You are here
Small Anodic Polarization as a Mean to Modestly Accelerate Rebar Corrosion.
- Date Issued:
- 2024
- Abstract/Description:
- The study of non-invasive techniques to analyze the propagation of corrosion in steel reinforced concrete structures proves to be a great alternative to better understanding the corrosive process of rebar and increasing its useful life. The study presented in this document examines the evolution of steel reinforced concrete corrosion over time by applying a small anodic current over four samples, one with a single rebar (16X) and three with three rebars. The rebars were interconnected to apply the anodic current and accelerate their corrosion. Galvanostatic Pulse (GP) was used. This method applies a constant current pulse to the rebar for 150 seconds while monitoring the potential of the rebars. Each rebar's corrosion current was assessed using GP measurements when no anodic current was applied, and the rebars were disconnected. Sample 16X additionally underwent ultrasonic acoustic analysis by collecting the surface and rebar echo response with a transducer and modeling the sound propagation for poroelastic media with an adapted version of the novel Biot-Stoll method.
Title: | Small Anodic Polarization as a Mean to Modestly Accelerate Rebar Corrosion. |
18 views
6 downloads |
---|---|---|
Name(s): |
da Silveira, Gabrielle Pimentel, author Presuel-Moreno, Francisco, Thesis advisor Pierre-Philippe, Beaujean, Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 93 p. | |
Language(s): | English | |
Abstract/Description: | The study of non-invasive techniques to analyze the propagation of corrosion in steel reinforced concrete structures proves to be a great alternative to better understanding the corrosive process of rebar and increasing its useful life. The study presented in this document examines the evolution of steel reinforced concrete corrosion over time by applying a small anodic current over four samples, one with a single rebar (16X) and three with three rebars. The rebars were interconnected to apply the anodic current and accelerate their corrosion. Galvanostatic Pulse (GP) was used. This method applies a constant current pulse to the rebar for 150 seconds while monitoring the potential of the rebars. Each rebar's corrosion current was assessed using GP measurements when no anodic current was applied, and the rebars were disconnected. Sample 16X additionally underwent ultrasonic acoustic analysis by collecting the surface and rebar echo response with a transducer and modeling the sound propagation for poroelastic media with an adapted version of the novel Biot-Stoll method. | |
Identifier: | FA00014491 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Reinforced concrete--Corrosion Reinforced concrete--Analysis Nondestructive testing |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014491 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |