You are here
EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION
- Date Issued:
- 2024
- Abstract/Description:
- Short-circuit faults can cause significant damage to power grid infrastructure, resulting in costly maintenance for utility providers. Rapid identification of fault locations can help mitigate these damages and associated expenses. Recent studies have demonstrated that graph neural network (GNN) models, using phasor data from various points in a power grid, can accurately locate fault events by accounting for the grid’s topology—a feature not typically leveraged by other machine learning methods. However, despite their high performance, GNN models are often viewed as ”black-box” systems, making their decision logic difficult to interpret. This thesis demonstrates that explanation methods can be applied to GNN models to enhance their transparency by clarifying the reasoning behind fault location predictions. By systematically benchmarking several explanation techniques for a GNN model trained for fault location detection, we assess and recommend the most effective methods for elucidating fault detection predictions in power grid systems.
Title: | EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION. |
![]() ![]() |
---|---|---|
Name(s): |
Bosso, Richard George , author Tang, Yufei , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 84 p. | |
Language(s): | English | |
Abstract/Description: | Short-circuit faults can cause significant damage to power grid infrastructure, resulting in costly maintenance for utility providers. Rapid identification of fault locations can help mitigate these damages and associated expenses. Recent studies have demonstrated that graph neural network (GNN) models, using phasor data from various points in a power grid, can accurately locate fault events by accounting for the grid’s topology—a feature not typically leveraged by other machine learning methods. However, despite their high performance, GNN models are often viewed as ”black-box” systems, making their decision logic difficult to interpret. This thesis demonstrates that explanation methods can be applied to GNN models to enhance their transparency by clarifying the reasoning behind fault location predictions. By systematically benchmarking several explanation techniques for a GNN model trained for fault location detection, we assess and recommend the most effective methods for elucidating fault detection predictions in power grid systems. | |
Identifier: | FA00014528 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Fault location (Engineering) Neural networks (Computer science) |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014528 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |