You are here
FROM DNA TO GRAVITATIONAL WAVES: APPLICATIONS OF STATISTICS AND MACHINE LEARNING.
- Date Issued:
- 2024
- Abstract/Description:
- In the current world of fast-paced data production, statistics and machine learning tools are essential for interpreting and utilizing the full potential of this data. This dissertation comprises three studies employing statistical analysis and Convolutional Neural Network models. First, the research investigates the genetic evolution of the SARS-CoV-2 RNA molecule, emphasizing the role of epistasis in the RNA virus’s ability to adapt and survive. Through statistical tests, this study validates the significant impacts of genetic interactions and mutations on the virus’s structural changes over time, offering insights into its evolutionary dynamics. Secondly, the dissertation explores medical diagnosis by implementing Convolutional Neural Networks to differentiate between lung CT-scans of COVID-19 and non-COVID patients. This portion of the research demonstrates the capability of deep learning to enhance diagnostic processes, thereby reducing time and increasing accuracy in clinical settings. Lastly, we delve into gravitational wave detection, an area of astrophysics requiring precise data analysis to identify signals from cosmic events such as black hole mergers. Our goal is to utilize Convolutional Neural Network models in hopes of improving the sensitivity and accuracy of detecting these difficult to catch signals, pushing the boundaries of what we can observe in the universe. The findings of this dissertation underscore the utility of combining statistical methods and machine learning models to solve problems that are not only varied but also highly impactful in their respective fields.
Title: | FROM DNA TO GRAVITATIONAL WAVES: APPLICATIONS OF STATISTICS AND MACHINE LEARNING. |
![]() ![]() |
---|---|---|
Name(s): |
Alemrajabi, Mahsa Firouzabad, author Tichy, Wolfgang , Thesis advisor Assis, Raquel , Thesis advisor Florida Atlantic University, Degree grantor Department of Physics Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 175 p. | |
Language(s): | English | |
Abstract/Description: | In the current world of fast-paced data production, statistics and machine learning tools are essential for interpreting and utilizing the full potential of this data. This dissertation comprises three studies employing statistical analysis and Convolutional Neural Network models. First, the research investigates the genetic evolution of the SARS-CoV-2 RNA molecule, emphasizing the role of epistasis in the RNA virus’s ability to adapt and survive. Through statistical tests, this study validates the significant impacts of genetic interactions and mutations on the virus’s structural changes over time, offering insights into its evolutionary dynamics. Secondly, the dissertation explores medical diagnosis by implementing Convolutional Neural Networks to differentiate between lung CT-scans of COVID-19 and non-COVID patients. This portion of the research demonstrates the capability of deep learning to enhance diagnostic processes, thereby reducing time and increasing accuracy in clinical settings. Lastly, we delve into gravitational wave detection, an area of astrophysics requiring precise data analysis to identify signals from cosmic events such as black hole mergers. Our goal is to utilize Convolutional Neural Network models in hopes of improving the sensitivity and accuracy of detecting these difficult to catch signals, pushing the boundaries of what we can observe in the universe. The findings of this dissertation underscore the utility of combining statistical methods and machine learning models to solve problems that are not only varied but also highly impactful in their respective fields. | |
Identifier: | FA00014454 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Neural networks (Computer science) Gravitational waves Deep learning (Machine learning) Diagnosis Epistasis, Genetic |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014454 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |