You are here

investigation of the influence of surface roughness on reflection coefficients measured by a chirp sonar using a laser profiling of the seafloor

Download pdf | Full Screen View

Date Issued:
2005
Summary:
This research investigates the validity of an acoustic propagation model by comparing theoretical reflection coefficients, function of frequency, to FAU chirp sonar measurements (chirp sub-bottom profiler). An acoustic model has been implemented to estimate the spectrum of energy reflected from sandy sediments in the presence of surface scattering. The surface roughness being the dominant reverberation part, the volume scattering has been neglected in this model. A laser scanning system involving an image-processing algorithm has been designed to measure the seafloor bottom roughness using 1D Fourier transforms. In the case of anisotropic roughness, an estimation of the sand ripples dominant direction is provided involving 2D Fourier transforms. Measurements of acoustic data using a chirp sonar and estimation of bottom roughness from video data of the scanner over an artificial bottom are provided to compare the reflection coefficients obtained from the data actually measured with those from the acoustical model.
Title: An investigation of the influence of surface roughness on reflection coefficients measured by a chirp sonar using a laser profiling of the seafloor.
104 views
31 downloads
Name(s): Hache, Nicolas.
Florida Atlantic University, Degree grantor
Beaujean, Pierre-Philippe, Thesis advisor
Schock, Steven G., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2005
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 121 p.
Language(s): English
Summary: This research investigates the validity of an acoustic propagation model by comparing theoretical reflection coefficients, function of frequency, to FAU chirp sonar measurements (chirp sub-bottom profiler). An acoustic model has been implemented to estimate the spectrum of energy reflected from sandy sediments in the presence of surface scattering. The surface roughness being the dominant reverberation part, the volume scattering has been neglected in this model. A laser scanning system involving an image-processing algorithm has been designed to measure the seafloor bottom roughness using 1D Fourier transforms. In the case of anisotropic roughness, an estimation of the sand ripples dominant direction is provided involving 2D Fourier transforms. Measurements of acoustic data using a chirp sonar and estimation of bottom roughness from video data of the scanner over an artificial bottom are provided to compare the reflection coefficients obtained from the data actually measured with those from the acoustical model.
Identifier: 9780496965854 (isbn), 13212 (digitool), FADT13212 (IID), fau:10070 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2005.
Subject(s): Underwater acoustics--Measurement
Marine sediments--Acoustic properties
Oceanography
Seawater--Acoustic properties
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13212
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.