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We present several results involving three concepts: Pri..ifer domains, the strong 2-

generator property, and integer-valued polynomials. An integral domain D is called a 

Priifer domain if every nonzero finitely generated ideal of D is invertible. When each 2-

generated ideal of D has the property that one of its generators can be any arbitrary selected 

nonzero element of the ideal , we say D has the strong 2-generator property. We note that, 

if D has the strong 2-generator property, then Dis a Prufer domain . If Q is the field of 

fractions of D, and E isa finite nonempty subset of D; we define Int( E, D) = {f(X) E 

Q[X] J f (a.) ED for every a E E } to be the ring of integer-valued polynomials on D with 

respect to the subset E. We show that Dis a Prufer domain if and only if Int (E, D) is a 

Priifer domain . Our main theorem is that Int(E, D) has the strong 2-generator property if 

and only if Dis a Bezout domain (that is, every finitely generated ideal of Dis principal). 
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1 Introduction 

In this Lhe:;is, we make a cunnediou between two interesting ::.Lrudures, Priifer uurnains a!lu imeger

vaiued polynomials. We begin this introduction b.\' looking at f'ach one from a historical perspective. 

For Priifer domains, we begin in the middle of the 19t.h centur.v, when Ernst Eduard Kummer 

contributed a large amount of work in attempting to pro\·e Fermat's Last Theorem, t hat is, that 

the equation xn + yn = zn has no nonzero integer solutions for :r, y, and z when n > 2. In trying 

to prove Fermat's Last Theorem, he introuuced the notion of ''ideal numbers'' in rings of integers 

in algebraic number fields. He W HS able to prove Fermat ·s Last Theorem for a large class of prillle 

exponents n, namely, those exponents which are "regular."' 

At the end of the 19th century, Hichard Dedekind showed that the ideal elements of Kummer 

could be reinterpreted as certain subsets of a ring, sat isfying closure under both addition and multi

plication b~· ring elernent.s; he called these sets "ideals.'' One of the highlights of Dedekind ·s theory 

is a unique factorization theorem for ideals in rings of integers in algebraic number fields. He gave 

several proof..., of this fundamental result , one of which involved showi ng that all nonzero ideals in 

such rings are "invertible," one of the key concepts in this thesis. 

ln the early 20th century, Emmy Noethcr Rxiomatized the rings D for which this unique factor

ization of ideals holds in terms of three proper! ies which they must s.-'ltisf.\·: ( i) D must be integrally 

closed in its field of fractions; (ii ) nonzero prime ideals of D must be maximal; and (iii ) every ideal of 

1J must be finitely generated. Such ring,'l are now called Dtdekind domains, although in this thesis, 

we use the (equivalent) definitiou as an integral domain in which all nonzero ideals are invertible. 

Rings satisfying condition (iii ), studitxi ext.ensiYel.v by Noet.hcr iu the first part of the 20th century, 

are now known as Noetherian rings. 

Also in the early 20th century, Ernst Paul Heinz Priifer studied integral domains in which every 

nonzero finitely genemh-.1 ideal is invertible; not surprising!~·, such rings Rre now called Prii.fer 

domains. From t.he definitions , it follows t !tat 0 is a Dedekind domain if and on!_\' if D is a 

Noetherian Priifer domain (Corollary 30). 
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One can show that. in a Dedekind domain, each ideal I can be generated by two elements, where 

one of the two elements is an arbitrary nonzero element of !. Such an ideal is called strongly 2-

genemted; as we shall see, nonzero strongly 2-generated ideals must be invertible (Theorem 34). A 

ring in which every 2-generated ideal is strongly 2-generated is said to have the stT"Ong 2-genemtor 

property, also an importaut concept in this thesis. 

For the second key algebraic structure. integer-valued polynomials, we begin in the 17th century, 

when polynomials of the form ( ~) = X ( X - J))X - n+ l J , where n is a positive integer , first appeared in 

interpolation formulas. Although the coefficients of the;e polynomiaL.:; are not integers when n ~ 2. 

these polynomials take on integer values for all integers. It has been known for a long time that 

these polynomials form an additive bac;is for the additive group of all integer-valued polynomials in 

Q[X]. 

More generally, for any integral domain D with field of fractions Q, if E ~ Dis a nonempty subset, 

we define the set of integer-valued polynomials onE to be lnt(E, D)= {!(X) E Q[X]j f(a) ED for 

every a E E}. In the beginning of the 20th century, Georg P6lya and Alexander Ostrowski studied 

Int(E, D) when D is the ring of integers in an arbitrary algebraic number field Q. In the middle of 

the 20th century, Thoralf Skolem studied the set lnt(D, D) ac; a ring, rather than as aD-module. In 

1979, Demetrius Brizolis showed that lnt(Z, Z) is a Priifcr domain. leading to an interest in studying 

integer-valued pol:>nornial rings as a source of examples of Priifer domains. For example, if E is a 

finite nonempty subset. of D, then Dis a Priifer domain if anci only if lnt(E, D) is a Priifer domain 

(Theorem 49). Thus, the Int(E, D) construction gives a method for building new Priifer domains 

from old. 

Throughout this thesis, we restrict our attention to a nonempty finite subset E ~D. The theme 

of this the;is is the relationship between the structure of finitely generated ideals of D and those 

of Int(E, D). The main result (Theorem 51 ) is that , if D i,; a Prlifer domain, then Int(E, D) has 

the strong 2-generator property if and only if D satisfies an even stronger property, namely, that all 

finitely generated ideals of Dare principal. (Such rings are called Be::.out domains. ) We show that 

an integral domain with the strong 2-generator property is a Priifer domain (Corollary 35). Also, 

a Bezout domain is a Priifer domain. Thu,;, the a-;sumption that D be a Priifer domain can be 

omitted in the main theorem. 

The content of this thesis is as follows. Chapter 2 consists of background material on fractional 

ideals, including operations on fractional ideals, invert.ibilit.v, and cancellation. Chapter 3 focuses 
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on the strong 2-generator property. For integral domain D, let I(D) denote the set of im·enib le 

fractional ideals of D, and P( D) denote the set of nonzero principal fracLiona l ideals of D . \\"e note 

that the quotient group I( D) / P( D) is called the ideal clas8 gr·oup (or Picard gmup) of D. A prime 

n is called regular· (and, as noted above, Kummer's proof of Fermat'::; Last Theorem holds for n), if 

n does not divide the order of the ideal class group of the ring of algebraic integers in Q[(n], where 

( 11 is a primitive n-th root of unity. 

Iu Chapter 4, we turn our attention t.o integer-valued polynomials, and we begin by recalli ng a 

few elementary facts about polynomials with coefficients in a field. Our main tool is Proposition 46 , 

which characterizes ideals of Int(E, D) having nonzero intersection with D . (Such ideals are called 

unitary ideals.) This characterization shows that Jnt(E, D) has the almost-strong Sko lem property 

(Corollary 48), that is, two finitely generated unitary ideal::i I a nd J of Int(E, D) are equal if am! 

only if, for each element a E E, the set of values l(a) of the pol~·nomials in I enlluated at a equals 

lhe set of values J (a) . Fina lly, in Chap ter 5, we prove the main t heorem mentioned above. 

3 



2 Preliminaries 

Throughout this thesis, D always denotes an integral domain wi t h field of fractions Q. 

Theorem 1 The fa/louring conditions are equivaleu t for a comrnutafive ring R. 

(i) R has the Ascwding Chain C01ulition: Every incrmsing sequrw·t of ideals I 1 ~ / 2 ~ h ~ .. . 

eventually sta.bili::-es; th(J.t is, for some positive integer n, !, = I n+ I = I n-r2 = .. 00 

(ii) R sat-isfies the rnaximurn condition: Every nonempty set X of ideals of R has a maximal 

ffement; that is, there exists some IE X such that, for all .! E X, if I~ J , then J = J . 

(iii) Ever:lf ideal of R i~<> finitely gencmtcd. 

Proof. For (i) ==? (ii.), suppose that X is a uonempl_v set of ideals with no maximal element. Then 

we need to show that some increasing sequence of ideals does not cveutually stabilize. Choose an 

ideal h E X. I 1 is not maximal in X by assumption, so there must be Iz E X such that h ~ Iz . 

But fz is not maximal in ); by assumption, so there must be h E X such that. [z ~ h- Aud so 

on. By induction , we get an ascending chain I 1 ~ Iz ._:;; !3 s;: .. . which ne\·er stabilizes. Therefore, 

some increasing sequence of ideals doe> not. eventually stabilize. 

For (ii) ==? (iii}, let I be an ideal of R. Let X = {ideals J / J ~ I and J is finitely generated}. 

Now (0) is fiuitel.v generated and (0) ~ I, (0) E X, so ) .. - is nonempty. By (ii), X ha'> a maximal 

element J. Now J ~ I and J = Ra1 + .. . + Ra, for some a1 , . •. , O.n E J. Then we need to shm\· 

that J = I. Suppose that J I= I, so J s:; f . Choose b E I - J. Then Rat + .. . +Ran + Rb ~ I, 

so Ra1 + .. . +Ran+ Rb E X. But J s;; Rat + ... +Ran+ Rb because b tf_ J. This is impossible 

siuce J is maximal iu X. So, J = I. Therefore, e\·ei)' ideal of R is finitely generated. 

:For (iii)==? (i), let I 1 ~ I2 ~fa~ ... be ascending chain of ideals of R, and let I= U~=J11 • 

Since (0) ~ I, I is closed under addition, and 1 preserves scalar mul t iplicat-ion, then I is an ideal. 

Since I is finitely generated by assumption, then I = Ra 1 + ... + Rat for some a1 , ••• , at E I. 

For each i, a.; E In, for some ni. Choose N = max{n1 , ... ,nr}, then a. 1 , ... ,a1 E IJV. So, 

I = Ra1 +.-. + Ra1 ~ h.; ~ I which implies I = IN = I N+ 1 = .. 00 Therefore, R has the ascending 

chain condition. • 
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vVe characterize the property specified b.v these conditions in t.he following defin ition. 

Definition 2 A comm.u.tative ring R is callai noethe1-ian if i t sat-isfies the eq·uivalent condit·ions of 

Theorem 1. 

Many of the definitions and results in the remainder of this chapter can be found in [i]. The 

following definition is a fundamental concept in thi.:; thesis. 

Definition 3 A fmctional ideal of Dis a D-submodule J ofQ such that dJ <;;; D for some non::.ero 

dE D. 

Example 4 Let D = Z, Q = Q, and J = { ~ I a E 2} . Then J <;;; Q is a Z-submodule, and 2J <;;; D 

so that J is a fmrtional £:-ideal. 

The following proposition answers the question of when two D-submodules are isomorphic. 

Proposition 5 If M, N <;;; Q u.re D-wbrnod·ules, then M ~ N if and only if M = aN for some 

nonzem a E Q. 

Proof. Suppose that M , N <;;; Q are D-submodulcs. 

(===>) Suppose that 0: N --+ .tv£ is aD-modu le isomorphism. lf /\' = {0}, then M = B(N) = {0} 

also, so a can be any nonzero element of Q. So, we can suppose that N-::/:- {0}. Fi:x 0 #- n E N. 

For each n' EN, let 0 #-dE D be a common denominator for nand n', so that dn, dn' ED. Now, 

dnB(n') = B(dnn') = dn'B(n). Since dn-::/:- 0, t.hen (}(n') = dn~~") = ~n' =em' where a= ~· 

Therefore. M = B(N) =aN. 

( ¢:==) Suppose that. !II = aN for some 0 -::/:- a E Q. We nee<! to show that B : N --+ M defined 

by O(n) =an is a D-morlule homomorphism, one-to-one, and onto. So, for all n,n' EN and for a ll 

(J E Q, B(n + n') = a(n + n') =an+ an'= B(n) + O(n') and O((Jn) = a(!3n) = (a(J)n = ((Ja)n = 

,B(an) = (30(n) , so that B is a D-rnodule homomorphism . Ry the First Isomorphism Theorem, N / 

ker () ~ im 0. Since if O(n) = B(n') , then an= em' implies that n = n' (because a-::/:- 0). So,() is 

one-to-one. Since b~' a....:;sumpt.iou !If= aN, then fl.!= aN= O(N), so (} is onto. • 

Applying Proposition 5 to fractiona l ideals, we obtain the following consequence. 

Corollary 6 rf M <;;; Q is a D-sulmwd·ule, thm M i.~ a fractional D-ideal if and only if M ~ I for 

some idea.! I ~ D . 
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Proof. Suppose that !If ~ Q is a D --submodule. 

( ===>) Suppose that M is a fractiona l D-idca l. Then this implie:; that o:M C D for some 

0 =/=-a E D , where alvf is an ideal in D , and M :=:!aM by Proposition 5. 

(¢:=) Suppose that M :=:!I for some ide<-t l I~ D. By Proposition 5, this implies that M =a! 

for some 0 =/=-a E Q, where n = ~ for some 0 =/=-a, b E D . Then b]lf = bni = aJ ~ D. Therefore, 

M is a fractional D-ideal. • 

The example given in Example 4 is a specia l case of the following much more general class of 

examples. 

Proposition 7 A .finitely generated D-sulnnodu.le J of Q is a fmetional D-idcal. 

Proof. Suppose t hat .1 is a finite ly generated D-submodule of Q. If x 1 = adb1 , ... , Xn = an/b, 

,~enerate J and b = b1 · ... ·bn, then bJ ~D. T here fore, .1 is a fractio na l D-ideal. • 

For the conYcrse of Proposit ion 7, we require the addit.ional condition t.ltal. every ideal b e finitely 

generated. 

Proposition 8 If D is noetheTian. then a fra ctional D-idea.l J of D is a ./inilely genemted D

submodule of Q. 

Proof. Suppose that D is noetherian , and suppose that J is a fractional D-ideal of D . T hen J is 

bomorphic to an ideal of D, by Proposition G. B~· assumption, eYery ideal of Dis finitely generated, 

so J must be fini tely generated as ·wel l. • 

Certain operations on fraction al ideals (or, more generally, subrnodules of Q) are important for 

t his thesis. 

Definition 9 For· submodules J and J of Q, recall tht· usual binary opcmlions of surn I + J and 

intersection I n J and dejine two more binary op-emlions called the product I J = P=i=1 a;b; I a; E 

I , b; E J ,n < u.:} and the residual I : J = {q E Q I qJ ~ J} . The su.ru, intersection, product and 

1·esidual of I a1ul J are again su.bmodnles. 

Example 10 Let I= ~Z and J = ~Z. Then 1: J = {q E Q I qJ ~I}= ~Z. 

Let :F(D) denote the set of nonzero fradional D-ideals. 

Theorem 11 :F(D) is closed under finite sums, inlcrsrctions, pr-oducts, and residuals. 
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Proof. Let I and J be fractional D-idP.als of F(D). Then I is a D-submodule of Q such that 

dl s;;; D for some nonzero dE D and J is a D-submodule of Q such that eJ s;;; D for some nonzero 

e E D. J.or the sum, we have t hat de(/+ J) c;;; dl + eJ s;;; D so I+ J is a fractional D-ideal. For 

the intersection, we have that d(I n J) c;;; dl c;;; D so that 1 n .J is a fractional D-ideal. For t he 

product, we have that del .J = (ell) ( eJ) c;;; D so that I .J is a fractional D-ideal. For the residual, 

J(I : J) c;;; I by definition, and then multiplying both sides by d, we have d.J(T : J) c;;; dJ c;;; D. So, 

for any nonzero c E dJ, c(I : J) s;;; D. But c may not be an element of D, so we multiply b_Y e since 

e.J s;;; D. \\'e have that ce is a nonzero element of D such that c.e(J : J) c;;; eD c;;; D, so (1 : J) is a 

fractional D-ideal. 

B~r induction , :F(D) is closed under finite sums, intersections, products, and residuals . • 

\Ve record some useful properti0' of these operations on fractional ideals in the following theorem. 

Theorem 12 Let I , J and ]{ be submod·ules of Q; then: 

{i) I(.J + K) =I .J +I K; 

(ii) I: (J + K) =(I: J) n (/: 11.· ): 

{iii) (In J): /'(=(I : K) n (J: J{ ); 

(iv)a (I : J) : K = I: J K ; 

(iv)b I : .J !<..' = (I : K) : J: 

(v) I (I .J : I) = I J ; 

(ui) (In J) +(InK) c;;; In (J + K) : 

(vii) I(JnK) s;;; IJnJK; 

{viii) (I: K) + (.J: K) c;;; (I+ J) : K. 

Proof. For {i), first , to show that. I(J + K) c;;; I J + 1 K, take a E I and b + c E J + K where bE J 

and c E K. Since a E I and bE .J , then abE JJ and since a E I and c E K, t hen acE IK. So, 

now abE I J and acE fl( implies that. ob+ac E I .J + IK . Now, to show that I J +I K s;;; I(J +K), 

take ab +a' c E I J +I [( where ab E I J and a' c E 1 f(. So, ab E I J implies that ab E I(.]+ K) 

because a. E I and bE J and o.'c E JJ{ implies t hat a'c E l(J + K) because a' E I and c E K. So, 

ab + a'c E I(J + K). Therefore, I (J + 1\) = I J +I!{. 

For (ii) , first, to show that (I: (.J + K)) c;;; ((I : J) n(I: K)), first take a E (I: (J +K)). Then 

a(J +K) s;;; I. Take any bE .J. T hen b E J c;;; J +K. So, abE a.J c;;; a(.J +K) c;;; I so aJ c;;; I so 

a E (I: .J) . Now take any b E /(. Then bE K c;;; J + K. So, abE aK s;;; a(J + K) c;;; 1 soaK c;;; I 
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so a E (I: K). So. a E ((I: .J) n (I: K)). Now, to show that ((I: .J) n (I: K)) ~I: (J +1(), 

take a E ((I : .J) n (I : K)). Then a E (1 : J) and a E (I : K) so aJ ~ I and aK ~ I. :'-low 

aJ + aK = a(J +K) ~I so a E (I: (J +h.")) . Therefore, I: (J + 1\-) =(I: J) n (I: K). 

For (iii}, first, to show that ((! n J) : K) ~ ((I : K) n (J : /\." )). take a E ((In .J) : K) so 

aK ~ (In .J) so of( ~ I and aK ~ J. Then we have that a E (I : K) and a E (.J : K) which 

implies that a E ((1 : K) n (J: K)). Now. to show that ((I: K) n (J: K)) ~ ((In .J) : K) , take 

a E ((I: I<:) n(.J: Ii..)). Then, a E (I: K) and a E (J: A' ) so oA ~I and aK ~ J soaK~ (InJ) 

so a E ((In J): J\'). Therefore, (In J) : J\- =(I : H:) n (J: K). 

For (iv}a, first, to show that ((1 : J) : J() ~ (1 : .JK), take a E ((I : .J) : K) soaK~ (I: .J). 

Then aKJ ~ J so aJK ~ I so a E (I : .JK). Now, to show that I : Jf( ~ (I : J) : K , take 

a E (I: .JK) so aJ I-( ~ 1 and tlwu aKJ ~ I soaK ~ (I : .J) ::;o a E ((I : J) : K). Therefore, 

(I:J):K=I:JK. 

For (iv}b, first, to show that (I: JK) ~ ((I: K) : .J), take a E (I : JK) . Then aJK ~I so 

aJ ~(I: K) so a E ((I: K): J). Now, to show that ((I: K): J) ~(I: JK) , take a E ((I: K): .J). 

Then aJ ~(I: K) so aJK ~ I so a E (I: JJ;,.') . Therefore, I: Jf{ =(I:/\."): J. 

For (v), first, to show that I(IJ: I)~ I J, take a E I aud bE (1 J: I). Since bE (I J: I), then 

bi ~ JJ. Since a E I, then ba = a.b E IJ . Now, to show tha t JJ ~ I(IJ: I), take a E I and bE J 

so that abE I .J. Since bE .J, then bi ~ .J I = IJ, sob E (I.J : /), so abE I(I .J : I). Therefore, 

l(IJ: J) = JJ. 

For (vi}, to show that ((In J) + (1 n J\.)) ~ (In (J + K)), take a+ bE ((In J) +(InK)) 

where a E (In J) and bE (InK). So, a E I and a E J and b E I and bE K. So, a+ bE I aud 

a+ bE (.J + K). Therefore, a+ bE (In (J + K)). 

For (vii}, to show that. J(J n K) ~ (!J n JK), take a. E I and bE (.J n K). Then bE J and 

bE K. Since a. E I and bE J, then ab E I J, and since a E 1 and b E K, then ab E -Ik. So, 

abE (I.J n I K) . Therefore, I(J n K) ~ (IJ n I K). 

For (viii}, to show that ((I : K) + (J : K)) ~ ((I+ J) : K), take a+ bE ((I: K) + (.J : K)) 

where a E (I: K) and bE (J : /\'). Then uA ~I and bl\. ~ .J. So, (a+ b)J\- ~a](+ bK ~ I+ J 

so a+b E ((I+ J) : J·l.') . Therefore, (1: K) + (J: K) ~(I+ J): K. • 

Two of the four operations mentioned previously, namely, the sum and product , yield finitely 

generated ideals when applied to finitely generated fractional ideals. 
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Proposition 13 rf I and J are finitely geru rated fm.ct'ional ideals, then I+ J and I J are finitely 

genemted fractional ideal.>. 

Proof. Suppose thm. 1 = Di 1 + ... +Din aud J = Dj1 + ... + Dj111 are fiuitely geueraied fractioual 

ideals. Then by Theorem 11, I+ J and I J are fractional ideals . So, it is sufficient to show then 

that I+ J and I J are finitely generated. But I+ J = Di 1 + ... +Din + Dj1 + ... + Djm is finitely 

generated, and one easily checks that IJ = 'L, 1 ~ k "' n , Dik],, so that 1J is finitely generated as welL 
I ~l~ rn 

Therefore, I+ J and I J are finitely generated fntct.ional ideals. • 

Another fundamental concept. in this thesis is the followiu g. 

Definition 14 A non:::em fractional ideal I of D i,s called invertible if there exists a J E F(D) 

such that I J =D. This fractional ideal J, if it exists, is uniquely deterTnined by I and is called the 

inverse of I, denoted by J- 1 • 

The following example shows that nonzero principal fractional ideals are im·ertihle. 

Example 15 If l = Da is a nonzero pt·incipal fraci.ionu.l ideal, then I - 1 = Da- 1 . 

Lemma 16 If I and J are fm.c/.i07wl idwl.s, thrn JJ is invertible if and only if both I and J aTe 

invertible. 

Proof. Suppose that I and J are fractional ideals of D. 

( ~) Suppose that I J is invertible. Then (1 J)K = D for some 1\ ~ D. Now, I( J K) = D 

implies that I is invertible. Similarly, J(I I{) = D implies that J is invertible. Therefore, both I 

and J are invert ible. 

( ¢::=) Suppose that both I and J are invert ible. Then IK = D and J L = D for some K, L ~ D . 

So, I J(l( L) = D. Therefore, I J is invertible. • 

For fractional ide.:-.ls, the followin g property is also an object of study but will not play a major 

role in this thesis. 

Definition 17 A fmctional ideal I is said to be cancellative if for J , L E F(D), IJ = 1 L implies 

that J = L. 

This ne:x"t example shows that. invertible fractional ideals are eancellative. 

Example 18 If I J = I L and I is invertible, then multiplying both sides by I - 1 gives J = L. so I 

is ca.ncella.tive. 
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Combiniug Example 15 and Example 18 we get the following. 

Example 19 Non:..Pro pr-incipal .fmctional ideals are ca.nccllative. 

The equivalence given in Lemma 16 holds also for the cancellative property. 

Proposition 20 If I and J are fractional ideals, then I J Ls cancellative if and only if [ and J are 

cancella.tive. 

Proof. Let J and J be fractional ideals. 

( ==:::;,) Suppose that I J is cancellat.ive. Then I J }( = I J L implies K = L. So, now suppose 

that IK = IL. Then !KJ = JLJ and so IJJ( = JJL so J( = L. Simila rly, if JK = JL, then 

I J K = ! J L so /( = L. Therefore, I and J are cancellat i ve. 

( <==) Suppose that I and J are cancellative. and suppose that (I J)K = (! J)L. Then I(J J{) = 

I ( J L) which implies that J /( = J L since I is cancellative which implies]{ = L since J is cancellative. 

Therefore, I J is cancellative. • 

\Ve now note three equivalent characterizations of ca ncellability. 

Proposition 21 For· a nonzero fmctionnl ideal], Tl·~4E: 

{i} I is cancellative; 

{i·i} I J : J = J fo r all fm ctiona.l idwL~ J; 

{iii) for· J , K E F(D), I J ~ JJ{ implies J ~ f(. 

Proof. {i} ==:::;, (ii} Suppose that I is cancellative. By property {1'} of Theorem 12, !(I J : I) = I J. 

B~· assumption, I is cancellative. Therefore, I J : I = J for all fractional ide..ds J. 

(ii) ==:::;, {iii} Suppose that I J : I = J for all fractional ideals J. If I J ~ IK, then J = I J : 

I~ IK: I=}{. Therefore, for J , J( E F(D), JJ ~ 1 f{ implies J ~ K 

(iii) ==:::;, (i) Suppose that for J , ]{ E F( D), IJ ~ 1 /{ imp lie:. J ~ 1\. If I J = I K, then 

IJ ~ IK, so J ~ K, and IK ~ IJ, so K ~ ./. So, J = K. Therefore, [is cancellative. 11 

The next few results contain technical facts ne:.'Cded in what follows. 

Proposition 22 rf I i.s a cancella.tive fractional i.denl of D, a.n.<l P 1 , ... , P,, are distinct maximal 

ideals of D, then Ui'= 1 I P; r;: 1 . 

Proof. Suppose that P ~ D is a maximal ideal, and suppose that 1, J ~ D are ideals. 

lO 



\Ve claim that. if T J ~ P, then 1 ~ J> or 1 ~ P. To prove this claim, suppose that I .t_ P and 

1 't P. Then there are a E I- P and bE 1- P. So. au rf. J> be<'all::>e P is primt. abE I.J- P. so 

I 1 't P. 

Nov\", Pl·· . . ·Pj - I Pj+l'· . . · Pn ~ PIn ... n Pj - l n Pj+J n ... n Pn. Suppose tlnt PIn ... n P.i - 1 n 

Pj+I n ... · Pn ~ P i· Using induction and the argument. in the previous p<~ragraph, this implies 

that P; ~ P.i for some if j. But P; is maximal by assumption ( <~nd Pi proper). which forces 

P; = P.J, impossible. 

Since J is cancellative, then by Proposition 21 f(ni~.i P;) f I Pi (because cancellation of f would 

yield n;~Jpi ~ P.i again, which we showed is impossible). For each j, choose an O.J E l(n;~.ipi) 

\ I Pi. Then a = a 1 + ... +a, E 1. \Ve claim that a. rf. 1 P; for each i. This is because of the 

following. If j f i, then aJ E I(nk~J Pk) ~ fP; . From a1 E l(n;~JP;) \ I PJ, we have that a; rf. I P;. 

Therefore. a= a; + a. 1 + ... + a; _ 1 + a;"'" 1 + ... +a, rf. 1 P, for all i. • 

Lemma 23 (i} Ltl 1 1 , ••. , J,. br a {L11ile collection of ideals of D, mul I an itieal of D such !.hal 

I~ U~ 1 1;. rf at most two of the idtals J; ar·c not prime, then 1 ~ 1i fo7· some j. 

{ii} If J1 .... , 111 aTe incomparable pri-me ideals (e. g., different maximal ideals}, lhfn 1; 't UH;1j 

joT ·i = 1 . . .. , n. 

Proof. For (i) , we use induction on n. First .. for n = 1, the claim is trivial. For n = 2, suppose 

that 1 ~ 11 U .h Then it. is sufficient to show that I ~ 1 1 or 1 ~ 12. By way of contradiction. 

suppose t.hat I 'f= 1 1 and I cf= h_. Pick x 1 E l- ./1 and X2 E l - J2. Then x 1 + :z:2 E I because 

x 1 • x2 E I. an ideal. So, x 1 + x2 E l ~ .71 U 12 by assumption, say x 1 + :r·2 E 11 (s imilarly for h). 

But. :1: 1 rf. 11 by choke which implies that. :1:2 rf. 11 • This is bec<~usc if we write x 1 = (x 1 + X2) - :1:2. 

since .1: 1 + :r2 E 11 and .1: 1 rf. J 1 , then :z:2 rf. 11 . But this is a contradict ion because x2 E I ~ J 1 U 1z . 

Now, for n ? 3, aS.S.ume true for n -1. Suppose t.hat l ~ 11 U ... U 1, . We can assume 1, is prime. 

1f I ~ 11 U ... U 1n- 1, then we are done by induction , so suppose that I cf= 11 U ... U 1n - 1, and pick 

X1 E I- (11 U ... U 1, _ 1 ). If 1k c;;; J, for 1.: , 1 ~ k ~ n- 1, then I c;;; 11 U . .. U 1k- 1 U 1k+1 U . .. U 1n , 

so again we are done by induction, so suppooe that. Jk If- 1n for all 1.:, l ~ k ~ n- l. If I ~ 1n. then 

we are done. so suppose I cf= 1,. Then I·J1· ... ·111 _ 1 rJ 111 because 1, is prime and I cf= 1,. and 

1k 't .ln fork= l , .... n- l. Pick X2 E I ·J 1· .. . ·J71 .. J- 1-n. Since X1 E I , X2 E I·11· ... ·1n- 1 ~I, 

and 1 is an ideal, then :~: 1 + :1:2 E I. Jf l ~ k ~ n- l , then x 1 rf. .11 U ... U 1r~ - I which implies that. 

X1 ¢ 1,,,, but X2 E 1·1J· ... ·1n - l ~ 1k· Then x1 +:z:z rf. Jk. Since :z:1 E 1 ~ 11 U ... U 1", then 
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:1:1 E J,, out Xj rt. Jl u ... u lu - I · Now since :?:"2 ¢: JTI oy choice, then :z:l + :c"2 ¢:ln. This is a 

contradiction since :r 1 + xz E I , but x 1 + X2 rj. J1 U ... U .ln. 

For {ii}, by part {i} and assuming that J 1 , •.. , Jn are incomparable prime ide-als, then J; c£ UJ#iji 

fori= L ... ,n. • 

Definition 24 D is calltd semilocal if D has only finilfly many uw:rima/ idl~als. D is called local 

if D has a unique maximal ideal. 

Proposition 25 Let I be an invcrt'iblr fmctional idwl of D. Thw: 

{i} J - 1 = D: !; 

(ii) I is finitely generated; 

{iii} if D is semiloco.L then J is a principal frartionfll ideal; ~f D is local, ihtn rvery generating 

set of I contains an element gencruting I: 

(iv} if I is an inlegml ideal and theTe is an a E I conta·im·d in unly finilfly many maximal 

ideals, then I= Da +Db for some hE D. 

Proof. For (i}, suppose that J J = V . Then J is cancellati,·e. Therefore, part (ii} of Proposition 

21 implies that J = I.J: I= D: [. 

For {ii}, since 1 is an invertible fract.ional idea l, then I J = J) for some fractional ideal J. Now 

ED, so we can write 1 = a 1b1 + ... +anb, for some a1 , ..• ,an E I and b1 , ••• , bn E J. Vve 

need to show that I = Da1 + .. . + Dan. First, the containment Da1 + ... + Do., ~ I is dear 

since a1 , • .• , a, E l , a fractional ideal. for the containment J ~ Da1 + ... +Dan, choose w E I , 

then w = (wb 1 )a1 + ... + (wb,)a, E Da 1 + ... + Da, since wb; E I J for each i . Therefore, 

I = Da1 + ... + Dan, so I is finitely generated. 

For (iii}. assume that D is semilocal, namely, that. /) has finitely many maximal ideals. So, let 

{P1 , ... ,Pn} be the set of maximal ideals of D. Proposition 22 ensures that I 2 U";= 1IP;. It is 

sufficient to verify that any a E I \ Ui'~ 1 I P; sat llifies f = Da. So, Do. ~ I and multiplying both 

sides by /- 1 yields ai- 1 ~ D. 

We claim that, from Da "t U'/= 1 1 P;, we obtain al - 1 'I= u;~ 1 F;. To proYe this claim, suppose 

that al- 1 ~ Uj'=1 P;. Then Lemma 23 implies t.hat. a/ - 1 ~ P; for some i. Then a[ - 1 I ~ I P; and so 

Da ~ I P; ~ Ui= 1 I P; which is a contradiction. So, we do obtain a!- 1 c£ U~ 1 P; from Da c£ u;'=. 1 I P;. 

Now ai- 1 is an integral ideal not contained in any maximal ideal of D, so al - 1 =D. Multiplying 

by I yields Da =I. Therefore, I i.." a principal fractional ideal. 
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Assume now that D i'3 local. namel.v, that D ha.s a unique maximal ideal , and also assume that 

I= I:f=t Da; = Da. Then, for each i ~ n, a; = d;a. and a= I:f=t e;a; for suitable d;, e; E D . Then 

1 = I:i':: 1 d;e;. Since every uonunit lies in some maximal ideal and there i:> on!.\· one maximal ideal. 

then all of the uonunits are in 1 his maximal ideal. Rut since maximal ideRis a re proper, !.hen d; is 

a unit for some i, so I = Da; for such a u i . 

For (iv), if a = 0, then D is semilocal. and the claim is a consequence of (iii). So, suppose 

t.hat a f. 0. If I = Da , then we arc done; so let Da C f. Then al - 1 is a proper ideal of D and 

Da = IJ- 1a ~ I - 1 a. Let P1 .... ,P71 denot.e the maximal ideals containing I - 1a. B~r Proposit ion 

:2:2 , there exists abE I \ ur=liP; . Such a b sa tisfi es l - 1b ~ 1J and J- 1b 1= P; for all ·i ~ n, 

t bus I - 1 a+ 1 - 1 b is not contained in P; for any i ~ n, neither is in any other maximal ideal of D. 

Therefore, I - 1 a+ 1- 1 b = D, and so Da +Db= 1 after multiplying both sides by I . • 

Definition 26 An ·ideal which can be gfnemttd by lwo dements is called 2-generated. 

An important fact is that, in a :;ense, the 2-generalcd ideals determine the behavior of all fini tely 

generated ideals. The key is the following iutcrest ing fact. 

Lemma 27 For· fmctional ideals I , .J, K. (I+ .J)(J +!<:)(!<+I)= (I+ J + /<,.')(TJ + JI{ + KJ) . 

Proof. Multiplying out the left-ha nd side gives (I +J)(J+A.)(I< +!)=(I J+I K +JJ+J K)(K +I)= 

I JK+l JI+l IU\+l li.'l+JJf{+JJ I+JJ\ K +JIU = IJJ{ + II J + l IA+JJI+JJf{+f(IU+KK J. 

On the right-hand side, (I + J + f{) (I J + J I...: + K I) = I I J + I J K + I K I + .J I J + J J f{ + J K I + 

I( I J + K J J( + K K I = II J + II\ 1 + .] 1 J + J J l\. + I J J( + J( J ]( + [( K I . Therefore, s ince D is 

commutative, then (I+ J)(J + K)(l< +f) =(I+ J + K)(I J + J /(+/(I). • 

Theorem 28 The invertibility of all 2-genemled fractional ideaL~ of D implies /.hat all finitely gen

emted fmctiona1 ide.als of D an' invertible. 

Proof. By induction . 

For n = 1, since principal ideals are invertible, then true. 

For n = 2, true by assumption. 

:For n ~ 3, let I= Da1 + ... + Da71 _z , J = Da,. ._ 1, and /( = Dan . Then we have that 

((Da1 + ... +Dan-2)+ Da.n- 1 )(Dan - I +Dan )(Dan+ (Da.1 + ... + Da, _2)) = ((Da1 + .. . +Da., - 2) + 

Dan - I+ Da., )((Da1 + ... + Dan- z)( Da,. _ I) + ((Dan - l)(Dan)) + (( Dan)( lJal + ... + Dan-2))). 
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This equalit.y follows immediately from Lemma '27. Since we haYc invert.ib ility up to n- 1 and, by 

Lemma 16, the product of im·ert.iblc,<; is im·ert ihle, tllen the iu\·crt ibilif y oft lie left -hand side impl ies 

invertibility of the right-hand side. Therefore, ((1Ja 1 + ... + Do.n- '2) + Don- 1 +Do.,) is inverlil>le 

by Lemma 16, completing t he induct ion . • 

We conclude this chapter by defining one of t.he main objects of stud.v of this thesis, Prtifer 

domains, and note two special case::;. 

Definition 29 An inlegml domain in which evcTy non::.ero finitely generated ideal is invertible is 

called a Priifer domain. An integral domain in which eveTy finitely gencrat[d ideal is principal 

is called a Bezout domain. Since pr·incipal ideals aTe inver-tible by £w.mple 15, then a Bc::.out 

domain is a Pr·iifeT domain. An int egm.l domain in u•hich every non::.em idtal i,s invertible is co./led 

a Dedekind domain. 

Corollary 30 D is a DedEkind domain if and only if D is a Noetherian Prilfer dorna·in. 

Proof. ( ===>) Suppose that D is a Dedekind domain. Then ever,v nonzero ideal of D is invertible, 

making D a Prlifer domain. Also, s ince invertible ideals a re fiuitely generated by part (ii} of 

Proposition 25, then D is Noetherian . Therefore, D is a Noetherian Priifer doma in. 

( <==) Suppose that Dis a Noetherian Priifer domain. Then every ideal of Dis finit.el~· generated 

and so invertible. This is exact.ly the definition we gi\'e for Dedekincl domain iu Definition 29. 

Therefore, Dis a Dedekind domain. • 
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3 The strong 2-generator property 

The following clefiuition play~ a major role in the remainder of th is thesis. 

Definition 31 .4 2-genemted fractional ideal I is strongly 2-generated if one of the two genera

tors can be chosen as an arbitrary non::;ero eleme11l in I. A r·ing in which each 2-gcnemted ideal is 

strongly 2-genernted i.s said to have the strong 2-generator property. 

We show now that, in the definition of t he strong 2-generator property, we could have equivale ntly 

required that all finitely generated ideals be strongly 2-generated. 

Proposition 32 if D has the strong 2-genemlor prvperly, then ever·y .finitely generated ideal of D 

is strongly 2-genemted. 

