You are here
Investigating a Cryptic Iron-Nitrogen Cycle in Lake Okeechobee Sediments`
- Date Issued:
- 2024
- Abstract/Description:
- The overall objective was to elucidate the effect of iron (Fe) on nitrogen (N) diagenesis in Lake Okeechobee. Somewhat counterintuitively, sediment ammonium (NH+4) inventories decreased during algal growth as dissolved organic nitrogen (DON) inventories increased. Whole core incubations were staged for denitrification experiments using isotopic N tracer. Core incubations showed the percentage of sediment N removal increase between summer (25 ± 21 %) and winter (39 ± 13 %). The amendment of Fe2+ enhanced this seasonal effect likely via dissimilatory nitrate reduction to ammonium (DNRA). The isotopic signature of N2 flux also suggested an additional, sedimentary, N2 source via Fe coupled anaerobic oxidation of ammonium (feammox). Sediment slurry incubations supported the occurrence of both DNRA and feammox, showing first that nitrate (NO3−) was converted to NH4+ via DNRA, which contributed 23-26% of overall NO3− reduction. Fe amendment in slurries similarly stimulated the feammox process. However, aged Fe minerals accumulated linearly with N bound to Fe (Fe-N) in a subseasonal sediment time series, suggesting Fe-organic matter aggregation may lower the sediment NH4+ equilibrium concentration and benthic flux.
Title: | Investigating a Cryptic Iron-Nitrogen Cycle in Lake Okeechobee Sediments`. |
![]() ![]() |
---|---|---|
Name(s): |
Silvera, Owen , author Beckler, Jordon , Thesis advisor Florida Atlantic University, Degree grantor Department of Marine Science and Oceanography Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 153 p. | |
Language(s): | English | |
Abstract/Description: | The overall objective was to elucidate the effect of iron (Fe) on nitrogen (N) diagenesis in Lake Okeechobee. Somewhat counterintuitively, sediment ammonium (NH+4) inventories decreased during algal growth as dissolved organic nitrogen (DON) inventories increased. Whole core incubations were staged for denitrification experiments using isotopic N tracer. Core incubations showed the percentage of sediment N removal increase between summer (25 ± 21 %) and winter (39 ± 13 %). The amendment of Fe2+ enhanced this seasonal effect likely via dissimilatory nitrate reduction to ammonium (DNRA). The isotopic signature of N2 flux also suggested an additional, sedimentary, N2 source via Fe coupled anaerobic oxidation of ammonium (feammox). Sediment slurry incubations supported the occurrence of both DNRA and feammox, showing first that nitrate (NO3−) was converted to NH4+ via DNRA, which contributed 23-26% of overall NO3− reduction. Fe amendment in slurries similarly stimulated the feammox process. However, aged Fe minerals accumulated linearly with N bound to Fe (Fe-N) in a subseasonal sediment time series, suggesting Fe-organic matter aggregation may lower the sediment NH4+ equilibrium concentration and benthic flux. | |
Identifier: | FA00014486 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Okeechobee, Lake (Fla.) Diagenesis Sediments (Geology) Biogeochemistry |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014486 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |