You are here

Analysis of nucleus reuniens cell behavior during hippocampal theta rhythm

Download pdf | Full Screen View

Date Issued:
2006
Summary:
Coherence estimates have been used to determine the presence of functional coupling between two signals. While direct projections from the nucleus reuniens (RE) to the hippocampus formation in the rat have been discovered, little is known about the possible functional influence of the RE on the hippocampus. This investigation makes use of MATLAB to create a set of specialized algorithms to investigate coherence function estimates between RE cell activity and hippocampal EEG. In addition, error prevention considerations as well as shortcomings in current data acquisition software that ultimately lead to the necessity for additional software analysis tools are also discussed. An investigation into RE cell behavior requires the calculation of cell activity spike rates as well as the identification of action potential bursting phenomena. Isolation of individual cell activity, from a population recording channel, is needed in order to prevent erroneous effects associated with using unresolved multi-neuron recordings. Changes in spike rate activity and frequency of bursting occurrences are calculated as a means of gauging RE unit response to the presence of a stimulus (e.g., tail pinch). The relationship of RE units on hippocampal EEG by analysis of coherence function estimates between RE units and hippocampal EEG, as well as evaluated RE unit behavior in terms of changes in unit spike rate and bursting activity are established.
Title: Analysis of nucleus reuniens cell behavior during hippocampal theta rhythm.
84 views
27 downloads
Name(s): Morales, George J.
Florida Atlantic University, Degree grantor
Morgera, Salvatore D., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2006
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 219 p.
Language(s): English
Summary: Coherence estimates have been used to determine the presence of functional coupling between two signals. While direct projections from the nucleus reuniens (RE) to the hippocampus formation in the rat have been discovered, little is known about the possible functional influence of the RE on the hippocampus. This investigation makes use of MATLAB to create a set of specialized algorithms to investigate coherence function estimates between RE cell activity and hippocampal EEG. In addition, error prevention considerations as well as shortcomings in current data acquisition software that ultimately lead to the necessity for additional software analysis tools are also discussed. An investigation into RE cell behavior requires the calculation of cell activity spike rates as well as the identification of action potential bursting phenomena. Isolation of individual cell activity, from a population recording channel, is needed in order to prevent erroneous effects associated with using unresolved multi-neuron recordings. Changes in spike rate activity and frequency of bursting occurrences are calculated as a means of gauging RE unit response to the presence of a stimulus (e.g., tail pinch). The relationship of RE units on hippocampal EEG by analysis of coherence function estimates between RE units and hippocampal EEG, as well as evaluated RE unit behavior in terms of changes in unit spike rate and bursting activity are established.
Identifier: 9780542745935 (isbn), 13383 (digitool), FADT13383 (IID), fau:10233 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2006.
Subject(s): Hippocampus (Brain)
Electroencephalography
Neurosciences
Theta rhythm
Memory
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13383
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.