You are here

IDENTIFYING EPIGENETIC MODIFICATIONS TO COMBAT RESISTANCE TO THE CHEMOTHERAPEUTIC AGENT DOXORUBICIN

Download pdf | Full Screen View

Date Issued:
2024
Abstract/Description:
There has been substantial progress in cancer research that has markedly enhanced patient outcomes. However, chemotherapy resistance persists and often leads to multidrug resistance, rendering cancer cells unresponsive to multiple chemotherapy drugs, presenting a significant challenge in the effective treatment of the disease. Dysregulation in gene expression patterns caused by abnormalities in epigenetic mechanisms have been identified as contributing factors to the development and progression of cancer. Epigenetic research offers potential to discover drugs that target specific epigenetic modifications to regulate gene expression patterns in the context of chemotherapy resistance. I hypothesize that histone modifications on histone H3 and histone H4 contribute to doxorubicin resistance. The data presented here provides an initial screening of the mutant monoallelic histone yeast strains to identify post-translationally modifiable amino acids in H3 and H4 that could contribute to doxorubicin resistance. The possible targets of histone modifications were then repeated in triplicate to obtain statistical significance. Finally, Western blot techniques were used to identify the modification occurring on the histone H3 and histone H4 amino acid sites that were previously identified to be statistically significant.
Title: IDENTIFYING EPIGENETIC MODIFICATIONS TO COMBAT RESISTANCE TO THE CHEMOTHERAPEUTIC AGENT DOXORUBICIN.
21 views
11 downloads
Name(s): Kingham, Anna Lesley , author
Grant, Patrick , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biomedical Science
Charles E. Schmidt College of Medicine
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2024
Date Issued: 2024
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 123 p.
Language(s): English
Abstract/Description: There has been substantial progress in cancer research that has markedly enhanced patient outcomes. However, chemotherapy resistance persists and often leads to multidrug resistance, rendering cancer cells unresponsive to multiple chemotherapy drugs, presenting a significant challenge in the effective treatment of the disease. Dysregulation in gene expression patterns caused by abnormalities in epigenetic mechanisms have been identified as contributing factors to the development and progression of cancer. Epigenetic research offers potential to discover drugs that target specific epigenetic modifications to regulate gene expression patterns in the context of chemotherapy resistance. I hypothesize that histone modifications on histone H3 and histone H4 contribute to doxorubicin resistance. The data presented here provides an initial screening of the mutant monoallelic histone yeast strains to identify post-translationally modifiable amino acids in H3 and H4 that could contribute to doxorubicin resistance. The possible targets of histone modifications were then repeated in triplicate to obtain statistical significance. Finally, Western blot techniques were used to identify the modification occurring on the histone H3 and histone H4 amino acid sites that were previously identified to be statistically significant.
Identifier: FA00014473 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2024.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Epigenetics
Doxorubicin
Chemotherapy
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014473
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU