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Abstract

Author: Paula Borges

Title: Novel Conopeptides from Conus tessulatus
Institution: Florida Atlantic University
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Degree: Master of Science

Year: 2005

Cone snails are predatory marine mollusks that utilize their peptide rich venom to capture
prey, deter competitors and defend themselves. Each of the 1000 known species
expresses over 100 conotoxins with little overlap between species. Most of these
conotoxins selectively target a specific neuronal ion-channel or receptor. Because of their
unprecedented diversity and specificity, they hold enormous potential as
neuropharmacological agents, and as neuroscience research tools. In this study, the
venom of a common shallow water cone snail that thrives in the Indo-Pacific to the
Panamic region, Conus tessulatus, was analyzed; conopeptide components of the venom
were isolated and investigated by high performance liquid chromatography, nuclear
magnetic resonance, mass spectrometry, and automated Edman degradation sequencing.
Five new peptide sequences are herein reported, among which there are three members of
the M superfamily, one a conotoxin, and a conophan. The novel peptides comprise a

partial peptide library of this particular cone.
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Introduction

Cone snails within the genus Conus are venomous marine gastropods that utilize
modified peptide toxins in an effective biochemical campaign to capture prey, deter
competitors, defend against predators, and possibly in other biological functions (Terlau
and Olivera 2004). These modified peptides (conopeptides) that make up the venom of
the snails are fast acting neuroactive compounds that immobilize the target by affecting
the victims’ neurophysiology. When envenomed, a cone's prey is rapidly subdued by the
concerted, high-affinity binding of the venom's protein and peptide toxins to voltage and
ligand gated ion channels essential for the proper function of the prey's nervous and
muscular systems (Newcomb and Miljanich 2001). Since the first conopeptides were
isolated a few decades ago, extensive systematic investigation has been conducted on
these promising ion channel targets. This research has shown that each species among
the hundreds of species has its own distinct complex cocktail of 20-200 peptides that

comprises its venom.

Every Conus species captures their prey by envenomation via a highly efficient venom
apparatus and delivery system (Figure 1). The venom apparatus in all cone snails consists
of a venom bulb (vb) which pushes the venom out; the venom duct (vd) where the venom
is synthesized by epithelial cells lining the duct and stored; a radula sac (rs) where the

harpoon-like teeth (h) are kept; proboscis (pr), which is used to deliver the harpoon and



venom to the prey. At the end of the secretory pathway, which is mainly unknown,
conotoxins are packed into secretory granules that are secreted into the duct lumen (Cruz
et al. 1992). Each harpoon is used only once and they act as disposable hypodermic
needles to eject the venom (Olivera 1997).

Figure 1- Stucture of a Typical Conus Venom Apparatus from Conus purpurascens

(Olivera 1997)

Cone snails can be broadly characterized by their choice of prey. Mulluscivorous Conus
prey on other gastropods, vermivorous Conus feed on small polychaete worms, and
piscivorous Conus prefer small fish. Because they live in a hostile marine environment
and exhibit a general lack of mobility, the need for fast acting venom to paralyze their
agile prey becomes a demanding necessity in order to quickly immobilize their target
(Terlau and Olivera 2004). Hence, the major components of the cone snail venom have
been found to target key cell surface-signaling components of nervous systems such as

ion channels and receptors.



Conus tessulatus is a common Indo-Pacific cone snail that feeds on polychaete worms,
and whose venom scarcely affects mollusks and small fishes. All Conus predatory
gastropods hunt prey from one of five different phyla, and all of these preys have
cholinergic synapses (Cartier et al. 1996). Vermnivorous cones have not been well
charachterized to date. Conus tessulatus is from the class gastropoda, order
caenogastropoda, superfamily conacea, and family conidae. It is a nocturnal shallow
water species found buried in sand with grass. They thrive in intertidal and subtidal
regions usually up to 40 meters. The cone resides in the entire Indo-Pacific and also in
the East Pacific Region (Rockel et al., 1995). Figure 2 shows a photograph of a Conus
tessulatus shell.

Figure 2 — Picture of a Conus tessulatus Shell from
http://www.active.net.gr/aegeanshells/conus/c-tessulatus.htm




Conus Venom Diversity

The genus Conus is one of the largest and most successful living genuses of marine
animals, comprised of about 1000 different species (Mari and Fields 2003). Each species
of Conus exhibits its own distinct repertoire of conopeptides, different from those of all
other species. This difference is thought to arise from divergent biotic interactions within
the tropical marine habitats in which cone snails thrive, that give rise to a corresponding
divergence of cone snail venoms. Each Conus species has a unique set of biotic
interactions characteristic of that species that helps to rationalize why each one has a
different stock of 2-200 venom peptides (Bulaj et al. 2003). Although the specific
detailed interactions between any Conus species with other animals within its
environment is unknown, the fact that there are about 100 conopeptides per species and
thus over 50,000 unique active conotoxins remains clear (Terlau and Olivera 2004).
Moreover, each species is believed to express only a subset of all of its peptides at one
time. This diversity in the venom has given rise to much interest in their highly selective

biological activity.

Extensive research has shown these Conus venoms contain various small structured
peptides, many with post translational modifications, which specifically target different
ion channels and receptors. Conopeptides is the broad definition given to all peptide
components of the venom. Conopeptides are biosynthesized as larger precursor peptides,
consisting of the N-terminal signal sequence, intervening propeptide, and a mature toxin
(Garrett et al. 2005). There are two major classes of conopeptides: non-disulfide rich and

disulfide rich, a term indicating the relative number of cystine amino acids within the



primary sequence. Conophans and contryphans are linear peptides with no disulfide
bridges, while conopressins have one disulfide bride due to the presence of two cysteines.
The general term conotoxins refers to disulfide rich peptides that contain two or more
disulfide bridges. The conotoxins are sub-divided into super families in accordance with
their cysteine residue backbone arrangement. The precursors of super family members
share a highly conserved signal sequence in their precursors and a characteristic cysteine
backbone in mature peptides. The cysteines form the disulfide bridges which stabilize

and structure the conotoxins.

Many super families have already been identified and named, such as the O, M, A, S, T,
P, and I superfamilies, and many others have been found but remain nameless to date.
Sub classifications within superfamilies are based on relative arrangement and number of
cysteine residues, the number of residues between these cysteines, and on the particular

molecular target of the family (Figure 3).



Figure 3 — Classification of Conopeptides by Molecular Target and Loop Pattern (Terlau
and Olivera 2004)
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Another characteristic feature of conotoxins that yields even more diversity is the
remarkable number of post-translational modifications, such as O-glycosylation,
bromination of tryptophan, y-carboxylation of glutamate residues, hydroxylation of
prolines, or L- to D-epimerization that appears in many of the peptides (Craig et al.
1999). Some of these modifications are quite common while others are unusual, and

some were first discovered in Conus peptides.

Neurophysiology and Neuropharmacology of Venom

Due to the diverse nature of cone snail peptides, they exhibit a huge assortment of
pharmacological activity even within a given superfamily. The diversity is ascribed to
differences in primary structure of the peptides, which give rise to variability in charge,

structure and characteristics of each unique peptide. Molecular targets are functionally



diverse and include G-protein coupled receptors, neurotransmitter transporters, ligand —
gated ion channels, and voltage — gated ion channels, the latter two being the better
known categories. Over the last 50 years, the concept of Na and K channels as
components of action potential generation has given way to an intricate molecular
complexity characterized by the fact that the K channel actually consists of over 80 genes
that can arrange in a variety of combinations to yield an overwhelming diversity of
tetrameric isoforms of K channels. These diverse ion channel substrates have been
effective molecular targets for conopeptides because of the very diversity of targets that

yield so many biological activities.

Although there are a variety of different peptides in the venom of any given cone, each
peptide acts synergistically with the other peptides in order to accomplish some goal. For
example, the first set of peptides injected into the prey acts to immediately immobilize
the victim by inhibiting voltage gated Na channel inactivation and blocking K channels.
This type of activity leads to mass depolarization of axons in the vicinity of the site of
venom injection resulting in a tetanic state. The second set of peptides works to
completely inhibit neuromuscular transmission. These peptides must be transported to
sites, such as neuromuscular junctions, that are away from the site of venom injection,
and are therefore more slow acting. They inhibit presynaptic Ca channels, postsynaptic
nicotinic receptors, and Na channels involved in the muscle action potential (Terlau and
Olivera 2004).Table 1 shows a listing of molecular targets and therapeutic potentials of

different classes of peptides.



Table 1 — Targets and Therapeutic Potential of Different Classes of Conopeptides

(Alonso et al. 2003)

Class Target Therapeutic Potential
Contulakins - Linear Neurotensin receptors Neuropathic pain
Conatokins - Linear NMDA receptors Epilepsy, Parkinson’s

Conopressins - CC

Vasopressin receptors

Regulates blood pressure

¥-Conotoxins - CC-CPC

Neuropathic pain

Neuropathic pain

w-Conotoxins - C-C-CC-C-C

Ca channels

Analgesic, Stroke

k-Conotoxins - C-C-CC-C-C

K channels

Arrhythmia, Hypertension

p-Conotoxins — CC-C-C-CC

Skeletal muscle Na
channels

Neuromuscular block

y-Conotoxins - CC-C-C-CC Skeletal muscle nACh Analgesic, Parkinson’s,
channels Hypertension

a-Conotoxins - CC-C-C Skeletal muscle nACh Analgesic, Parkinson’s,
receptor Hypertension

From the above described actions of the different peptides in the venom, one can clearly

see that the venom requires a variety of peptides with different targets and activities to

achieve these means. This type of highly assorted toxin repertoire is a perfect

biochemical strategy to advance the needs of the snail that has generated an enormous

conopeptide library with unfathomable potential for neuroscience. One of the first of

these conopeptides to be used therapeutically was Ziconotide, a w-conotoxin now known

as Prialt™. This toxin was isolated from Conus magus and has obtained FDA-approval

and is currently one of the strongest analgesics on the market (Heading 2002).Other

therapeutic toxins being tested to date include the following as shown in Table 2 (Alonso

et al, 2003).




Table 2 — Potential Therapeutic Conopeptides (Alonso et al. 2003, Mari and Fields 2003)

Name of Class of Species | Therapeutic Mode of Company Stage of
Toxin Toxin Interest Action Development
MrIA/B X C Neuropathic | Targets Xenome | Preclinical
marmoreus | pain noradrenaline
transporter
AM336 ) C. cactus Morphine Inhibit Ca Amrad Phase II
resistant channel
pain
ACV1 a C. Neuropathic | Nicotinic Metabolic | Preclinical
victoriae pain/ Nerve | receptor
injury agonist
recovery
Contulakin- | Contulakin | C. Chronic pain | Targets Cognetix | Phase Il
G geographus neurotensin
receptor
Conatokin- | Conatokin | C. Antiepileptic | NMDA Cognetix | Preclinical
G geographus | agent receptor
antagonist

This study was undertaken because of this huge diversity in potential uses of

conopeptides. These marine drugs may one day be the key to elucidating several neuronal

processes and to cure or treat a variety of neurological disorders. The goal of this study

was to isolate and characterize several conopeptides from this previously untapped cone

in order to develop a partial peptide library to be later submitted for biological assays to

determine function and uses.




Materials and Methods

Specimen Collection

To initiate the study, living samples of Conus tessulatus were obtained from their natural
habitat. In order to acquire the specimens, a shallow water dive into the Red Sea was
conducted at night, and several cones were obtained from the rocks, coral or sand. Once
the cones were obtained, they were immediately placed in a salt water tank where they
were kept while being fed worms. The cones were kept in this condition until further use.
In preparation for the extraction of the venom, the cones were placed in a -80°C freezer

and stored there until further use.

Extraction of Crude Venom

The frozen specimens were thawed, removed from their shell, and dissected in order to
acquire the venom ducts, where the crude venom is located. A small needle was inserted
lengthwise between the shell and body and gently turned in the direction of the shell
opening and the body removed. The duct is highly coiled and found embedded within the
soft tissues. It is easily dissected from the rest of the body, with dissecting pins or
needles, under a magnifying lens. The ducts were then uncoiled and measured for length.
This process was done on ice to protect the contents of the ducts. The venom ducts were

subsequently lyophilized. The venom was extracted from the lyophilized ducts with a
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0.1% trifluoroacetic acid (TFA) solution to maximize dissolution. The extracts were
centrifuged at 10,000 x g for 20 min, at 4°C, and the pellets were washed three times with
0.1% TFA and re-centrifuged in the same manner. The supernatants with the soluble
peptides were pooled, lyophilized, and stored at -80°C until further use. The extracted
venom was then subject to various purification steps. Approximately 65.4 mg of crude

venom was extracted from eight cones.

Purification of Peptides

The first purification step was conducted via a pre-equilibrated size exclusion high
performance liquid chromatography (HPLC) column (Pharmacia Superdex-30, 2.5 x 100
cm from Thermo Separation Products) to separate the venom components based on size.
Elution of compounds was done with a 0.1 M NH4HCO; mobile phase at 1.5 ml/min in
an isocratic manner. These fractions were monitored at wavelengths of 220, 250 and 280

nm. The range for all three wavelengths was 2 in most cases unless otherwise specified.

Collected fractions from each peak were pooled, lyophilized, and stored at -40°C until
further use. Fractions containing lower molecular weight components characteristic of
peptides were chosen for further separation in another pre-equilibrated size exclusion
HPLC column, ( Tricorn Superdex™ Peptide 10/300 GL). Lyophilized fractions were
dissolved in 0.1 M NH;4HCO; and elution was done with a 0.1 M NH4HCO; mobile phase
at a rate of 0.3 ml/min. Again, fractions were pooled, lyophilized and stored at -40°C

until further use.

11



Fractions coming from the Superdex peptide column were then subject to separation in a
reverse-phase HPLC column to separate the peptides according to hydrophobicity. The
first reverse-phase HPLC column, a C18 semi-preparative column (Vydac, 218TP510, 10
x 250 mm; Spm particle diameter; 300 A pore size) equipped with a C18 guard column
(Upchurch Scientific, AC-43 4.6 mm), allowed for better separation of single
components and analysis of relative quantity. The lyophilized fractions were dissolved in
0.1% TFA and eluted with a linear gradient of 0.1% TFA (buffer A) and 0.1% TFA in
60% acetonitrile (buffer B) at a flow rate of 3.5 ml/min with a 1% buffer B increase/min.
Absorbance was monitored at wavelengths of 220 and 280 nm. Major peaks were
lyophilized, stored at -40°C, then re-dissolved in 0.1% TFA for further purification in an
analytical reverse-phase C18 column (Vydac, 238TP54, 4.6 x 250 mm; Spm particle
diameter; 300 A pore size), with a flow rate of 1 ml/min. Elution was also done with the
same buffers as described for the semi-preparative column, and absorbance was
monitored likewise. Fractions were manually collected, lyophilized and kept at -40°C
until further use. The purity and molecular weight of the separated peptides were
analyzed using mass spectrometry. Impure samples were subject to an additional

analytical run when necessary. Pure samples were subject to other experiments.

Determination of Molecular Mass

Molecular mass was determined by positive ion matrix laser desorption ionization-time
of flight (MALDI-TOF) mass spectrometry as detected by a Voyager-DE STR (Applied
Biosystems). Samples were dissolved in 0.1% TFA, 50% acetonitrile, and applied

between two layers of a a-cyano-4-hydroxycinnamic acid matrix (Acros Organics) onto a

12



magnetic plate. Spectra were acquired in either linear or reflector mode. Calmix 1 and

Calmix 2 (Applied Biosystems) were used as external calibration standards.

Nuclear Magnetic Resonance Spectra

Pure samples were subject to one dimensional NMR experiments to determine relative
peptide concentration, and to identify characteristics of the peptide. The NMR spectra
were obtained by a Varian Inova 500 MHz instrument equipped with pulse field
gradients, three radiofrequency channels and waveform generators. Pure peptide samples
were dissolved in high purity water (Fisher) containing 38 pmol of trimethyl silyl
propionic acid (TSP) (Aldrich) as an internal reference and 10% D,0 (Aldrich). The total
volume of samples, 40 pl at a pH of ~3.6, was placed in 1.7 mm NMR capillary tube
(Wilmad), and spectra were acquired at 25°C and 0°C. If the sample had a high enough
concentration, then two dimensional NMR experiments, namely NOESY and TOCSY,
were performed which aided in confirming the presence of certain amino acids in

sequence.

Reduction and Alkylation of Peptides

Once the NMR experiments were concluded, part of each sample was subject to
reduction and alkylation of disulfide bonds (if any are present). This procedure allows for
determination of the number of cysteines in the peptide by mass spectrometry. Samples
were lyophilized then re-dissolved in 0.1 M Tris-HCI (pH 6.2), and reduced with 20 mM

dithiothreitol (DTT). Upon a 30 minute incubation period at 60°C, the peptides were
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alkylated with 50 mM lodoacetamide (IAM) and 3 pl of NH4OH (pH 10.5) for one hour
at room temperature in the dark. The reduced and alkylated peptides were recovered and
purified using a pre-equilibrated Zip Tip (C18, size P10, Millipore) with a 0.1% TFA in

60% acetonitrile solution and 0.1% TFA solution.

Peptide Sequencing

The reduced and alkylated peptides were subsequently subject to sequencing by
automated Edman Degradation. Alkylated peptides were adsorbed onto Biobrene-treated
glass fiber filters and subsequently sequenced by Edman degradation using an Applied
Biosystems Procise model 491 A Sequencer equipped with a micro gradient delivery
system, model 610A model 785A UV detector, and data analysis software model 140C.
This model causes the N-terminal amino acid to react with phenylisothiocyanate (PITC)
in basic conditions forming a phenylthiocarbamyl derivative (PTC-protein). The first
amino acid is then cleaved by trifluoroacetic acid forming its anilinothialinone derivative
(AZT-amino acid) and leaving behind the next amino acid for degradation in the next
cycle. The newly formed AZT-amino acid is extracted with N-butyl chloride and
converted to a phenylthiohydantoin derivative (PTH-amino acid) that is transferred to a
reverse-phase HPLC C-18 column for detection at 270 nm. For cross referencing, a
standard mixture of PTH-amino acids is injected onto the column for separation and
detection, providing a standard elution profile for comparison with unknowns. The
sequences are then confirmed by matching the expected molecular weight of the peptide

with the molecular weight obtained via mass spectrometry.

14



Results and Discussion

Purification of Peptides

The first step in the purification process of the crude venom was the dissolution of the
lyophilized crude venom into 1000pL of 0.1 M NH4sHCO;, The sample was then eluted
through the Superdex 30 column for 266 minutes. This initial separation by size
exclusion yielded 9 fractions that showed absorbance at 220 nm, six fractions showed
absorbance at 280 nm suggesting the presence of aromatic amino acids, and six fractions
showed absorbance at 250 nm signaling the presence of cysteine bonds, all fractions
showing clear overlap among absorbance spectra. Moreover, the profiles show the
possibility of overlap between adjacent peaks. Figure 4 and table 3 shows the elution
profile and retention times for this run. Each run was recorded at range 2 due to the

speculated quantities of crude venom.

Tessulatus_B was the designation given to this batch of crude venom, and Tes_B is the
abbreviation for this designation. The nomenclature assigned from here on in is as
follows: Superdex 30 fractions are labeled as numbers in numerical order such as Tes_B
01, Tes_B 02, and Tes_B 03 and so on. Superdex Peptide fractions are labeled as
consecutive letters in front of the number from the Superdex 30 fractions such as Tes_B
02a, Tes_B 02b, and so on. The semi-preparative fractions then take a number after the

letter from the Superdex Peptide aliquots such as Tes B 02b04, Tes B 02b05 and so on.
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The analytical fractions take a letter after the semi-preparative column number such as
Tes B 02b04a, Tes_B 02b04b and so on.

Figure 4 — Elution Profile of Tessulatus B Crude Venom in the Superdex 30

Tessulatus_B Superdex 30

1.625

Table 3 — Elution Times of Tes B Crude Venom Fractions from Superdex 30

Peak # Elution Time (Minutes)
1 56.53 — 75.50
75.50 - 90.30
90.30 — 125.21
125.21 — 138.22
138.22 — 163.03
163.03 - 171.24
171.24 - 185.30
185.30 —204.29
204.29 — 229.73

Neolle cRREN Fe NRU, RN S RUS L 5]
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Fractions 5, 6, and 7 were subsequently pooled together since there was much overlap
between the peaks in order to assure that like peptides were kept together in order to
obtain higher purified quantities. These peaks were the first to be chosen for further
purification since they were the three major peaks that fell within the molecular weight
range of peptides (as determined by their elution times relative to the other peaks in the
size exclusion column).The combined peaks were renamed Tes B 05, lyophilized, then
re-dissolved in two batches of 500 pL of 0.1 M NH4HCO; for further separation in the
Superdex Peptide column. Figure 5 and table 4 shows the chromatography profile and
retention times of this run. Each run of both batches was recorded at range 2 and 280 nm
(also 220 nm for batch 2).

Figure 5 — Elution Profile of Tes B 05, 06, 07 Combined Fractions (renamed 05) in
Superdex Peptide

Tessulatus_B 05,06,07 combined (renamed 05) Superdex Peptide

15 d

Batch1
280 r=2

Batch 2
220 r=2

Batch 2
280 r=2

. . . . . ¢ . . . 1 . . . . . . . . 1 . . . . . . . . . . . . .
0 45
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Table 4 — Elution Times of Tes B 05, 06, 07 Combined Fractions (renamed 05) in
Superdex Peptide

Batch 1

Peak # Elution Time (minutes)
24.30
28.60
31.81
32.90
35.60
38.15
40.90

e (oo (o e

Batch 2

Peak # Elution Time

(minutes)
17.01
24.36
30.70
33.00
35.40
38.00
41.10

@ (0 | a0 O\

During the run of batch 1, the column exhibited several problems and the data for the run
was not stored. Only the run monitored at 280 nm was salvaged. Fortunately, batch 2 ran
smoothly and the two profiles closely resembled one another, therefore the batch 1
fractions were still used by pooling with the batch 2 fractions. Batch 1 ran for 47 minutes
while batch 2 ran for 45 minutes. Approximately seven peaks were present in both
batches, and in both wavelengths of 220 nm and 280 nm. Peak Tes B 05d was chosen for
further separation as it was the major peak. Upon being lyophilized, the sample was
dissolved in 1000 pL of a 0.1% TFA solution, then subject to separation in the semi-
preparative column. Figure 6 shows the elution profile of this run which ran for 87
minutes in batch one and for 98 minutes in batch 2, and yielded 11 collected peaks in

batch 1 and 14 collected peaks in batch 2 under monitoring at 220 nm. The run was also
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monitored under 280 nm and yielded several peaks at this wavelength. Each run in both
batches was recorded at range 2.

Figure 6 — Elution Profile of Tes B 05d in the Semi-preparative Column

Tessulatus_B 05D RP Semi-Prep
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Table 5 — Elution Times of Tes B 05d in the Semi-preparative Column

Batch 1

Peak # Elution Time (minutes)
1 125
35.0
36.0
36.7
CFR
38.8
39.6
433
44.8
54.2
64.8

OO [N [ | |WikNo

i | pca
—_O

Batch 2

Peak # Elution Time (minutes)
17.80
34.95
36.10
36.80
38.00
38.90
39.70

41.30-41.65
42.50
43.37
44.78
47.85
54.20
64.75

Y e ol = V=1 (e ENT [N V) SRV | ) oy

Once the major peaks (peaks 2 pooled from both batch 1 and 2, peaks 5, 6, 7 from batch 1
and 2 all pooled together, peak 8 and 9 from batch 1 pooled with peak 10 and 11 from
batch 1 (renamed Tes B 05d1011), and peak 10 from batch 1 and 13 from batch 2 pooled
together (renamed Tes_B 05d13)) had been lyophilized, they were re-dissolved in 20 pL
of a 0.1% TFA solution and 0.3 uL of the sample was submitted to mass spectroscopy

experiments. Figures 7-12 show the mass spectra for these peaks.
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Figure 7 — TOF MS of Tes B 05d02 (MW= 1703.37 Da)
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Figure 8 — TOF MS of Tes_B 05d05 (MW= 2435.81Da)
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Figure 9 — TOF MS of Tes B 05d06 (MW= 1531.02 Da)
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Figure 10 — TOF MS of Tes B 05d07 (MW= 1655.50 Da)
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Figure 11 — TOF MS of Tes B 05d10 (MW= 1809.54 Da)
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Figure 12 — TOF MS of Tes B 05d11 (MW= 1736.72 Da)

% Intensity

L 168558

10; 1629.5834

0 L Mk u\lum

159§

19024564
1'9{7&5 1
T
19620
Mass (m/z)
Voyager Spec #1{BP=1736.7,2342]
1787150 e
737687
( 173871
|
'?fmesm
1‘ T8
1\”} 164
mss 4 (
14785 17795142

16981963 9400

Lirieees ";;If
| e H'

{

ki ra
e o LMMM ﬁMMm i Kol ol I mlmm JAMJIE&MMMMMMW 0

7% s 1820
Mass (mf2)

23



The first peak to be further processed was peak Tes B 05d02 since the mass spectra of
this sample revealed a potentially pure compound with no need for further purification.
The sample was lyophilized then dissolved in an NMR solution as previously described.
The sample was thus subject to a 1D NMR experiment. However, a spectrum was not
obtained for this sample due to insufficient concentration. Therefore, two thirds of the
sample was then reduced and alkylated. The clean product of this reaction was submitted
for a mass spectroscopy experiment that revealed the presence of six cysteine residues
since the molecular weight of the compound increased from 1703.37 Da to 2051.58 Da.
This indicated the presence of six cysteines since the reduction of each disulfide bond,
which consists of two cysteines, and subsequent alkylation of each cysteine residue
results in a 58 Da increase in molecular weight (2051.58 — 1703.37 = 348.21 and
348.21/58 = 6). Figure 13 shows the mass spectrum of the reduced and alkylated peptide.

Figure 13 — TOF MS of the Reduced and Alkylated Tes B 05d02 (MW= 2051.58 Da)
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The entire reduced and alkylated sample was then loaded onto the peptide sequencer and

yielded the following sequence:

Sequence: CCSQDCRVCIOCCPY

The measured molecular weight of this sequence corresponds to the theoretical molecular
weight as determined by Protein Prospector MS-Product software with a 0.76 Da
difference. This difference can be attributed to calibration errors or other minor
experimental errors. This peptide corresponds to an M-conotoxin of the framework CC-
C-C-CC. This type of conotoxin is a M-2 mini-M since the molecular weight is under
2000 Da and there are two residues within the last loop. The target of mini-M’s still

remains unknown (McDougal et al, 2004).

