrix. 
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In the example 

J-1 = 15 -24 20/2 

11/2 10 - 9/2 

1/2 - 1 1/ 2 

using ( 3. 4) 

a = J-1 s ** 

so that the two equataions (3 .3 and 3.4) can be written 

13 * 

i3 * * 

or 

B = 

= H1 J-1 B** 

JJ-1 6 ** 

3** -

but the interpolation me thod defined Q such that 

13 = Q ** 

and thus 

Given this result, the equivalence of the two methods can 

be shown. 

Using the direct a pproach, g is computed as 

- H& H (Z ' Z)-1 z I y i3 = = 

= H [ (xH)' (xH) ] - 1 (xH) ' y 

= H(H' X'X' XH) -- 1 H' X' y 
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The Almon approach entails computing S as 

=Q[(xQ) 1 (xQ)]-l (xQ)'Y 

= Q[Q' X 1 x Q]- 1 Q 1 X 1 Y 

Since Q = H J-1 

- H J-1 [ (H J-1) I xl X H J-1]-l(H J-1) I xl y s = 

= H J-1[J-1) I HI xl X H J-1]-1 (J-1) I HI xl y 

= H J-1 [ J I ( J-1) I H I X I X H J-1) -1 H ' X I y 

= H[(J-1 J) 1 H1 X 1 x H J-1 J]-1 H 1 X 1 Y 

= H[I H 1 X 1 x H I]-1 H 1 X 1 Y 

= H (H 1 X 1 X H)- 1 H1 X 1 Y 

Therefore the two models are the same. 

Upon comparing the weighting matrix HJ- 1 from the 

Almon approach with H, notice that the former will yield 

more irregular sums of the columns of x when forming the 

composite variable matrix c. This is due to the use of the 

Lagrangian interpolation coefficients. The conclusion that 

may be drawn he.:::-e is that the composite variable matrix C 

will have columns that are less collinear than those from 
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the composite variable matrix Z from the direct approach 

(Cooper, 1972). 

Another point of interest is the objective of each 

approach. The Almon method estimates some of the lag 

coefficients directly, while the direct approach estimates 

the polynomial coefficients. From the Almon approach, if 

widely spaced points are used for interpolation, a grid of 

t he lag structure is obtained . The direct approach 

provides different intermediate information, since it 

estimates the polynomial coefficients, it may provide bet-

ter information about the proper degree o£ the polynomial, 

i . e. if a 0 turns out to be insignificant statistically, 

perhaps we should estimate a polynomial of a lesser degree. 

Endpoint Constraints and 
Zero Restrictions 

The advantage of the polynomial lag model is that it 

is less restrictive than the arithmetic or inverted-V for-

mulations. Sometimes, however, a priori information may 

have something to say about the shape of the lag distribu-

tion. On this situation, knowledge about the shape may be 

incorporated into the model by imposing a constraint on the 

polynomial coefficients. For example, if a monotonically 

increasing polynomial is desired, a left endpoint zero 

restriction is incorporated into a second order polynomial. 

In the opposite case, a right endpoint zero restriction is 
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imposed. By constraining both endpoints , a "humped" sha pe 

will result. 

In general, the zero restrictions can be imposed at 

any point or combination of points of a polynomial of the 

proper degree. This can be done with either of the pre-

viously described approaches {direct vs. Almon). The 

objective here is to show how this is accomplished for 

either approach. However, in this section, the zero re-

strictions will only be imposed at the endpoints. 

If a polynomial is pre-specified to have roots at any 

point, the shape is being partly pre-determined. As an 

example, consider figure 3.3, where the solid line is a 

second order polynomial with roots at i = -1 and i = n + 1, 

and the broken line is the unconstrained quadratic . 

s. 
l 

~~~li~~~~~~,~~~~~~~~~nm~~ 

-1 0 constrained n i 

- .. unconstrained 

Figure 3.3. Second order polynomials. 
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Regardless of the approach t hat is being employed, the 

H mat rix will have to be augmented. This is because the 

range over which the polynomial is being estimated has 

increased from i == 0, 1, 2, ... , n to i == -1, 0, 1, 2, ... , 
n, n + 1. Recall that the typical row of His (i 0 , i 1 , i 2 , 

iQ) in (3.2) in the unconst rained case, there will be ... , 
n + 1 rows in H. By constraining the polynomial to have 

roo ts at i = -1 and i = n + 1 it is necess ary to estimate 

ove r a larger interval. Therefore, H in the constrained 

case will have two extra rows, one at th e top, and one at 

the bottom. 

Notice that in the unconstrained case, the polynomial 

of degree Q may be expressed in terms of its roots, as: 

( 3. 5) rv + ' + ·2 •Q __ 
'""' 10 all 1 al2 1 + ••• + alQ 1 

alQ-1 
( ·Q ·Q-1 a lQ 1 + 1 + • • • + i + 

a lQ 

In the case of a constrained polynomial, such as the one 

depict ed in figure 3.3, two of the roots are known. To be 

more specific, these are roots at i = -1 and i = n + 1. 

Equation (3.5) may be rewritten, for the constrained case 
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a s 

Since (i+1) and (i-n-1) are known, the actual polynomial 

that is estimated is 

( 3 • 6) 

-- · Q-2 b ·Q- 1 b . b ) a1Q ( l + Q- 1 l + . . . + 1l + 0 

and will be a polynomial of degree Q-2. The estimated 

coefficients of the c omposite variables formed using (3.6) 

bQ - 1, . . . Denote the 

ve c tor of these coefficients as b. Eac h e l ement in b i s 

mu l tipled by (i - i), ( i - i 2 ) = (i+l ) (i-n-1) , to obtain the 

a vector . Since (3 . 6) is a polynomial of degree Q-2, the 

typical row of H for the direct approach in the constrained 

case is (i-i 1 ) (i-i 2 ) (i 0 i 1 i 2 . . . iQ - 2 ) and will have two 

less elements than in the unconstrained case. Therefore 

the H matrix wi l l have two more rows and two less columns 

when zero right and left endpoints are imposed than it 

would in the unconstrained case. Notice that the lag 

coefficients S still satisfy B = Ha. 

In the example discussed previously , a second degree 

polynomial 

was estimated over lags i 0 to i 6 . Imposing two 
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endpoint constraints requires estimation over lag i = -1 to 

i = 7. The H rna tr ix called H is 

(-1 + 1) (-1 - 7) 1 0-, 

(0 + 1) (0 - 7) 1 - 7 

( 1 + 1) (1 - 7) 1 -12 

(1 + 1) (2 - 7) 1 - 15 
= 

(3 + 1) (3 - 7) 1 -16 

(4 + 1) (4 - 7) 1 -15 

(5 + 1) (5 - 7) 1 - 12 

(7 + 1) (7 - 7) 1 0 I_ 

The composite variable matrix z consists of a single vector 

whose value at time t is: 

Becaus e the elemen ts in the b vector of constrained 

polynomial is equal to unity in this case (Q = 2), the 

coefficient of z given by ordinary least squares is 1Q" 

In general, the model actually estimated is 

Y = XHb + u 

For the Almon approach, as discussed previously, the H 

matrix is augmented to cover the cases i = -1 and i = 7. 

The choic e of the set of rows of H used to form the J 
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matrix is restricted to contain those where i = -1 and i = 

7, where the i3i are constrained. The columns of Q 

corresponding to the constrained i's are then deleted, 

since the corresponding artificial variables are set equal 

to zero. 

For the example where a second degree polynomial is 

estimated for lag i = -1 to i = 7, H is 

1 -1 1 

H = 1 0 0 

1 1 1 

1 2 4 

1 3 9 

1 4 16 

1 5 25 

1 6 36 

1 7 49 

The matrix J includes, the first row ( i = -1), a middle 

row ( i = 3), and the last row (i = 7) of H. Thus, 

J = 

and 

1 

1 

1 

-1 

3 

7 

1 

9 

49 
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J-1 = (1/32) 14 -3 

-10 12 -2 

1 - 2 1 

The weighting matrix Q = -1 HJ I defined as Q in the 

constrained case is 

Q = (1/32) 32 0 0 = 1/32 0 

21 14 - 3 14 

12 24 - 4 24 

5 30 - 3 30 

0 32 0 32 

- 3 30 5 30 

- 4 24 12 24 

- 3 14 21 14 

0 0 32 0 

where columns 1 and 3 of (HJ- 1 ) were deleted since 6 _1 , S 7 

were set equal to zero. The new model is 

Y = XQ S* + u 

There is a single column in Q and a single coefficient 63 

in S*. The full set of lag coefficients is given by 

f3 = Q S* 



Restricted Least 
Squares Approaches 

38 

An alternative approach to estimation is to use re-

stricted least squares. It is possible to formu late a 

restricted model to test either approach. 

The direct approach requires that S = Ha be satisfied. 

From this we obtain 

a 

where H+ is the generalized inverse of H. It is necessary 

to use tne generalized inverse since H is generally not 

square . Now 

0 = {3 - H a 

= {3 - HH+ 

=(I- H (H'H)-1 H')S 

The restrictions matrix R is then 

R = (I - H (H'H)- 1 H') 

which y i e l d s n ·- Q 1 in ear h o m o g en o us res t r i c t ions • The 

model to be estimated now is 

y X {3 + u subject to RB = 0 

Consider the method suggested by Almon, where each lag 

coefficient is calculated as a linear combination of the 

coefficients estimated for interpolation, or 
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S = OS* 

It follows that such interpolated coefficient mi nus a lin-

ear combination of the coefficients in S * is equal to zero. 

To obtain the restrictions for the Almon appro a ch, 

partition the matrix Q into two parts as [QR: - IQ+l]. The 

first partition is the set of rows that are used to obtain 

the interpolated coefficients, which was denoted, f or the 

two examples in the third section of this chapter, as Q1 

and o2• The second partition is a negative identity matrix 

with the order equal to the number of estimated coeffi -

cients used for interpolation. 

To demonstrate the formulation of the r e strictions 

matrix, consider the example where B was interpolated from 

(4, S4 ), (5, 65 ), (6 S6 ) which is reproduced for the reader 

here. 

So 

81 

s2 
63 

S4 

II s5 
_s6_ 

= 

It follows that: 

15 -2 4 10 

10 -15 6 

6 - 8 3 

3 - 3 1 

1 0 0 

0 1 0 

0 0 1 
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10 64 - 15 s 5 + 6 136 - 131 = 0 

6 84 - s s5 + 3 s 6 - s 2 = 0 

3 13 4 - 3 135 + 1 136 - 63 = 0 

which implies n - Q = 4 linear homogenous restrictions. 

The above set of equations could have been written in 

matrix format as RS = 0, or 

15 -24 10 -1 0 0 0 6 4 0 
s 5 

10 -15 6 0 -1 0 0 13 6 = 0 
So 

6 - 8 3 0 0 -1 0 s 1 0 
s2 

3 - 3 1 0 0 0 -1 s 0 - 3-

The latter respresentation of the restrictions may be 

preferred to the former. The generalized inverse H+ is 

usually difficult to comput e and is more susceptible to 

computational error than the latter method. Another advan-

tage of the second representation i s that when one searches 

for the proper degree of the polynomial, i.e. testing the 

model under alternative restrictions , the different re-

strictions will be "nested" in the same matrix. 

There are other methods of deriving the restrictions 

matrix, namely by Shiller (1973) and Hill and Johnson 

(1976). Hill and Johnson noted that the Almon weights 

could be derived using orthogonal polynomials, from which 

the restrictions matrix may also be derived. Thes e other 

representations are not discussed here since they will be 
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algebraically equivalent (Judge et al., 1980). 



IV. THE CUBIC SPLINE FINITE DISTRIBUTED LAG MODEL 

The Almon polynomial distributed lag is based on 

Lagrangian interpolation. However, there are other methods 

used to interpolate an unknown function, one of them being 

the use of spline functions. Splines have a long history 

of use in curve fitting applications by draftsmen. The 

cubic splines in particular present som e advantages for 

economic applications as discussed later (Poirier, 19 78 ). 

The first section of this chapter presents the ap-

preach and ge~eral formulation of the spline polynomia l 

distributed lag. A "direct" approach (Judge et al., 1980) 

to estimating the cubic spline model is the subject of the 

second section. The cubic spline interpolation approach is 

presented in the third section. The chapter conclude s with 

a restricted least squares formulation corresponding to 

each approach. 

General Formulation of the 
Cubic Spline Distributed La~ 

The cubic spline approach to estimating a polynomial 

distributed lag is similar to a piece-wise polynomial re-

gression. It is assumed that the relationship between the 

lag coefficients Bi and the lag index i varies over c er tain 

42 
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intervals. The variation in the relationship shows up as 

changes in the parameters, which occur at certain locations 

along the abcissa, called knots. Consider figure 4.1. 

s. 
l 

Figure 4.1. A cubic spline with four knots. 

The relationship between 13 i and i is vie we d then, as a 

series of polynomial functions. The functional form relat-

ing Bi to i is different for each of the three intervals 

(i 0 , i 1 ), (i 1 , i 2 ), and (i 2 , i 3 ) as shown in figure 4.1. 

Moreover, it is assumed that the function that describes 

each interval is a polynomial of degree at most three. 

The lag coefficients are exfressed as 

( 4. 1) 0 < i < i1 
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where k is the number of knots. 

The gj (i) (for j = 1, 2, . .. , k ) are cubic polynomials of 

the form 

( 4. 2) g· 
J 

(i) =a· + b·i + C·i 2 + d·i 3 
J J J J 

The lag coefficient generating function as defined in 

Equation (4.1) will, in general , b e discontinuous at the 

knots. Therefore, one restriction that is imposed when 

estimating the functions g is that the functions be con-

tinuous at the knots where they join. For the example 

presented as figure 4.1, this amounts to the following: 

( 4 . 3) 

When these k - 1 restrictions are imposed, a continuous lag 

distribution will result . 

Estimating t he functions gj subject to the constraints 

(4.3) will in general yield a continuous, but jagged or 

kinked function. If the lag distribution is assumed to be 
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smoother, as is the usual case, further restrictions are 

imposed. Specifically, the first and second derivatives at 

the knots are assumed to be continuous. Those additional 

restrictions are 

( 4. 3) 

( 4. 4) 

Thus, another 2(k-1) restrictions are added on . 

Once again, composite variables are used. The con-

struction of the coefficient matrices used in both ap-

proaches will be addressed in the succeeding sections of 

this chapter. 

Direct Estimation of the 
Cubic Spline Distributed 
Lag Model 

The direct approach to fitting cubic splines to a lag 

distribution employs composite variables in estimating the 

model 

The composite variable matrix will, as usual, be the pro-

duct of the data matrix and a weighting rna tr ix. The 

weighting matrix is better understood by considering the 

following example. 

Let the lag length be M = 8, and assume that there are 
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k + 1 = 4 knots occurring at i 0 = 0, i 1 = 2, i 2 = 5, 

i 3 = 8. The polynomial function for the v a lue s of i as 

given by ( 4 . 1) and ( 4 • 2) is : 

for io < i < i1' So = a1 

131 = a2 + b1 + c1 + d1 

8 2 = a1 + 2b1 + 4c 1 + 8d1 

or in matrix format 

- So-, 1 0 0 0 
-

a1 

131 = 1 1 1 1 b1 

i3 - 2- 1 2 4 8 c1 

d - 1-

for i1 < i < i2 

8 3 = a2 + 3b2 + 9c 2 + 27d 2 

13 4 = a2 + 4b2 + 16c 2 + 64d2 

Bs = a2 + 5b2 + 25c 2 + 125d2 

in matrix format 

13 3 1 3 9 27 a2 

13 4 = 1 4 16 64 b2 

i3 1 c; 25 125 c2 ·- 5- ...; 

l_d2_ 
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for l2 < i < i3 

66 -:::. a3 + 6b3 + 36c 3 + 216d3 

s7 = a3 + 7b3 + 49c 3 + 393d3 

Sa = a3 + 8b3 + 64c 3 + 512d3 

in matrix format 

-
s 6 1 6 36 216 a3 

s7 = 1 7 49 343 b3 

B 1 8 64 512 c3 
- · 8-

d - 3-

The three sets of matrix equations above can be stacked 

together into an equation matrix system as follows: 

( 4. 5) ,-so- 1 0 0 0 0 0 0 0 0 0 0 0-1 a1 

I s1 1 1 1 1 0 0 0 0 0 0 0 0 b1 

8 1 2 4 8 0 0 0 0 0 0 0 0 I I c1 
2 

B3 = 0 0 0 0 1 3 9 27 0 0 0 0 d1 

B4 0 0 0 0 1 4 16 64 0 0 0 0 a2 

s5 0 0 0 0 1 5 25 125 0 0 0 0 b2 

B6 0 0 0 0 0 0 0 0 1 6 36 216 c2 

B7 0 0 0 0 0 0 0 0 1 7 49 393 d2 

I o B 0 0 0 0 0 0 0 1 8 64 512 a3 
- 8-

b3 

c3 

d - 3-
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or 

( 4. 6) B = N y 

The weighting matrix N is a block diagonal mat r ix . Each 

block is similar to the matrix H, as defined in (3.2), over 

the defined interval. 

The twelve elements in y are subjected to the restric

tions (4.2) (4.3), and (4.4). The restrictions required to 

satisfy (4.2), namely, equality of the functions at the 

knots a r e 

a2 = al + (bl-b2)il + (c1-c2)if + (dl-d2)ii 

a 3 = a 2 + (b 2-b3 )i 2 + (c 2 -c 3 )i~ + (d 2-d1 )ii 

The restrictions r equired to sat isfy (4.3), namely, 

equality of the first derivations at the knots are 

( 4 • 7) b 2 = b 1 + 2(c1-c 2 )i 1 + 3(d1-d 2lif 

b 3 = b 2 + 2(c 2-c 3 )i 2 + 3(d 2 -d 3 )i~ 

The restrictions required to make the second derivatives 

equal to the knots are 

( 4 • 8) 

These r es t rictions take the form 

( 4. 9) R y = 0 
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where 

-
-1 -il ·2 ·3 1 i1 

·2 . J 0 0 0 0 R = -l1 -l1 l1 l1 

0 0 0 0 -1 -i2 ·2 -12 ·3 -12 1 i2 
·2 l2 ·3 l2 

0 -1 -2i1 3'2 - l1 0 1 i1 3'2 11 0 0 0 0 

0 0 0 0 0 -1 -2i2 3'2 - l2 0 1 2i2 3'2 12 

0 0 -1 -3il 0 0 1 -3i1 0 0 0 0 

0 0 0 0 0 0 -1 -3i2 0 0 1 3i2-

Thus, direct estimation of the cubic spline model involves 

transforming X using (4.5) 

Y = X S + u = XN y + u = G y + u 

This model is estimated subject to the restrictions (4.9) 

R Y = 0. Given least squares estimators of y , the 

estimators of S are obtained by solving (4.5). Thes e 

estimators are linear transformations of the estimators of 

Y so that their properties are easily determined, as noted 

above on page 26 in the case of the Almon lag. 

Estimation Using Spline 
Interpolation Functions 

The focus of the Lagrangian interpolation was to calculate 

a polynomial function that took on the same given values as 

an unknown function and approx imate the values of the 

function at other points on the abcissa. The cubic spline 

method of interpolation not only calculates a polynomial 

function that generates the given values of the unknown 
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function, but also allows the coefficient of the polynomial 

to take on different values of the in different ranges of 

the independent variable. Spline interpolations u sually 

allow the polynomial to be at most of third degree. 

Following Poirier {1976, p. 55) it is useful to write 

the spline function in terms of its second derivatives. 

The second derivative of a cubic function is a linear 

f unction. Let the spline function over the interval 

(ij_1 , ij] be denoted S{i). Its first derivative is S'{i) 

and its second derivative is S ' ' (i). Because the second 

derivative is linear ove r the interval it may be written as 

(4.10) S"(i) = u +vi < i < i· 
J 

At the left hand endpoint, the value of the second deriva-

tive is 

and at the right hand endpoint the second der ivative is 

S I I ( i') = U + Vi ' 
J J 

Given these two points on the linear function, the 

slope coefficient v can be c a lcu l ated as 

v = 



The intercept u is 

u=S' 1 (i·) + J-1 

s I I (ij-1) 
= 

i· 
J 

ij 

Hence, ( 4.10) can be written 

(4.11) S"(i) 

where hj = ij - ij_1 

51 

- i. 1 s I I ( i.) J- J 

- i· 1 J-

The spline function S{i) is obtained from (4.11) by 

integrating twice and is given by Poirier as 

(4.12) s { i) = 
i .. 

J -l 2 2 
(( . 1') h] S 11 (l.J·-1) lj- - - j 

6h. 
J 

+ 

6h. 
J 
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i. 1 i - i. 1 
J-

6 (ij-1) 
J-

6 ( ij) + + 

h· h· 
J - J 

where 6 (ij_1 ) is the lag coefficient at ij_1 and B (ij) is 

the lag coefficient at ij. 

Poirier also gives the first derivative of the spline 

function as 

(4.13/ S I ( i) = 

+ 

+ 

6 2h. 
J 

( . . ) 2 
l - lj-1 

2h. 
J 

h· 
J 

s I I ( i' ) J-l 

S"(i· ) 
J 

Because (4.12) contains 6( ij_ 1 ) and 6 (ij) the requirement 

that the cubic polynomials be equal at the join points will 

be satisfied. To ensure that the first and second deriva-

tives be equal at the join points, it is necessary to have 

the left-hand derivative of S(i) equal to the right-hand 

derivative o f S (i). 



(4.14) 

(4.15) 

Lim 
i~i·

J 

S 1 (i) = 

+ 

Lim S 1 (i) = 
i~i ·+ 

J 

+ 
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h' S I I (i' ) 
J J-1 

6 

S(i·) -
J 

3 

h· 
J 

h· 
J 

+ 

h' S I I ( i ') 
J J 

3 

6 

Where the limit as i approaches i~- implies that i is in 
j 

the interval [ij_1 , ij], and the limit as i approaches ij+ 

implies that i is in the interval (ij, ij+ 1 ]. When i is in 

the interval [ij_1 , ij], the first derivative of the spline 

corresponds to the formula (4.13) given above. When i is 

in the interval [ij, ij+ 1 ] the latter formula is used with 

j+ 1 replacing j in all subscripts. Equating (4.14) with 

(4.15), and combining terms yields 

(4.16) 

= 

h· \'h·+h· 1) J J J+ 
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for j = 1, 2, •.. , k-1 

where A. = h· 1 /h·+h · 1 J J+ J J+ 

The model is defined, or set up is under-identified. 

Notice that each cubic spline has four parameters. Thus, 

for k intervals, we must solve for a total of 4k parame-

ters. The restrictions, which can be expressed as equa-

tion s, consist of k-1 continuity conditions at the knots, 

k-1 first derivatives equal at the knot, and k-1 second 

derivatives which must be equal at the knots. Addition-

ally, S(i} must pass through k+l points. Therefore, we 

have 4k-2 restrictions, or equations to be used to solve 

for 4k unknowns. This underspeci£ication can be solved by 

placing endpoint constraints on the function S(i}. 

The endpoint conditions express the second derivatives 

at the endpoints as proportional to their values at the 

adjacent interior knots. That is: 

The researcher may choose values for the IT's in the range 

(-2, 2). If the IT 's are chosen equal to unity, t.he spline 

in the endpoint intervals is a quadratic (since its s e cond 

derivative is constant). Setting the IT 's equal to zero 

implies that the first derivative is a constant at the 
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endpoints. 

The endpoint constraints are combi ne d with t he 

con tinuity eq uations (4.16) to express the un k nown s ec ond 

derivatives in t e rms of t he known S(ij) values. For th e 

c a s e k = 3 , which was depicted in figure 4.1, the full set 

of equations is : 

2Mo - 2 IT O M1 = 0 

6 6 

6 
+ 

6 6 

6 
+ 

where Mj is an alternativ e no tation for S' '(ij). 



In matrix format 

2 -2rr0 o 

1-A. 1 2 t.. 1 

0 1-A.2 2 

0 0 -2rr3 

0 0 

0 

0 

2 

2 

= 6/h1 (h1 +h2) -6/h1h2 

0 6/h2 (h2+h3) 

0 0 

or as 

( 4. 17) 6 M = 8i3 * 
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0 0 

6/h2 (h1 +h2) 0 

-6/h2h3 6/h3 (h2+h3) 

0 0 

The solution for the second derivatives is given by 

{4.18) M = 6 - 1 8 13 * 

S(i 0T 

13 (i1) 

13 (i2) 

]_(i3) 

The equation for the spline function (4.12), can be 

written in matrix notation as follows 

(4.19) Bi = ,-ij-i 

l_6hj 6h. 
J 
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i·-1 i-i· 1 J J- - s (io-1) + 

n· h· B ( ij) - J J 

For the example presented in the previous section, 

where the lag length was 8 and the k + 1 = 4 knots occur-

ring at i 0 = 0, i 1 = 2, i 2 = 5, i 3 = 8 

2-0 0-0 

So [ (2-0) 2 - (2-0) 2 ] [(0-0) 2-(2-0) 2 ] Mo 

6 1 = 6(2-0) 6(2-0) M - 2-

.2.2 

2-0 1-0 
[ (1-0) 2-(2-0) 2 ] [ (2-1) 2- (2-0) 2 ] 

6 ( 2-0) 6(2-0) 

2-2 
[(2-2) 2-(2-0) 2 ] 

2-0 
[ (2-0) 2- (2-0) 2 J 

6 ( 2-2) 6(2-0) 

0-0 - -B 2-0 
2-0 2-0 

0 

s - 2-

+ 2-1 1-0 
2-0 2-0 

2-2 2-0 
2-0 2-0 
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or 

- 1- - 0 
-

-:s o So 0 0 Mo + 1 

B1 = -3/12 -3/12 M - 2- 1/2 1/2 6 - 2-

6 - 2- 0 0 0 1 

For 2 < i < 5 

- - - 6 2 
-

6 2 0 0 M2 + 1 0 

B3 = ·-10/18 - 8/18 M - 5- 2/3 1/3 B - 8-

B4 - 8/18 -10/18 1/3 2/3 

_ s5_ I_ 0 0 0 1 

For 5 < i < 8 

l-6 s 
- 0-1 -Ms-1 1- 1 0-, Ss 

-
0 + 

I 
_Mg_l 12/3 -10/18 - 8/18 1/3 6 66 = I - 8-

6 7 - 8/18 -10/18 1/3 2/3 

_sa_ 0 0 0 1 

The three sets of matrix equations above can be stacked 

together into a 9 equation system as follows: 
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(4.20) 0 0 0 0 - s 0 
-

So 

s 1 -3/12 - 3/12 0 0 6 2 

s 2 0 0 0 0 Ss 

s 3 = 0 -10/18 8/18 0 s - 8-

s4 0 - 8/18 -10/18 0 

Ss 0 0 0 0 

s 6 0 0 -10/18 - 8/ 1 8 

B7 0 0 - 8/18 -10/18 

s - 8- 0 0 0 0 

1 0 0 0 - - So-j 

1/2 1/2 0 0 B2 
I 

0 1 0 0 Ss 

0 2/3 1/3 0 6 - 8-

+ 0 1/3 2/3 0 

0 0 1 0 

0 0 2/3 1/3 

0 0 1/3 2/3 

0 0 0 1 

or 

(3 = PM + QB* 

Using equation (4.18)' this becomes 

(4.21) S = P t. - 1 813* + Q (3 * = (Pt. - 1 e + Q) 13 * ws * 
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for 

( 4 • 2 7 ) w = ( ptl - 1 e + Q) 

Thus, for any point on the function i can be obtained as a 

linear function of B*. Using (4.19) and repeating the 

derivation above between (4.19) and (4.22). For the case 

of k = 3, Poinier (1976, p. 48) provides tl - 1 8 . 

In order to estimate the lag coefficients of a polyno-

mial distributed lag, the data matrix x is transformed 

using W as follows : 

and Ft is a matrix of composite variables. The full vector 

of lag coefficients is obtained by using Equation (4.21). 

Restricted Least 
Squares Approaches 

An alternative approach to estimation is to use re-

stricted least squares. Once again, it is possible to 

formulate a restricted model to test each approach. 

The direct approach requires that S = N y be satis-

fied. From this we obtain 

where N+ is the generalized inverse of N. The concept of 

the generalized inverse is employed once again, since N is 
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generally not square. Now 

0 = S - N Y 

= B - NN+ B 

= (I- N{N'N)-lN') S 

The restriction matrix R is 

R = {I - N(N'N)- 1N') S 

The model to be estimated is 

Y = X 3 + U subject to RS = 0 

For the interpolation approach, where each coefficie nt 

is calculated as a linear combination of the coefficients 

estimated for interpolation, or 

S WB* 

it follows that each interpolated coefficient minus a 

linear combination of the coefficients in S* is equal to 

zero. 

To obtain the restrictions for the interpolat i on ap

proach , partition the matrix W into two parts as [Wr:Ik+l]. 

The first partition is the set of rows used to obtain the 

interpolated coefficients. The second partition i s a nega

tive identity matrix with the order equal to the number of 

estimated coefficients used for interpolation. The model 

is estimated a s described above. 

These restricted least squares approaches are similar 
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to those discussed in the previous chapter. Once again, 

the latter representation of the restrictions may be 

preferable to the former. The generalized inverse N+ is 

difficult to compute and is more susceptible to computa

tional error than the latter method. 



V. EMPIRICAL APPLICATIONS TO CONSUMPTI ON MODELS 

The objective of this chapter is to illustrate the 

properties and characteristics of the previously discussed 

lag formulations by incorporating them into models of con

sumption. This is accomplished by fitting various lag 

lengths of each of the lag models to various measures of 

consumption. 

Although empirical results are presented here, no 

claim is made about their significance for economic theory. 

Once again, the objective is demonstration, not determina

tion. 

The first section discusses the model and data used in 

determining each of the lag structures. The subsequent 

sections present results when the models are run under each 

of the lag formulations. A general summary of results and 

comparison comprise the concluding section. 

Models and Data 

The consumption models presented in this chapter are 

of a simple nature. Four time series on consumpt ion were 

regress ed on incom e and varying lagged values of income. 

The four time series ar e total consumption expenditu res, 

durable consumption expenditures, non-durable 

63 
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consumption expenditures, and consumption expenditures on 

services. The income variable used here is personal dispo

sable income. All variables are quartered data at annual 

rates. 

The time span covered by the series is from the first 

quarter of 1948 to the fourth quarter of 1982. The data is 

not presented here since it was obtained from the standard 

source Business Conditions Digest (October 19 82 and June 

1983). All variables are measured in 1972 dollars. 

In general, all the models had a high degree of posi-

tive autocorrelation. To correct for this problem, the 

Cochrane - Orcutt iterative procedure was used. This correc

tive measure improved the results greatly, and only these 

final results are presented. Other problems figured in as 

well, specifically, some level of multicollinearity. This 

was generally ignored since it does not bias the estima

tors. Most of the values of the F r atios were omitted from 

the tables when their values were extremely large. 

Most of the problems encoun ter ed are perhaps due to 

the theoretical construct of the model itself . No attempt 

was made to check for identification or exc luded variables. 

For the demonstration purposes at hand, incl~ding other 

independent variables would only occlude the ob j ective . 

Arithmetic Lags 

This section presents the four models of consumption 
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under two lag lengths of four and eight respectively. To 

this end four tables are presented on the next pages. 

Table 5.1 gives the results from each consumption model 

when they are regressed on the lagged values of income with 

a lag length of four. Table 5.2 gives the results from 

each consumption model when an arithmetic distribution, 

with lag length of four, is imposed. Tables 5.3 and 5.4 do 

likewise for when a lag length of eight is used. 

With either a lag of four or of eight, the uncon

strained lag coefficients decrease in value as the lag 

increases. One would expect that if an arithmetic lag was 

imposed, not much "violence" would be done to the data. 

this is supported by the restricted F tests presented in 

Tables 5.2 and 5.4. From the adjusted coefficient of 

determination , we notice that very little explanatory power 

was lost. 

The thrust of the arithmetic lag is to obtain a 

linearly decreasing lag distribution. The formulation 

r equired to obtain such results was discussed in chapter 

two. Along with the formulation, the slope of the distri-

bution function was also derived. It turned out to be the 

negative of the slope coefficient of the variable with the 

1 a r g est 1 a g, i.e. - Sn. 

In Tables 5.2 and 5.4, which give t he values of the 

lag coefficients when the arithmetic lag is imposed, it is 

seen that the formulation was successful. T:b.e difference 



TABLE 5.1 

ESTIMATED COEFFICIENTS FOR UNCONSTRAINED LAG MODELS WITH LAG LENGTH OF FOUR3 

Dependent 
Variable 

Total 

Durable 

Non-Durable 

Services 

Constant 

103.54 
(64.117) 

-245.22 
(44.049) 

653.69 
(11. 733) 

208.27 
(270.01) 

lag O 

.50094 
( .0563) 

.18986 
(.0378) 

.17274 
( .0226) 

.12119 
( .01720) 

lag 1 lag 2 Lag 3 

.19731 .10702 .00932 
(.0569) ( .0551) ( .0575) 

.03889 .02038 -.06616 
(.0385) ( .0370) ( .0386) 

.08343 -.0057 -.00077 
(.0226) ( .0218) ( .0228) 

.06398 .07620 .06506 
(.0720) (.01662) ( .01730) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 136 

lag 4 

.08482 
(.0561) 

-.02303 
(.0377) 

.03102 
( .0225) 

.06101 
(.01710) 

~ lli 

.9995 2.0552 

.9930 2.3131 
0'\ 
VI 

.9992 2.0539 

.9998 1.2808 



TABLE 5.2 

ESTIMATED COEFFICIENTS FOR ARITHMETIC LAG MODELS WITH LAG LENGTH OF FOUI{a 

Dependent 
~ Variable Constant lag 0 lag 1 lag 2 lag 3 lag 4 Rest. F 111 

---- -- -- -- -- -- --

Total 107.86 .30066 .24503 .18040 .12026 .06013 3.468 .9994 1.8558 
(69.984) (.0033) ( .0027) (.0020) (.0013) ( .0007) 

Durable -239.87 .05414 .04331 .03248 .02165 .01083 3.641 .9925 2.1606 
(48.657) (.0023) ( .0019) (.0014) ( .0009) (.0005) 

~ 
-....) 

Non-Durable 651.95 .09580 .07664 .05748 .03832 .01916 4.121 .9991 1.8164 
(44.449) (.0021) ( .0017) (.0013) ( .0008) (.0004) 

Services 274.85 .12578 .0062 .07547 .05031 .02516 1.924 .9998 1.2386 
(303.65) ( .0065) ( .0052) ( .0039) ( .0026) ( .0013) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

rlurrter of observations = 136 

Restricted F d.f. numerator= 4; d.f. denominator= 130; tabulated= 2.45 



TABLE 5.3 

ESTIMATED COEFFICIENTS FOR UNCONSTRAINED LAG MODELS WITH LAG LENGTH OF EIGHTa 

Dependent 
Variable 

Total 

Durables 

Non-Durables 

Services 

Constant lag 0 

949.09 .46195 
{68.938) {.0603) 

-255.78 
(423.11) 

.20935 
( .0406) 

652.50 .17327 
(93.713) (.0247) 

-217.69 .10549 
(96.756) (.0160) 

Lag 1 

.19781 
{ .0594) 

.05777 
{.0401) 

.08167 
{.0241) 

.05530 
{.0155) 

lag 2 lag 3 

• 0420 -. 03225 
{.06046) {.0627) 

.05342 
{ .0409) 

-.00690 
{ .0249) 

.05808 
{.0156) 

-.05499 
{ .0424) 

-.01165 
{.0253) 

.03562 
{.0161) 

lag 4 

.02858 
{.0626) 

-.01262 
{.0423) 

.01689 
{ .0252) 

.02710 
{ .0161) 

lag 5 

-.03860 
{.0622) 

-.06782 
{ .0421) 

.01140 
{.0251) 

.01990 
{.0160) 

lag 6 

.08695 
{.0609) 

-.03971 
{ .0412) 

.01612 
{ .0246) 

.07487 
{ .0157) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 132 

Lag 7 

.07644 
{.0599) 

.00291 
(.0405) 

.01740 
( .0243) 

.05352 
{.0156) 

lagS 

-.01604 
(.0589) 

-.02568 
( .0397) 

-.01158 
(.0240) 

.01833 
( .0155) 

~ 

.9995 

.9929 

.9991 

.9998 

Ill 

2.0713 

2.3490 

2.0355 

1.5270 

0\ 
co 



TABLE 5.4 

ESTIMATED COEFFICIENTS FOR ARITHMETIC lAG MODELS WITH lAG lENGTH OF EIGHTa 

Dependent 
Variable 

Total 

Durables 

Non-Durables 

Services 

Constant 

142.66 
(90.736) 

-224.86 
(53.558) 

668.54 
(52.487) 

-102.06 
(1 40 .46) 

lag 0 

.18127 
(.0026) 

.03240 
(.0015) 

.05760 
(.0015) 

.08626 
(.0032) 

lag 1 lag 2 

.16113 .14099 
(.0023) (.0020) 

.02880 .02520 
(.0014) (.0012) 

.05120 .04480 
{.0013) (.0012) 

.07668 .06710 
( .0028) (.0025) 

lag 3 lag 4 lag 5 lag 6 Lag 7 lag 8 

.12085 .10071 .08057 .06043 .04029 .02014 
( .0017) ( .0014) (.0012) (.0009) {.0006) (.0003) 

.02160 .01780 .01440 .01080 .00720 .00360 
( .0010) (.0009) (.0007) (.0005) (.0003) (.0002) 

.03840 .03200 .02560 .01920 .01280 .00640 
(.0010) ( .0008) (.0007) (.0005) (.0003) ( .0002) 

.05751 .04810 .03834 .02876 .01920 .00959 
(.0021) ( .0018) (.0014) (.0011) (.0007) (.0004) 

aStandard errors are in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 132 

Restricted F numerator d.f. = 8; denominator d.f. = 132; tabulated= 2.02 

Rest. F rt2 Ill 

4.775 .9993 1. 7486 

3.745 .9917 2.0971 
0') 

1.0 

3.711 .9989 1.7197 

2.837 .9998 1.4681 



70 

between each lag coefficient is the value of the last lag 

coefficient. Another way to view this is to multiply the 

last coefficient by (n + 1 - i) to obtain the lag coeffi-

cient for the ith period. This demonstrates the equiva-

lence of the restricted least squares a n d direct or compo

site variable approaches. 

Another issue that was discussed, is that the coeffi

cients must all have the same sign. in particular they 

must have the same sign as the lag coefficient at i = n. 

By comparing the four tables, it is seen that some of the 

signs of the coefficients were thus altered. Again, by 

checking the restricted F ratios, apparently this does very 

little violence to the data. 

No attempts were made to obtain results for a longer 

lag leng th with an arithmetic lag. With a lag length of 

eight, the majority of the t-ratios became insignificant 

for all models. One conclusion that may be drawn then, is 

that the arithmetic lag model in general will not handle 

large lag lengths very well. 

Inverted-V Models 

This section discusses the four models of consumption 

when the inverted-V lag structure is imposed. The lag 

lengths used here are once again four and eight . The 

results for the inverted-V lag models when a lag length of 

four is assumed are presented in Table 5.5, and for a lag 



TABLE 5.5 

ESTIMATED COEFFICIENTS FOR INVERTED-V LAG MODELS WITH LENGTH OF FOURa 

Dependent 
Variable 

Total 

Ourables 

Non-Durables 

Services 

Constant 

134.89 
(80.399) 

-230.14 
(50.366) 

668.64 
(47.339) 

312.91 
(290.13) 

LagO lag 1 

.1028 .20056 
( .0013) ( .0026) 

.0180 .0360 
(.0008) (.0016) 

.03181 .06362 
( .0008) (.0015) 

.0410 .0830 
( .0023) ( .0046) 

lag 2 Lag 3 lag 4 

.30083 .20056 .1028 
(.0039) (.0026) ( .0013) 

.0540 .0360 .0180 
(.0024) ( .0016) ( .0008) 

.09544 .06362 .03181 
(.0023) (.0015) ( .0008) 

.1240 .0830 .0410 
( .0069) ( .0046) (.0023) 

aStandard erro~ are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of obser~ations = 136 

Restricted F n~rator d.f. = 4; denominator d.f. = 130; tabulated= 2.45 

Rest. F ~ Ill 

14.074 .9993 1.6256 

5.698 .9921 2.0948 -.) .._. 

12.712 .9989 1.6353 

6.859 .9998 1.1494 



TABLE 5.6 

ESTIMATED COEFFICIENTS FOR INVERTEO-V LAG HOOELS WITH LAG lENGTH OF EIGH~ 

Dependent 
Variable Constant lag 0 Lag! Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 lag 7 lag 8 Rest. F 

Total 217.38 .0362 .0724 .1086 .1447 .1810 .1447 .1086 .0724 .0362 11.034 
(122.08) (.0007) (.0014) (.0021) (.0028) (.0035) (.0028) (.0021) (.0014) (.0007) 

Ourables -205.24 .0064 .0129 .0193 .0257 .0321 .0257 .0193 .0129 .0064 5.104 
(58.907) ( .0003) ( .0007) ( .0010) ( .0014) (.0017) (.0014) (.0010) (.0007) (.0003) 

Non-Durables 699.08 .0115 .0230 .0343 .0456 .0573 .0458 .0344 .0230 .0115 7.477 
(61.228) ( .0003) (.0007) (.0010) (.0014) ( .0017) (.0014) (.0010) (.0007) (.0003) 

Services 15.217 .0167 .0334 .0501 .0668 .0835 .0668 .0501 .0334 .0167 7.565 
(170.89) ( .0007) (.0015) ( .0022) (.0029) ( .0037) (.0029) (.0022) (.0015) (.0007) 

aStandard errors are in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 132. 

Restricted F numerator d.f. = 8; denominator d.f. = 122; tabulated= 2.02 

~ Ill 

.9991 1.4982 

.9912 2.0168 -.] 

N 

.9987 1. 5318 

.9998 1.3236 
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length of eight in Table 5 . 6. These resu l ts should be 

compared with those in Tables 5.1 and 5.3 which pres e nted 

the results for the unconstrained lag models. 

For the models where the lag length is four, the pe ak 

of the distr ibution occurs during the lag period of n + 2, 

as discussed i n chapter three. For the models i n Table 

5.5, this implies that the coefficient of lag two should be 

the highest. For the models in Table 5.6 the peak should 

occur at lag f our. 

confirm this. 

By examining these tables, o n e can 

Simil a r to the arithmetic model, the inverted-V also 

assumes a constant slope. As mentioned before, the s hape 

of the distribution can be likened to a "splice" of two 

linear functions. In addition it is also assumed that t he 

slope is equal for both s i des. This can readily be ob

served from either Table 5.5 or Table 5.6. The absolute 

value of the slope should be equal to both the coe fficient 

at lag 0 and a t lag n. Notice t hat this also i mplies that 

the coefficient at lag 0 must equal the coeffic i ent a t l ag 

n. Once a gain, as discussed in chapter three, the value of 

the coefficient of the variable lagged i periods can b e 

obtained by multiplying s0 or Bn by 1 + i if i is less or 

equal to n 7 2 or by n + 1 - i if i is greater than n .;. 2. 

By comparing the results of Tables 5.5 and 5.6 to 

those for the unconstrained cases presented in Tables 5.1 

and 5.3, one might assume a priori that an inverted-V lag 
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structure may not yield satisfactory results. This assump

tion is supported upon examination of the restricted F 

ratios. All of the ratios indicate that imposing an in

verted-V lag structure on the data decreases the explana

tory power of the independent variables. 

Almon Models 

This section presents the four models of consumption 

under two lag lengths of eight and twelve respectively. To 

this end, five tables are presented on the next pages. 

Tables 5. 7 and 5.8 give the results from each consumption 

model when an Almon model is imposed for the cases where 

the polynomial degrees employed are two and three, and the 

lag length is eight. Table 5.9 gives the results from the 

four models when a lag length of twelve i s used, without 

imposing any lag formulation. Tables 5.10 and 5.11 give 

the results from each of the mocels when a lag length of 

twelve is assumed and the polynomial degree employed is t wo 

and three. 

The approach of the Almon model is to estimate a 

subset of the coefficients, and from these interpolate the 

values of the complement. In chapter four it was observed 

that the coefficients could be obtained equivalently from 

using either the "direct", Almon, or restricted least 

squares approaches . All the results presented in the fol

lowing tables are obtained from the restricted least 



TABLE 5.7 

ESTIMATED COEFFICIENTS FOR AlMON LAG HOOELS WITH DEGREE TWO AND LAG LENGTH OF EIGHTa 

Dependent 
Variable Constant lagO Lag 1 lag 2 lag 3 lag 4 lag 5 Lag 6 Lag 7 Lag 8 Rest. F 

Total 103.20 .4D281 .25482 .13785 .05189 -.00305 -.02698 -.01989 -.01822 -.08734 1.865 
(66.858} ( .0433} (.0219} ( .0163} ( .0213} (.0240} (.0216} (.0169) (.0221} (.0430) 

Durables -253.72 .17312 .09646 .03599 -.00829 -.03637 -.04827 -.04397 -.02349 .01319 0.831 
(40.784) (.0283) ( .0142) ( .0106) (.0140) ( .0157} ( .0141) (.OllO) (.01436) (.0281) 

Non-Durables 657.12 .13406 .08457 .04533 .01636 -.00236 -.01082 -.00902 .00304 .02535 1.853 
(43.305) ( .0181) ( .0094) ( .0069} ( .0088) (.0098) (.0089) (.0072) (.0095} ( .0180} 

Services -224.94 .08820 .07072 .05662 .04592 .03860 .034677 .03414 .03600 .04324 2.369 
(90.551} ( .0121) ( .0644) (.0048} (.0058) (.0065) (.0059) (.0049) (.0064) (.0199} 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Nurrber of observations = 132 

Restricted F numerator d.f. = 6; denoninator d.f. = 122; tabulated= 2.17 

~ Ill 

.99~4 2.0061 

.9929 2.3335 
-....] 

lJl 

.9991 1.9075 

.9998 ] .6322 



TABLE 5.8 

ESTIMATED COEFFICIENTS FOR ALMON LAG MODELS ~ITH DEGREE THREE AND LAG LENGTH OF EIGHTa 

Dependent 
Variable 

Total 

Durables 

Non-Durables 

Services 

Constant 

94.263 
(66.704) 

-256.59 
(41.08G) 

651.77 
(42.657) 

-229.98 
(89.628) 

lag 0 

.50408 
( .0538) 

.2076.3 
( .0362) 

.17560 
(.0221) 

.11240 
( .0147) 

lag 1 lag 2 

.21694 .05770 
(.0246) ( .0308) 

.08379 .00893 
( .0164) ( .0207) 

.06838 .01217 
( .0104) (.0126) 

.06198 .03722 
( .0071) ( .0084) 

Lag 3 lag 4 Lag 5 Lag 6 Lag 7 lag 8 

-.00571 -.00535 .02672 .05844 .05775 -.00740 
(.0281) '(.0232) (.0273) ( .0304) ( .0251) (.0521) 

-.02779 -.03723 -.03022 -.01760 -.01022 -.01892 
(.0189) ( .0156) (.0184) (.0205) (.0168) (.0351) 

-.00754 -.00348 .01119 .02329 .01964 -.01292 
( .0115) (.0095) (.0112) (.0125) (.0106) (.0213) 

.03193 .03793 .04753 .05305 .04679 .02109 
(.0076) (.0063) (.0074) (.0083) (.0072) (.0014) 

3Standard errors are in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 128 

Restricted F numerator d.f. = 5; denominator d.f. = 122; tabulated= 2.17 

Rest. F 

.427 

.545 

.346 

1.276 

R2 Ill 

.9995 2.0954 

.9930 2.3625 
-....) 

m 

.9991 2.0475 

.9998 1.6017 



TABLE 5.9 

ESTIMATED COEFFICIENTS FOR UNCONSTRAINED LAG MODELS WITH LAG LENGTH OF TWELVEa 

Dependent 
Variable Constant lagO lag 1 lag 2 Lag 3 lag4 lag 5 Lag 6 Lag7 

-- -- -- -- -- -- -- -- -
Total 112.18 .50214 .20754 .03363 -.00822 .02542 -.02716 .0786 .05922 

(73.392) ( .0614) ( .0619) ( .0631) (.0642) ( .0641) (.0621) (.0624) (.0621) 

Durables -265.62 .22401 .08818 .01256 -.04035 -.00828 -.06654 -.00901 .01075 
( 41.502) (.0408) ( .0413) (.0423) (.04311) ( .0430) (.0417) (.0419) ( .0417) 

Non-Durables 665,48 .17030 .07856 -.02182 .00584 .00192 .01968 .01815 .00536 
(472.67) ( .0255) ( .0255) ( .0259) ( .0261) (.0261) (.0252) ( .0253) ( .0252) 

Services -219.95 .0953l .03502 .04333 .02844 .03496 .02161 .06256 .04239 
(90.426) ( .0163) (.0163) (.0165) (.0165) ( .0165) (.0159) (.0160) (.0160) 

=================================================================================================================~============================== 

Dependent 
1(2 Variable lag 8 lag 9 lag 10 Lag 11 lag 12 [1,1 

-- -- -- -- -- -- -- -
Total -.Ol121 .02447 -.02482 -.04920 -.10193 .9995 1.9902 

(.0622) ( .0620) (.0617) ( .0629) (.0616) 

Durables -.00163 .00121 -.06714 -.06423 .07856 .9934 2.3251 
( .0418) (.0417) ( .0413) ( .0420) (.0409) 

Non-Durables -.00806 -.00807 .03708 -.00735 -.00564 .9991 1.8324 
( .0253) (.0252) ( .0253) ( .0257) ( .0256) 

Services . 00251 .03596 .01034 .01898 .00217 .9998 1.5650 
(.0159) (.0159) ( .0161) ( .0166) ( .0164) 

aStandard errors are given in parenthesis . All equations corrected using Cochrane-Orcutt. 

NurrtJer of observations = 128 

-...) 

....:! 



TABLE 5.10 

ESTIMATED COEFFICIENTS FOR ALMON LAG MODELS WITH DEGREE TWO AND LAG LENGTH OF TWELVEa 

Depandent 
Variable Constant l ag 0 Lag 1 Lag 2 lag 3 lag 4 Lag 5 lag 6 lag 7 lagS 

- -- -- -- -- -- --
Total 115.85 .31345 .23022 .15861 .09862 .05024 .01349 -.01164 -.02515 -.02704 

(75.032) ( .0360) ( .0236) (.0155) (.0130) ( .0147) ( .0168) (.0176) ( .0169) (.0149) 

Ourables -263.89 .13938 .09285 .05323 .02053 -.00527 -.02415 -.03613 -.04119 -.03934 
(40.467) ( .0224) ( .0145) ( .0093) (.0079) (.0092) ( .0106) { .0112) ( .0107) ( .0093) 

Non-Durables 667 .83 .10260 .07641 .05369 .03446 .01870 .00643 -.00237 -.00769 -.00953 
(45.708) ( .0157) (.0105) {.0071) ( .0058) (.0063) ( .0071) (.0074) (.0071) (.0064) 

Services -291.94 .06400 .05672 .05011 .04416 .03889 .03429 .03037 .02711 .02453 
(78.281) ( .0102) ( .0010) ( .0048) ( .0040) (.0041) (.0045) ( .0047) (.0045) (.0042) 

==:=======================================:============================================================~========================================== 
Dependent -...) 

Variable Lag 9 Lag 10 lag 11 Lag 12 Rest. f rt2 Ill 
00 

- -- -- -- -- --
Total -.01731 .00404 .03701 .08160 2.395 .9994 1.7663 

(.0134) (.0160) ( .0240) (.0363) 

Durables - .03058 -.01491 .00767 .03716 1.536 .9931 2.1817 
( .0082) ( .0096) (.0148) (.0226) 

Non-Durables -.00788 -.00276 .00584 .01792 2.427 .9990 1.6664 
(.0060) (.0073) (.0107) (.0158) 

Services .02261 .02137 .02080 .02090 1.748 .9998 1.6002 
(.0040) (.0049) (.0070) ( .0102) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 128 

Restricted F numerator d.f. = 10: denominator d.f . = 114: tabulated= 1.91 



TABLE 5.11 

ESTIMATED COEFFICIENTS FOR AL~N LAG MODELS WITH DEGREE THREE AND LAG LENGT.I OF TWELVEa 

Dependent 
Variable Constant Lag 0 Lag 1 Lag 2 Lag3 Lag 4 LagS Lag 6 Lag 7 LagS 

-- -- -- -- -- -- -- -- --
Total 104. 59 .41166 .23969 .11882 .04114 -.00123 -.01620 -.01166 .00450 .02437 

(72.820) ( .0461) ( .0230) ( .0193) ( .0217) (.0212) (.0186) ( .0170) ( .0186) ( .0214 ) 

Durables -268.11 .17867 .09662 .03727 -.00252 -.02592 - .03609 -.03618 -.02936 -.01879 
(39.924) ( .0299) (.0144) ( .0123) ( .0141) ( .0139) ( .0121) ( .0111) ( .0122) ( .0140) 

Non-Durables 660.75 . 15061 .08125 .03456 .00668 - .00621 -.00795 -.00237 .00668 .01537 
(43.651) (.0194) (.0101) ( .0083 ) ( .0090) (.0088) (.0077) (.0070) (.0077) (.0088) 

Services 215.97 .09531 .03502 .04333 .02844 .03496 .02161 .06256 .04239 .00251 
(85.421) ( .0163 ) ( .0163) ( .0165) (.0165) (.0165) (.0160) (.0160) (.0159) (.0160) 

=======~=================================~================================================================~======================================= 

Dependent 
~ 

'-.] 

Variable Lag 9 Lag 10 Lag 11 Lag 12 Rest. F ll4 1.0 

- -- -- -- -- -
Total .04006 .04368 .02732 -.01690 1.450 .9995 1.8750 

(.0219) (.0196 ) ( .0234) ( .0463) 

Durab les -.00762 .00099 .00388 -.00211 1.271 .9932 2.2548 
(. 0142) (.0125) (.0147) ( .0300) 

Non-Durables .01987 .01634 .00094 -.03016 1.013 .9991 1. 7767 
(.0091) (.0084) ( .0102) (.0194) 

Services .03596 .01034 .01898 .02170 1.686 .9998 1.5650 
(.0160) (.0161) (.0170) ( .0164) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Number of observations = 128 

Restricted F numerator d.f. = 9; denominator d.f. = 114; tabulated= 1.91 
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squares formulation, which is more useful fo r the purposes 

here . It should also be mentioned that the subset of 

coefficients to be estimated corresponded to the lag per

i o ds 0, 1 , and 2 for the case of degree two and 0, 1, 2, 3 

for the case of degree three. 

Taking the results for the total, non-durable, and 

durable consumption series first , it can be seen that the 

lag c oefficients tend to decline in value over the first 

four periods, and they increase in value during periods 

five through n. However, the coefficients for the latte r 

lags are usually statistically insignificant. Hence, the 

results are consistent with the arithmetic models reported 

in the second section of this chapter . 

The exception to this trend was the lag distribution 

for the consumption expenditures on services. As can be 

seen from all tables, this model seemed to agree with the 

Almon formulation. However, the results did not appear to 

vary much from the unconstrained models. 

Although not reported here, the models were also test

ed for a lag length of sixteen and d e grees two and three. 

The results were strikingly similar to those obtainet for a 

lag length of eight or twelve. 

Spline Lags 

This section presents the four models of consumption 

when a cubic spline distribution is imposed. Tables 5.12 
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and 5.13 present the results when endpoint constraints 

equal to unity and zero are assumed. Recall from chapter 

four, that if the endpoint constraints are unity, the 

functions over the outer intervals become quadratics. When 

the constraints are set equal to zero , the functions over 

the outer intervals become linear. The latter case is 

referred to as a "natural cubic spline". 

In both cases, knots were located at the lag index 

values 0, 4, 8, 12. Therefore, there were three points per 

interval. Poirier {1978) suggests using as few knots as 

possible, and have four or five points per - interval to 

avoid over-fitting. As can be seen from the results, there 

was a tendency for this to occur. By imposing a spline 

distribution, lag coefficients that were insignificant as 

shown in Table 5.9, became significant. This also illus

trates the degrees of freedom problem of the spline formu

lation. By using the composite variables, a lot of dummy 

variables are not being used, although they are implicit in 

the model; The final result is that the degrees of free

dom, as conventionally defined, does not take this into 

account. Therefore, as expected and observed in Tables 

5.12 and 5.13, the spline formulation gives longer lags. 

When the models are analyzed under the restricted F 

ratio criteria, it is observed that the natural cubic 

spline provides a better fit. Specifically, total and 

services expenditures models have a distinct preference 



TABLE 5.12 

ESTIMATED COEFFICIENTS FOR CUBIC SPLINE MODELS WITH LAG LENGTH OF TWELVE. 

THREE KNOTS. AND ENDPOINT CONSTRft.INTS EQUAL TO UNITYa 

Dependent 
Variable Constant Lag 0 lag 1 Lag 2 Lag 3 lag 4 lag 5 lag 6 lag7 lag 8 

- -- -- -- -- -- -
Total 116.85 .32964 .23574 .13487 .00057 .08596 .04254 -.10701 .05308 .08867 

(77 .450) (.0442) ( .0268 ) (.0145) ( .0293) (.0250) (.0203) ( .0381) ( .0247) .0309) 

Durables -264.20 .14612 .09661 .04884 -.02699 -.0060 -.00860 -.07844 .0025 .00594 
(40.209) ( .0273) (.0162) ( .0087) ( .0186) (.0157) ( .0127) ( .0239) (.0156) (.0195) 

Non-Durables 665.59 .12119 .08378 .04646 -.00596 .02504 .01129 -.03189 .02186 .03426 
(44.231) (.0182) (.0113) (.0062) ( .0117) ( .0101) (.0082) (.0154) (.0099) (.0124) 

Services -227.83 .05574 .05063 .03771 .03456 .06192 .04059 .01080 .03299 .05061 
(81.342) (.0125) ( .0080) ( .0044) (.0078) (.0070) ( .0055) ( .0103) (.0066 ) (.0083) 

(X) 

===============================•================================================================================================================== N 

Dependent 
lag 10 a2 Variable Lag 9 lag 11 lag 12 Rest. F Ill 

-- -- -
Total .04705 .02322 .00271 -.03181 3.711 .9994 1.9329 

(.0244) ( .0122) ( .0226) (.0412) 

DuraLles -.00272 .001ll -.00569 -.01675 2.179 .9928 2.2752 
( .0146) ( .0073) (.0136) ( .0255) 

Non-Duro.bles .00937 .00456 -.0776 -.02718 2.512 .9990 1.7898 
(.0104) ( .0052) (.0096) ( .0169) 

Services .03960 .01689 .01430 .00856 3.973 .9998 1.6451 
(.0074) ( .0037) ( .0067) (.0015) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 

Nurrber of observations = 128 

Restricted F numerator d.f. = 9; denominator d.f. = 114; tabulated= 1.96 



TABLE 5.13 

ESTIMATED COEFFICIENTS FOR CUBIC SPLINE MODELS WITH lAG lENGTH OF TWELVE. 

THREE KNOTS. AND ENDPOINT CONSTRAINTS EQUAL TO ZEROa 

Dependent 
Variable Constant lagO lag 1 lag 2 lag3 lag4 lag 5 lag 6 lag 7 lag 8 

-- -- -- -- -- ---- -- --Total 103.56 .38413 .26005 .14507 .04845 -.02124 -.02796 -.01273 .01545 .04461 (73.209) ( .0429) ( .0254) (.0162) ( .0215) ( .0297) ( .0214) {.0160) {.0211) { .0295) 
Durables -268.86 .16867 .10678 .04860 -.00217 -.04172 -.04212 -.03322 -.02129 -.00941 (40.006) ( .0274) (.0159) {.0101) {.0140) { .0194) ( .0139) (.0104) ( .0137) ( .0192) 
Non-Durables 660. 73 .13675 -.09044 .04767 .01201 -.01299 -.01160 -.00323 .00969 .02173 (43.258) ( .0183) ( .0111) {.0072) (.0092) (.0123) ( .0089) {.0067) ( .0087) ( .0122) 
Services 241.61 .07307 .05930 .04730 .03887 .03578 .02877 .02679 .03020 .03517 (80.096) {.0123) {.0076) {.0050) (.0060) ( .0080) ( .0058) (.0044) ( .0057) {.0080) 

00 
w ---==================================~============================================================================================================ Dependent 

Variable lag 9 lag 10 Lag 11 lag 12 Rest. F rt2 I1i 
-- - -- --- --Total .04118 .02874 -.10365 -. 01105 1.702 .9995 1.8518 ( .0216) (.0166) (.0256) ( .0428 

Durables -.00268 -.00138 -.00366 -.00777 1.326 .9932 2.2501 (.0140) ( .0104) (.0161) (.0274) 
Non-Durables .01666 -.00662 -.00670 -.02170 1.495 .9991 1.7377 {.00908) ( .0073) Loon) ( .0183) 
Services .02816 .02231 .01726 .01258 1.933 .9998 1.6098 ( .0060) {.0051) ( .0076) (.0122) 

aStandard errors are given in parenthesis. All equations corrected using Cochrane-Orcutt. 
Number of observations = 128. 

Restricted F d.f. nurrerator = 9; denominator d.f. = 114; tabulated= 1.96 
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fo r a natural cubic spline. 

Summary 

The objective of this chapter was to illustrate the 

characteristics and properties of the various finite lag 

models discussed in this study. The economic model em

p l oyed was the simple consumption function. Four of these 

models were used, where the dependent variables represented 

different categories of consumption expenditures. 

The experiment described in this chapter did, however, 

yield rather consistent results. In the first section, it 

was found that an arithmetic lag with lag length of four 

quarters fit the data very well. In line with this result, 

the inverted-V formulation performed very poorly. The next 

s ection presented and discussed the results when Almon lag 

models of varying lag lengths were employed. It was found 

that they were consistent with the arithmetic lag. Follow

ing this, the results from the spline distribution were 

presented. Although the spline technique suggests the lag 

is longer, one must be aware of the degrees of freedom 

problem encountered. 

The results from the spline lag were not very incon

sistent with the previous findings. Since the arithmetic 

lag may be thought of as a special case of the Almon poly

nomial (i.e. polynomial degree one), and the spline as a 

generalization of the Almon, one would expect the spline to 
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yield good results. 

As the literature suggests, and from the results 

presented here, a few conclusions may be drawn, namely: 

when the lag length is not very large, the arithmetic or 

inverted-V will probably yield acceptable results. As the 

lag length increases, one might prefer to employ an Almon 

or spline model. 



VI. SU~~ARY AND CONCLUSIONS 

The objective of this study was to demonstrate how 

prior restrictions, in the form of a finite lag distribu

tion, may be incorporated into econometric models. To this 

end, various approaches and distribution shapes were re

viewed. 

The first chapter reviewed and discussed the earliest 

approaches to the problem. These were the arithmetic and 

inverted-V formulations. The arithmetic lag model assumes 

that the effect of a change of the independent variable 

diminishes linearly over succeeding time periods. It is 

assumed that the adjustment is the largest during the 

period when the explanatory variable changes and subsequent 

adjustments are smaller, their effects dimin ishing linearly 

and by a constant amount until the change is exhausted. It 

was demonstrated that the lag distribution may be thought 

of as a linear function of the lag index i. In addition, 

by dividing each coefficient by the sum of the coeffi

cients, lag weights are obtained. Estimation of the arith

metic lag model involves the construction of a composite 

variable. The advantage of this method is that the problem 

of multicollinearity is avojded. An alternative method of 

86 
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estimating the lag coefficients is the restricted least 

squares formulation, which was presented next. 

The next model, or formulation, that was examined was 

the inverted-V lag model. The formulation imposed an in

verted-V shape to the lag distribution. An alternative way 

to view this is to regard each side of the distribution as 

a separate linear function. While reviewing De Leeuw's 

formulation it was demonstrated that both sides had the 

same constant slope, similar to the arithmetic lag model. 

The disadvantages of these approaches is that they 

require the lag coefficients to lie on a linear function of 

some sort. One way to avoid this restriction is to assume 

a polynomial distribution. This idea was presented by 

Almon in 1965. In her original article, she suggested a 

method of polynomial interpolation, Lagrangian interpola

tion, as an approach to estimating the polynomial distribu

tion. The advantage of this is that fewer parameters must 

be estimated. An alternative method that yields equivalent 

results was suggested by Cooper , and was also reviewed. 

Although a polynomial distribu t ion may be assumed, it is 

still possible to pre-determine its shape. This is accom-

plished by using endpoint constra ints. By constraining the 

value of the lag coefficient at the left end of a second 

order polynomial to be zero, a monotonically increasing 

polynomial is obtained, and vice versa for a left endpoint 

cons traint. Constraining both sides yields a "humped" 
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distribution. The discussion on the Almon model closed 

with an exposition of restricted least squares approache s. 

An alternative method of estimating a polynomial dis

tribution is to employ spline functions. The cubic spline 

approach to estimating a polynomial distributed lag is 

similar to a piece-wise polynomial regression. The differ

ence is that the model is formulated so as to ensure that 

the spline will be continuous and have continuous first and 

second derivatives at the knots. The problem encountered 

with that was that there were fewer variables than restric

tions, or equations, rendering the model insolvable. The 

solution was to impose constraints on the second deriva

tives of the spline at the first and last knots. The 

chapter closed with an exposition of a restricted least 

squares formulation of the cubic spline. 

The spline and Almon approaches to estimating a poly

nomial distribution are, to some extent, very similar to 

each other. Each involves estimating a subset of the 

coefficients and from the estimates, calculate, or interpo

late, the missing values. 

In order to demonstrate the properties of these lag 

mode 1 s, four mode 1 s of consumption were es ti rna ted, using 

each of the discussed formulations. The results were pre

sented in chapter five. No attempt was made to determine 

the exact lag structure of each of the consumption models, 

however, the results presented in the tables did indicate 
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than an arithmetic model with a lag length of four quarters 

might be the best fit. The spline technique suggests the 

lag is longer, but there are degrees of freedom problems 

with the spline formulation. This finding is more in line 

with Keynesian hypotheses of a relatively quick and stable 

impact of income on consumption. It conflicts with perma

nent income theories that hypothesize a long lag between 

the two time series. 

There are many aspects of this subject that were not 

pursued in this study, but clearly merit some investigative 

effort. Further research should be undertaken to determine 

the length and polynomial order of the lag structure. In 

addition, there are other methods of estimating a finite 

distributed lag, such as the use of Boyesian inference. 

Nevertheless, it is likely that such methods will also 

confirm the essential arithmetic structure to the consump

tion-income relationship, and the lag length of four quar

ters which was estimated in chapter five using a variety of 

different models. 



LIST OF REFERENCES 

Almon, s. The Distributed Lag Between Capital Appropria
tions and Expenditures. Econometrica, 1965, ll' pp. 178-
196. 

Apostol, T. Calculus, Volume 2. New York: Wiley, 1962. 

Business Conditions Digest (Department of Commer ce). 
Washington, D.C.: U.S. Government Printing Office, June 
1983 and October 1982. 

Cooper, J. D. Two Approaches to Polynomial Lag Estimation: 
An Expository Note and Comment. American Statistician, 
1972, 26, pp. 32-35. 

De Leew, Fe The Demand for Capital Goods by Manufacturers: 
A Study of Quarterly Time Series. Econometrica, 1962, 
lQ_, pp. 4 0 7-4 2 3. 

Eisner, 
ment. 

R. & Strotz, R. Determinants of Business Invest
New Jersey: Prentice-Hall, 1963. 

Fisher, I. Note on a Short-Cut Method for Calculating 
Distributed Lags. Bulletin de L 1 Instait Internationa l 
de Statistique, 1 937, ~' pp. 323-328. 

Hill, R. D., & Johnson, S. R. A Simultaneous Test for the 
Length and Order of Almon Polynomial Lags. Unpublished 
working paper, University of Georgia, Athens, 1976. 

Judge, Go, Griffiths, W. E., Hill, R. C., 
Theory and Practice of Econometrics. 
Wiley and Sons, 1980. 

& Lee, T. The 
New York: John 

Poirier, 0. J. The Econometrics of Structural Change. New 
York: North-Holland, 1976. 

Shiller, R. J. A Distributed Lag Estimator Derived from 
Smoothness Priors. Econometrica, 1973, !!' pp. 775-788. 

90 




	00_0cover
	00_1
	00_2
	00_3
	00_4
	00_5
	00_6
	00_7
	00_8
	00_9
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091

