You are here

Development of an intelligent fuzzy obstacle avoidance system using SONAR modeling and simulation

Download pdf | Full Screen View

Date Issued:
2006
Summary:
Response time to a threat or incident for coastline security is an area needing improvement. Currently, the U.S. Coast Guard is tasked with monitoring and responding to threats in coastal and port environments using boats or planes, and SCUBA divers. This can significantly hinder the response time to an incident. A solution to this problem is to use autonomous underwater vehicles (AUVs) to continuously monitor a port. The AUV must be able to navigate the environment without colliding into objects for it to operate effectively. Therefore, an obstacle avoidance system (OAS) is essential to the activity of the AUV. This thesis describes a systematic approach to characterize the OAS performance in terms of environments, obstacles, SONAR configuration and signal processing methods via modeling and simulation. A fuzzy logic based OAS is created using the simulation. Subsequent testing of the OAS demonstrates its effectiveness in unknown environments.
Title: Development of an intelligent fuzzy obstacle avoidance system using SONAR modeling and simulation.
87 views
26 downloads
Name(s): Bouxsein, Philip A.
Florida Atlantic University, Degree grantor
An, Edgar, Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2006
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 193 p.
Language(s): English
Summary: Response time to a threat or incident for coastline security is an area needing improvement. Currently, the U.S. Coast Guard is tasked with monitoring and responding to threats in coastal and port environments using boats or planes, and SCUBA divers. This can significantly hinder the response time to an incident. A solution to this problem is to use autonomous underwater vehicles (AUVs) to continuously monitor a port. The AUV must be able to navigate the environment without colliding into objects for it to operate effectively. Therefore, an obstacle avoidance system (OAS) is essential to the activity of the AUV. This thesis describes a systematic approach to characterize the OAS performance in terms of environments, obstacles, SONAR configuration and signal processing methods via modeling and simulation. A fuzzy logic based OAS is created using the simulation. Subsequent testing of the OAS demonstrates its effectiveness in unknown environments.
Identifier: 9780542751134 (isbn), 13390 (digitool), FADT13390 (IID), fau:10240 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2006.
Subject(s): Fuzzy logic
Submersibles--Automatic control
Neural networks (Computer science)
Underwater acoustics--Computer simulation
Sonar--Computer simulation
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13390
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.