You are here
Estimation of the scattering function of fading channels for acoustic communications in shallow waters
- Date Issued:
- 2005
- Summary:
- The measurement of the Scattering function of time-variant fading channels is of strong interest in the field of underwater acoustic communications, as it indicates the limitations of the channel capacity. It also helps reducing the development time of acoustic communication systems and the need for on-site tests using so-called "fading simulators". The Scattering function is interpreted as the expected power received at a given time-delay and frequency shift for a given signal transmitted through the acoustic channel. It has been estimated using a fourth-moment method developed by Kailath from 18 to 30 kHz, 8-ms broad-band chirps and 20--28 kHz, 28-ms pseudo noise sequences. These signals were transmitted periodically in the shallow coastal waters of South Florida from a static source, and recorded from a 64-channel receiver array located at a distance of 1000 meters. Spatial beamforming has been applied to study the spatial sensitivity of the scattering function.
Title: | Estimation of the scattering function of fading channels for acoustic communications in shallow waters. |
![]() ![]() |
---|---|---|
Name(s): |
Allemand, Vincent. Florida Atlantic University, Degree grantor Beaujean, Pierre-Philippe, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2005 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 131 p. | |
Language(s): | English | |
Summary: | The measurement of the Scattering function of time-variant fading channels is of strong interest in the field of underwater acoustic communications, as it indicates the limitations of the channel capacity. It also helps reducing the development time of acoustic communication systems and the need for on-site tests using so-called "fading simulators". The Scattering function is interpreted as the expected power received at a given time-delay and frequency shift for a given signal transmitted through the acoustic channel. It has been estimated using a fourth-moment method developed by Kailath from 18 to 30 kHz, 8-ms broad-band chirps and 20--28 kHz, 28-ms pseudo noise sequences. These signals were transmitted periodically in the shallow coastal waters of South Florida from a static source, and recorded from a 64-channel receiver array located at a distance of 1000 meters. Spatial beamforming has been applied to study the spatial sensitivity of the scattering function. | |
Identifier: | 9780542051319 (isbn), 13230 (digitool), FADT13230 (IID), fau:10087 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2005. |
|
Subject(s): |
Underwater acoustic telemetry Signal processing--Digital techniques Underwater acoustics--Mathematical models Adaptive signal processing |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/13230 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |