You are here

normal incidence reflection coefficient of a sandy seabed as a function of frequency

Download pdf | Full Screen View

Date Issued:
2004
Summary:
A thesis investigates the measured and theoretical pressure reflection coefficients of the seabed at normal incidence. The theoretical reflection coefficient is calculated using a physics-based model developed by Maurice Biot. The model describes sound propagation in saturated porous media and interrelationships between the acoustic properties of the media and the physical properties of the pore fluid and the porous solid. Stoll modified the Biot model for the case of ocean sediments and developed an expression for calculating the reflection coefficient as a function of frequency. This thesis tests the model by comparing the reflection coefficient measured with chirp sonar to the reflection coefficient calculated using the Biot model. An experiment was conducted off Fort Walton Beach, Florida where chirp sonar transmitted FM pulses at normal incidence to a sandy seabed. Sediment properties measured during SAX-99 are used to calculate the theoretical reflection coefficient using the Biot-Stoll model. The agreement of the measured reflection coefficients with the theoretical calculations over the band of 1500 to 16000 Hz varies as much as 70%. The plotted results show a reduction of the reflection coefficient with frequency but the large deviations from the trend prevent any further conclusions.
Title: The normal incidence reflection coefficient of a sandy seabed as a function of frequency.
125 views
38 downloads
Name(s): Arizzi, Ernest Allen.
Florida Atlantic University, Degree grantor
Schock, Steven G., Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2004
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 65 p.
Language(s): English
Summary: A thesis investigates the measured and theoretical pressure reflection coefficients of the seabed at normal incidence. The theoretical reflection coefficient is calculated using a physics-based model developed by Maurice Biot. The model describes sound propagation in saturated porous media and interrelationships between the acoustic properties of the media and the physical properties of the pore fluid and the porous solid. Stoll modified the Biot model for the case of ocean sediments and developed an expression for calculating the reflection coefficient as a function of frequency. This thesis tests the model by comparing the reflection coefficient measured with chirp sonar to the reflection coefficient calculated using the Biot model. An experiment was conducted off Fort Walton Beach, Florida where chirp sonar transmitted FM pulses at normal incidence to a sandy seabed. Sediment properties measured during SAX-99 are used to calculate the theoretical reflection coefficient using the Biot-Stoll model. The agreement of the measured reflection coefficients with the theoretical calculations over the band of 1500 to 16000 Hz varies as much as 70%. The plotted results show a reduction of the reflection coefficient with frequency but the large deviations from the trend prevent any further conclusions.
Identifier: 9780496083954 (isbn), 13191 (digitool), FADT13191 (IID), fau:10049 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 2004.
Subject(s): Marine sediments--Acoustic properties
Underwater acoustics--Measurement
Sedimentation analysis
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13191
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.