The next peak to be further analyzed from the Tes B 05d was combined peaks 10 and 11
from batch 2, and 8 and 9 from batch 1 polled together (renamed Tes B 05d1011). The
peak was lyophilized and re-dissolved in 500 puL of a 0.1% TFA and subject to a run in
the analytical reverse-phase column. This run yielded the following elution profile
(Figure 14), which ran for 37 minutes at range 2 and absorbance of 280 nm (220 was

lost).

25



Figure 14 — Elution Profile of Tes B 05d1011

Tessulatus_B 05D1011 Analytical RP

d
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Upon analyzing this chromatogram, extensive work went into attempting to purify the
major peak, D. However, this attempt was not successful, and the F fraction seemed to be
relatively pure (as indicated by the mass spectrum in figure 15). Therefore, this peak was

chosen for further analyses.
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Figure 15 — TOF MS of Tes B 05d1011f (MW= 1736.48 Da)
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The sample was lyophilized and re-dissolved into an NMR solution as previously
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described. The following figure (Figure 16) shows the 1 dimensional NMR spectrum of

this sample.
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Figure 16 -1-D NMR Spectrum of Tes B 05d1011f

TES_BO510_11F_pH3.6_25C_1.7mm
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The NMR spectrum shows several characteristics of the peptide. Initially, the TSP peak is
sharp and strong, and smaller than the amino acid hydrogen resonances, indicating that
the peptide has a concentration that is suitable for the 1-D experiment, and possibly for 2-
D experiments. Moreover, the region between 6-10 ppm indicates that there are aromatic
amino acids present. The region between 1 and 1.5 ppm is highly crowded, indicating the
presence of aliphatic residues, corresponding to the Ile residue. The doublet of doublets
characteristic of Tyr that resonates around 7 ppm is seen here. The spectrum is
problematic in that there appears to be two Trp resonating around 10 ppm that do not
correspond to the sequence data. The reason for the presence of these peaks is not yet

known.
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Once the NMR spectrum had been acquired, an attempt was made to obtain a 2-D
spectrum. Unfortunately, concentration did not permit, and the spectrum was not
acquired. Therefore, one third of the sample was subject to reduction and alkylation
(figure 17).

Figure 17 - TOF MS of the Reduced and Alkylated Tes_B 05d1011f (MW= 1968.76 Da)
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The molecular weight of the reduced and alkylated peptide signaled the presence of four

cysteine residues (1968.73 — 1736.48 = 232.25. 232.25/58 = 4.00). The sample was then

subject to sequencing.
Sequence: GGCCSYOPCIANNPFCG

This sequence yielded a theoretical molecular weight of approximately 1714.65 Da as

calculated by Protein Prospector MS-product software. This weight represents an
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approximate 21.83 Da difference from the mass spectrum of the peptide, a difference
corresponding to an ion of Na with minor experimental errors. Moreover, the framework
of this peptide corresponds to the A superfamily as a 4/6 a-conotoxin because of the
number of residues in the loop. The peptide has sequences of 4 and 6 non Cys amino

acids in the format CC----C------ C.

This type of conotoxin is known to be a competitive antagonist of acetylcholine in
nicotinic acetylcholine receptors, which are found in the central and peripheral nervous
system (neuronal type) and in the neuromuscular junctions (neuromuscular type).These
receptors are ligand gated channels embedded in the membrane that have five
homologous subunits that allow for the movement of Na and K ions across the
membrane. The binding of acetylcholine causes opening of the channel, thus
acetylcholine agonists such as the a-conotoxins prevent channel opening. Each a-
conotoxin is specific for a different type and subunit of the nACh receptor that it binds.
Further work on this compound will be aimed at elucidating the specific target and action

of the toxin.

30



Figure 18 — Theoretical Structure of the nACh Receptor from
http://indigo 1 .biop.ox.ac.uk/graham/work.html

acetylcholine
x> binding site

oligosaccharides

Out (synapse)

4
Selos, o3
a8 e s e

lipid
b|Iayer unnnuuununuuv_ ARCOCOOO0Y (cytoplasm)

M2 helices

Rapsyn

cytoskeleton

The next sample to be further purified was the Tes B 05d050607 peak that had
previously been pooled together. This peak was re-dissolved in 500 pL of a 0.1% TFA
solution and ran on the analytical reverse phase column for 34 minutes at range 1 in both

220 nm and 280 nm. Figure 19 shows this elution profile.
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Figure 19 — Elution Profile of Tes B 05d050607 in the Analytical Column

Tessulatus_B 05D050607 Analytical RP
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Table 6 — Elution times of Tes B 05d050607 in the Analytical Column

Peak # Elution Time (minutes)
a 17.0
b 17.8
c 18.1
d 18.4
e 18.8

Once again efforts were made to further purify the biggest peak, peak a. The mass

spectrum of the native peptide is the following:
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Figure 20 — TOF MS of Tes B 05d050607a (MW = 2435.00 Da)
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The sample then underwent the following NMR experiments to yield the following

results (Figure 21 and 22):

Figure 21 — 1-D NMR Spectrum of Tes B 05d050607a
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The NMR spectrum shows characteristics of several residues and shows that there are
sufficient quantities of the peptide to run 2-D NMR experiments. The peptide is actually
very concentrated compared to many native samples from this study. The most obvious
residue is that of Trp near 10 ppm and the presence of aliphatic residues, maybe Ile or
Leu or Val, under 1 ppm. This peptide has several residues, about 22 since there are so

many NH peaks between 6 and 10. There appears to be slight impurities as well.

Figure 22 — TOCSY Spectrum of Tes B 05d050607a
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The TOCSY spectrum revealed information about some residues, but the information was
not sequence dependent. Namely, the presence of the Tyr residue is confirmed. However,

assignments of residues without the sequence information are difficult and futile.

Once the TOCSY spectrum had been acquired attempts to run other 2-D NMR
experiments were undertaken but proved unsuccessful due to insufficient quantities. The

sample was then reduced and alkylated, yielding the following mass spectrum:

Figure 23 — TOF MS of Reduced and Alkylated Tes B 05d050607a (MW = 2806.31)
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The data suggests that there are probably six cysteine residues in this peptide (2806.31-

2435.00 — 22 (Na) = 349.31. 349.31/58 = 6.03). Unfortunately, upon two attempted trials
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of sequencing, no sequence data was obtained. Although the reason that this peptide was
unable to be sequenced is not known, it is presumably blocked at the N-terminus and
therefore not prone to Edman degradation. The peptide is most likely an M-conotoxin, if
indeed there are six cysteines present. However, at this point, speculation is futile without

a sequence.

Since these efforts were unsuccessful, we chose to further analyze the next major peak,
peak b. This peak was once again run in the analytical column yielding the following
spectrum at range 0.2 in both wavelengths of 220 nm and 280 nm (figure 24):

Figure 24 - Elution Profile of Tes B 05d050607b in the Analytical Column

Tessulatus_B 05D050607B Analytical RP
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Table 7 — Elution times of Tes B 05d050607b in the Analytical Column

Peak #

Elution Time (minutes)

1

15.2

28.2

34.8

2
3
4

35.7

A mass spectrum was acquired for the major peak, peak 4 (figure 25):

Figure 25 - TOF MS of Tes_B 05d050607b4 (MW= 1531.08 Da)
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We acquired a 1-D NMR spectrum and a TOCSY spectrum for this sample.
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Figure 26 — 1-D NMR Spectrum of Tes B 05d050607b
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The 1-D spectrum lacks a proper TSP peak; therefore no estimates on concentration can
be accurately made, however the sample does appear concentrated enough to run 2-D
experiments. The obvious residue seen in this spectrum is that of Trp around 10 ppm.
There is also a double of doublets around 7 ppm that is characteristic of Tyr residues ring
protons. The two His show peaks around 7 and 8 ppm for the ring protons, which slightly
overlap with the Tyr. The two Ala show peaks around 1.39 ppm for the fH’s. The Val
peaks around 0.5 ppm are downshifted, as characteristic of conophans due to the presence

of the neighboring Trp ring causing shielding.
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Figure 27 —- TOCSY Spectrum of Tes B 05d050607b
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This spectrum confirms the presence of the Trp residue at 10 ppm. Otherwise, the

=L

spectrum is not intense enough to make accurate assignments. Additionally, without a

NOESY spectrum, assignments cannot be confirmed.

About one third of the sample was reduced and alkylated yielding the following mass

spectrum (figure 28):
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Figure 28 - TOF MS of the Reduced and Alkylated Tes B 05d050607b4 (MW= 1531.06
Da)

Voyager Spec M[BP =1531.0, 8776]
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The reduced and alkylated mass spectrum revealed that there are no cysteines present in
this peptide. This peptide is therefore a linear conopeptide. The sequence analysis of the

peptide yielded the following results:

Sequence: VYHAHPYSNAVWS

The expected molecular weight of this peptide as calculated by Protein Prospector MS-
Product software is 1530.71 Da, yielding a 0.38 Da difference in MW as calculated by
the mass spectrum. This conopeptide is a conophan that closely resembles a conophan
that was recently discovered in Conus gladiator, gld-V. The sequence homology is quite

striking:
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Tes_B 05d050607b: VYHAHPYS™-A-V s

gld-V: AOAN-S-\' S

The gld-V peptide exhibits a D-Val in a homology site of the Tes B 05d050607b peptide
raising the possibility that the tessulatus peptide may have a D-Val as well. The
homology also extends to the Pro and Hyp that are in adjacent sites of the two peptides.
The homology is convincing evidence for the argument that this peptide may indeed be a

conophan.

The following peptide peak to be analyzed was Tes B 08 from Superdex 30. The peak
was dissolved in 500 pL of 0.1 M NH4HCOs; and ran through the Superdex Peptide
column for 68 minutes at range 2 in wavelengths 220 nm, 280 nm, and 250 nm. Figure 29

shows the elution profile for this run.
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Figure 29 — Elution Profile of Tes B 08 in the Superdex Peptide Column

Tessulatus_B 08 Superdex Peptide
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Table 8 — Elution Times of Tes B 08 in the Superdex Peptide Column
Peak # Elution Time (minutes)
a 12.77
b 16.66
c 18.86
d 23.70
e 33.10
f 39.58
g 4745

From this separation, the major peak, peak f, was chosen for further separation in the

semi-preparative column. The sample was dissolved in 1000 puL of 0.1% TFA and
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yielded the following chromatogram at range 1 and wavelengths 220 nm, 280 nm (figure
30):
Figure 30 - Elution Profile of Tes_B 08f in the Semi-preparative Column

Tessulatus_B 08f RP Semi-Prep
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Table 9 — Elution Times of Tes B 08f in the Semi-preparative Column

Peak # Elution Time (minutes)
1 12.70
2 13.15
3 14.13
4 16.80
5 18.17
6 20.30
7 23.38
8 24.21
9 26.66
10 28.37
11 29.10
12 35.49
13 47.40

13(b) 48.41
14 51.18
15 52.22
16 53.18

Mass spectra were acquired for all these peaks. Figure 31- 33 show the spectra for the

peaks that were later used in other experiments.
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Figure 31 — TOF MS of Tes B 08f12 (MW = 1806.63 Da)
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Figure 32 - TOF MS of Tes B 08f13 (MW = 1751.65 Da)
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Figure 33 — TOF MS of Tes_ B 08f13(b) (MW = 1751.71 Da)
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Peak Tes B 08f12 was one of the peaks that were chosen for further analysis. The sample
was dissolved in 500 pL of 0.1% TFA and ran in the analytical column for 47 minutes at
range 1 in wavelengths 280 nm and 250 nm, and 220 nm. Figure 34 shows this

chromatogram:
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Figure 34 - Elution Profile of Tes B 08f12 in the Analytical Column

Tessulatus B 08f12 RP Analytical
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Table 10 — Elution Times for Tes B 08f12 in the Analytical Column

Peak # Elution Time (minutes)
a 30.55
b 31.90

From this separation, peak a was chosen to be further analyzed as it was the more pure

peak. A mass spectrum was taken of this peak (Figure 35):
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Figure 35 - TOF MS of Tes B 08f12b (MW = 1805.41 Da)
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The sample was then subject to 1-D NMR experiments that did not work due to

insufficient quantities.

About one half of the sample was then reduced and alkylated revealing the following

spectrum (Figure 36):
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Figure 36 — TOF MS of Reduced and Alkylated Tes B 08f12b (MW = 2155.20 Da)
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This data revealed the presence of six cysteine residues (2155.20 — 1805.41 = 349.67.

)

349.67/58 = 6.03). The sample was then subject to sequencing revealing the following

data:

Sequence: CCSRYCWRCTOCCPN

This peptide appears to be a mini-M as well.

The Tes_B 08f13 (combined with Tes_B 08f13 (b)) peak was the next to be further

analyzed since it was the major peak of the run. The sample was dissolved in 1000 pL of

0.1% TFA and ran in the analytical column for 65 minutes at range 1 in wavelengths 280

nm and 250 nm, ant at range 1.5 at 220 nm. Figure 37 shows this chromatogram:
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Figure 37-- Elution Profile of Tes B 08f13 in the Analytical Column

Tessulatus_B 08f13 RP Analytical
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Table 11 — Elution Times for Tes B 08f13 in the Analytical Column
Peak # Elution Time (minutes)
a 31.20
b 41.00
c 41.37
d 43.52
€ 44.20

From this separation peak d was chosen for further analysis since it was the major peak.

A mass spectrum of the sample was obtained (Figure 38):
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Figure 38 — TOF MS of Tes_B 08f13d (MW = 1752.31 Da)
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The sample was subsequently subject to 1-D NMR experiments that revealed great

concentrations (Figure 39):
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Figure 39 — 1-D NMR Spectrum of Tes B 08f13d

TES_B08£13d pH3.6_25C_1.7mm
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Tyr resonates at 7.15 and at 6.86 ppm with the ring protons, as seen in this spectrum. Ile
shows peaks at 1.48 and 1.19 ppm for the yH’s, at 1.90 ppm for the BH, at 8.19 for the
NH, and at 0.89 for the OH’s. An Arg peak is seen around 6.6 characteristic of that NH.
Ile peaks are shown below 1 ppm for the methyl groups. The sample also has slight
impurities. This experiment revealed enough quantities, in comparison to the TSP peak,
to run 2-D NMR experiments as well, so a TOCSY spectrum was taken of this compound

(Figure 40).
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Figure 40 — TOCSY Spectrum of Tes B 08f13d

TES_B08£13d_pH3.6_25C_1.7mm_wgtocsy
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Unfortunately, ﬁpon close examination of this data, we determined that the sample was
not pure since the chromatography peak was so broad. Therefore we decided to run it
through the analytical column one more time. The sample was lyophilized and dissolved
in 500 pL of 0.1% TFA and ran isocraticaly at 33% of the 60% ACN in the analytical
column for 35 minutes at range 2 at 220 nm and range 1 at 280 nm and 250 nm. Figure

41 shows the elution profile for this run.
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Figure 41 — Elution Profile for Tes B 08f13d in the Analytical Column

Tessulatus B 08f13d RP Analytical 33%B Isocratic
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Table 12 — Elution Times of Tes B 08f13d in the Analytical Column
Peak # Elution Time (minutes)
1 422
2 12.19

Several fractions were taken from peak two of this run in an attempt to separate

components that elute very closely together. Seven 30 second fractions were taken

altogether. The broadness of the peak indicates that more than one peptide is present in
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this peak. Mass spectra and sequences were taken for both fractions 1 and 7, as they were

the furthest apart (Figure 42 and 43).

1790.7424

Figure 42 — TOF MS of Tes B 08f13d2(1) (MW = 1751.47 Da)
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Figure 43 — TOF MS of Tes B 08f13d2(7) (MW = 1751.69 Da)
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Both samples were reduced and alkylated yielding the following mass spectra (Figure 44
and 45):

Figure 44 - TOF MS of Reduced and Alkylated Tes B 08f13d2(1) (MW =2101.98 Da)
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Figure 45 — TOF MS of Reduced and Alkylated Tes B 08f13d2(7) (MW = 2101.98 Da)
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Each peptide had a mass increase of about 349 Da indicating the presence of six cysteine
residues (2101.98 — 1752.97 = 349.62. 349.62/58 = 6.02).

They were individually sequenced yielding the following results:

Sequence: CCSRYCYICIOCCPN

Sequence: CCSRYCYICIOCCPN

Since both sequences were identical, and both of their calculated masses closely matched
the expected masses, one conclusion that can be drawn from the fact that they did not co-
elute is that an amino acid in one of the peptides may be an epimerized D-amino acid.
This would explain the identical sequences but different elution times. However, further
work is required before this conclusion could be drawn. Synthesis of the peptide may aid

in elucidating the reason behind this discrepancy.

This peptide also appears to be a mini-M.

Another peak that was analyzed was the Tes_B 08f14 peak from the same semi-

preparative run as the previous peptide. The mass spectrum of this peak and the

chromatography profile of this run in the analytical column are shown in figure 46 and

47.
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Figure 46 — TOF MS of Tes_B 08f14 (MW = 1735.65 Da)

Voyager Spec #BP = 17368, 9541)

k!
i 17358480 9564
: 17366378
0
i
30}
0.
§0-
|
R
= || 17385386
w! i
i t
| :
w “! 17305449
! [
0 ‘
1 i 171406578
y 17085937 :
10‘ 7192074 w 111614 1756.6223
; 16273893 16927500 81658 | 1200352 W ”5 355 R0 naesm
: 515 552 1507555 108T0 ipgraars Muom W& 17231206 m | 0429 MMW& 1797194
WA bbb b ) w M bkl il
110 16562 16934 11436 17818 18320
Mass {miz)

Figure 47 — Elution Profile of Tes B 08f14 in the Analytical Column

Tessulatus_B 08f14a RP Analytical
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Table 13 — Elution Times of Tes B 08f14 in the Analytical Column

Peak #

Elution Time (minutes)

a

4.20

The mass spectrum of this peak is shown in figure.

Figure 48 — Mass Spectrum of Tes B 08f14a (MW = 1735.40 Da)
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The NMR spectrum is shown in figure 49.
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Figure 49— 1-D NMR Spectrum of Tes B 08f14a

TES_B08fl4a_pH3.68_25C_1.7mm long H
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The sample was then reduced and alkylated yielding the following mass spectrum (Figure

50):
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Figure 50 — TOF MS of the Reduced and Alkylated Tes B 08f14a (MW = 2086.01 Da)
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The sequence for this peptide was not properly obtained. Further work is still needed in
order to confirm the sequence. However, as evident from the mass spectrum, there are
probably six cysteine residues present in the peptide (2086.01-1735.40 = 350.61.

350.61/58 = 6.04)

The next peak to be analyzed was Tes B 09 from Superdex 30. This peak was dissolved
in 500 pL of 0.1 M NH4HCO; and ran through the Superdex Peptide column for 70
minutes at range 2 in 220 nm and 280 nm, and range 4 at 220 nm. The following

chromatogram was obtained:
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Figure 51— Elution Profile of Tes B 09 in the Superdex Peptide Column

Tessulatus_B 09 Superdex Peptide
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Table 14 — Elution Times for Tes B 09 Superdex Peptide Run
Peak # Elution Time (minutes)

a 4.20

b 13.44

c 16.77

d 23.60

€ 24.97

f 32.85

g 39.00

h 42.90

i 48.75

Peak Tes B 09g was then chosen for further separation in the semi-preparative reverse

phase column. This run lasted for 100 minutes at range 1 in 220 nm and 280 nm.
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Figure 52 — Elution Profile of Tes B 09¢g in the Semi-preparative Column

Tessulatus_B 09g RP Semi-Prep
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Table 15 — Elution Times for Tes B 09¢ in the Semi-preparative Column

Peak # Elution Time (minutes)
1 16.60
2 20.76
3 29.75
4 31.60
e 34.50
6 36.85
£ 38.08
8 39.50
9 41.06
10 47.76
11 48.63
12 49.43
13 50.42
14 54.33
15 55.32
16 67.65
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Peak 13 was then chosen for further analysis as it was the major peak. A mass spectrum

was taken for this compound (Figure 53):

Figure 53 — TOF MS of Tes B 09g13 (MW = 1751.93 Da)
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This peak was then furthered purified in the analytical column. This run lasted for 56

minutes at range 1 in 220 nm and 280 nm (Figure 54):
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Figure 54 — Elution Profile of Tes B 09g13 in the Analytical Column

Tessulatus_B 09g13 RP Analytical
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Table 16 — Elution Times for Tes B 09¢13 in the Analytical Column

Peak # Elution Time (minutes)
a 4.10
b 43.27

A mass spectrum was obtained from peak b from this run (Figure 55):

65




Figure 55 — TOF MS of Tes B 09¢13b (MW =1751.58 Da)

Voyager Spec #1[BP=17516,1661]
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The sample was then subject to a 1-D NMR experiment that yielded the following spectra
(Figure 56-57):

Figure 56 —25°C 1-D NMR Spectrum of Tes B 09¢13b

TES_B09g13b_pH3.6_25C_1.7mm

Pulse Sequence: presat
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Figure 57 — 0°C 1-D NMR Spectrum of Tes B 09¢13b

tes_B09gl3b_pH3.6_0C_1.7mm

Pulse Sequence: presat

This NMR spectrum closely resembles the spectrum of Tes_B 08f13d. There are no
notable differences other than peak intensities. The two peptides have the same sequence.
The only difference that may result in the difference in elution times is an L to D-
epimerization that cannot be detected by NMR. The 1-D in 0°C is less structured that at
25°C but shows basically the same peaks, give or take a few. This experiment revealed
enough quantities for 2-D NMR experiments as well, so both a NOESY and a TOCSY

spectrum were taken.
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Figure 58 - NOESY Spectrum of Tes B 09g13b

TES_B09g13b_pH3.6_25C_1.7mm_wgNOESY

Pulse Sequence: wgNOESY F2

{ppm)]
gt
i3
2] |
3
4
j ,
s 'i? o i
ol ‘
|
7] 5,
X e~ B
8 -7
] _q;f
9 A.‘
¥
10 !
111
T T T T [
11 10 9 8 7 5 4 3 2 1 -0
F1 (ppm)

The NOESY spectrum would have been a key factor in making sequence specific

assignments in conjunction with the TOCSY data; however, the spectrum is very weak

due to lack of sufficient concentration, and is therefore of no use. And the TOCSY

spectra do not provide enough information for making sequence specific assignments.

68



Figure 59 —- 25°C TOCSY Spectrum of Tes B 09¢13b

TES_BOSgl13b_pH3.6_25C_1.7mm_wgtocay
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Figure 60 — 0°C TOCSY Spectrum of Tes B 09¢13b

tes_B09gl3b_pH3.6_0C_1.7mm_wgtocay
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Once the NMR experiments had been conducted, about one third of the sample was

reduced and alkylated yielding the following mass spectrum (Figure 61):

Figure 61 - TOF MS of the Reduced and Alkylated Tes B 09g13b (MW = 2101.07 Da)
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This spectrum indicated the presence of six cysteine residues (2101.07 — 1751.58 =

349.49. 349.49/58 = 6.03). The sample was then sequenced yielding the following data:

Sequence: CCSRYCYICIOCCPN

This sequence is the same as that of Tes_ B 08fd(1) and Tes B 08fd(7). This occurrence

further supports the theory that this peptide may have a D-amino acid and therefore is not

co-cluting. Again, this peptide is a mini-M.
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Peak 11 was then analyzed from the Tes B 09g. Figure 62 show the elution profile of this
peak in the analytical column at wavelengths 220 and 280 nm at range 1, and at 220 nm

and range 0.5:

Figure 62 — Elution Profile of Tes B 09¢11 in the Analytical Column

Tessulatus_B 09g11 RP Analytical
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1
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20 2
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1
0 ' 58
Table 17 — Elution Times of Tes B 09¢11 in the Analytical Column
Peak # Elution Time (minutes)
a 42.03
b 44.02

The mass spectrum of this sample indicated that the peak was still somewhat

contaminated, but an NMR spectrum was acquired nonetheless (Figure 63 and 64).
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Figure 63 — TOF MS of Tes B 09gl1a (MW = 1774.69 Da)

Voyager Spec #1[BP = 17767, 1848]

Pulse Sequence: presat

12



This spectrum clearly shows the presence of a Trp at 10 ppm, as well as the presence of
aliphatic residues below 1 ppm. The doublet of doublets is also observed for Tyr around 7
ppm. The TSP peak is much grater that the amino acid peaks, signaling a very dilute
sample. Unfortunately there was insufficient concentration to run 2-D NMR experiments,
so half the sample was thus reduced and alkylated, yielding the following spectrum
(Figure 65):

Figure 65 — TOF MS Spectrum of the Reduced and Alkylated Tes B 09glla (MW
=1891.91 Da)
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The reduction and alkylation data suggests that there are two cysteines in this peptide
(1891.91 - 1774.69 = 117.22. 117.22/58 = 2.02). Regrettably, the sequence data is not
clear, presumably due to the impurities in the sample, and no sequence has yet been

obtained for this conopeptide.
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Conclusions

Several combinatory analytical techniques were employed in this study in order to
elucidate structural data of some of the peptides present in the venom of the cone snail
Conus tessulatus. These techniques included HPLC, mass spectrometry, NMR and
peptide sequencing. By these techniques, five novel compounds were discovered and
characterized. The literature does not indicate any reported sequences form Conus
tessulatus. Therefore, these are the first conotoxins reported form this species. Among the
reported peptides are three M-conotoxins, one a-conotoxin and one conophan. The

sequences of these peptides are as follows:
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Table 18 — Conus tessulatus Partial Peptide Library

Name and Sequence Mass Calculated | Differenc | Framework | Superfa
Spec MW (Da) ein MW mily
MW
(Da)

1. Tes BOSDI0O11F 1736.4 | 1714.65 21.83 = CC-C-C o
8 Na

GGCCSYOPCIANNPFC

G

2. Tes_ B05D050607B4 1531.0 | 1530.71 0.38 Linear Conophan
8

VYHAHPYSNAVWS

3. Tes_B05D02 1703.3 | 1702.61 0.76 CcCc-C-C-CC | M
7

CCSQDCRVCIOCCPY

4. Tes BO8F12B 1805.4 | 1804.65 0.77 CC-C-C-CC | M
2

CCSRYCWRCTOCCPN

5. Tes BO8F13D(2)1 1751.4 | 1750.65 0.82 CC-C-C-CC | M
7

CCSRYCYICIOCCPN

6. Tes BOSF13D(2)7 1751.6 | 1750.65 1.04 cc-c-Cc-CC | M
9

CCSRYCYICIOCCPN

These findings support and show the extreme diversity of the venom components of

Conus tessulatus. This work is the first step in determining the functionality and uses of

these incredibly promising peptides. This work will continue in an effort to determine the

molecular targets and mode of actions of these compounds. Once these goals have been

established, the great therapeutic value of these peptides will be readily available for

many uses in neuroscience.
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