Proof. By induction on the number of generators. For n = I, the resu lt is trivial. Suppose true for 

n, and let I= Db1 + .. . + Dbn + Dbn·r l for some bt , ... , bn, b71 + 1 E / . Now Db1 + ... + Dbn = De+ Dd 

for some e, d E I by induction so that I = De+ Dd + Db,., +I. If bn+ 1 = 0, then I = De+ Dd is 

strongly 2-generated by assumption. Similarly, if c = 0, then 1 is strongly :2-generated. So, we 

can suppose that e, bn+l # 0. Now 0 # cb71 +1 E De+ Dd where De+ Dd is 2-generated which 

implies that De+ Dd is strongly 2-generated by assumption , so that De+ Dd = Dcbn+l + Da 

for some a. Now De+ Dd + Dbn+l = Dcbn +l +Do.+ Dbn+h but Dchn+l <;;; Dbn+l · So, 

Dcbn+l + Da + Dbn+l = Do.+ Dbn+l is :2-generatecl and so is strongly 2-genen:ted by assumption. 

This completes the induction . • -

Proposition 33 If I is a strongly 2-gcnemted cancellative ft·actional ideal of D, then I I I J ~ D 

I J for any nonzcm ideal J. 

Proof. Suppose that I is a st rongly 2-gcneratecl cancellative fractional ideal of D. Pick an~· 

0 # a E IJ <;;; f. I strongly 2-generated means that I = Da +Db for some b E I. Define 

cp: D----> I I IJ by cp(d) = d(b+ JJ). ep is well-defined since an element of Dis being mapped 

to its coset.. cp is a D-homomorphism because for all d, e E D, cp(d + e) = (d + e)(b +I J) = 
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((d + e)b) +I J = (db+ 1 J) + (eb + 1 J) = d(b + J.J) + c(b + IJ) = ~ro (d) + <p(e) and <p(de) = 

(de)(b + IJ) = d(eb + JJ) = d(e(b + JJ)) = dtp(e). For any c E I. c = da + eb for so me d, e ED 

because 1 = (a, b). So, c + J J = da + f..b +I J = e(b + !J) = <p(e) E im( tp) . So, <pis onto. Next, to 

show ker(i,-") = J, fin;t to show ker((p) ~ J. C'hoose dE ker(.p). Then <p(d) =db+ 1 J =I J implies 

that db E I J. But a E I J by assumption, so da E 1 J, and so d1 ~ I J. Therefore, d E (I J : I). 

Since (I J : I) = J by part (ii) of Proposition 21 (because 1 is assumed to be cancellative), then 

ker(r;) ~ J. Ne..xt, to show that J ~ ker( ...p), take dE .1, t>O VJ (d) =db+ I J = I J. Therefore, dE 

ker(<p). By the First. Isomorphism Theorem , D I ker(r;) :=:< im(,p ) = 1 I 1J. Therefore, I I IJ ==' D 

I J for any nonzero ideal J. • 

We will now see from the following result that, for an ideal , there is a connection between being 

strongly 2-generated and being iuvertiLle. 

Theorem 34 (Lantz and Martin, Theorem. 1, (8}) Suppose that I ~ D is a nonzer·o strongly 2-

gcnera.ied ideal. Then I is invertible. 

Proof. It is sufficient to show that (D : 1)I = D. First. for the cont.ainment. (D : !)I ~ D. 

recall that by definition, D: I= {q E Q / ql ~ D}, so then (D: l)I ~ D is clear. For the other 

containment D ~ (D: 1)1, it is sufficient to show that, for each maximal ideal M ~ D, (D: J)I ,Z J\1. 

For a given maximal ideal AI, Ivlf =f:. {0}, so choose 0 i- a E MI. Since 1 is strongly 2-generated, 

then I= Da +Db for some 0 i- b E I. Since a E /111, t.hen I= Do.+ Db~ Ml +Db~ !, 

so I = /If I + Db. So, we can \Hite a = m. + sb + tb for some r , s E llf and t. E D. So, from 

a.= ra. + sb + tb. we have that. (1- r}a. = (s + t)b, where r E M which implies that 1- r t/:. 1U. 

Then a.lt; r = s+t ED since s E /11 and tED and M is an ideal. Also, b1/;"' = 1-r ED. 

So, lbr E (D : !}. But b 1!;'' = 1- r t/:. M, so (D : 1)1 ,Z 111. So, D ~ (D : 1)1. Therefore, 

(D : !)I= D, I has m1 inverse, so 1 is invertible. • 

There is a connection between having the strong 2-gencrat.or property and being a Prtifer domain. 

Corollary 35 ff D i.s an integral domain satisfying the strong 2-generator pr·operty, then D is a 

Priifer· domain. 

Proof. Suppose that I ~ D is a 2-generat.cd ideal. Then by assumption, 1 is strongly 2-generated, 

so by Theorem 34 I is invertible. Since all 2-generated ideals of D are invertible, then by Theorem 

28 all finitely generated ideals of D are invertible. Therefore, D is a Prtifer domain. • 
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Recall that :F(D) is the set of nonzero fractional D-ideals. This set :F(D) forms a multiplicative 

semigroup wit.h identity 0. The set I(D) consisting of all invertible fractional ideals of D is a 

multiplicative group and is the largest. subgroup of :F(D) whose identity is 0. Furthermore, the 

set P(D) consisting of the nonzero principal fractional ideals is a multiplicative subgroup of I(D). 

Note that I, J E :F(D) are congruent modulo P(D) if and only if J = JJ( for some K E P(D) if and 

only if J = al for some 0 #-a E Q if and only if I~ J (by Proposition 5). SuH:e P(D) is a normal 

subgroup of :F(D), then :F(D) modulo P(D) is a quotient semigroup, called the class semigroup of 

D. Furthermore, the class semigroup of D can be thought of as the semigroup of the isomorphy 

classes[/]= P(D)·l ={a! I 0 #-a E Q} = {J E :F(D) I J ~I} of the fractional ideals I#- 0 of 

D, where multiplication is induced by ideal multiplication: [I] ·[J] = [I·J]. Since P(D) is a normal 

subgroup of I(D), then I(D) modulo P(D) is a quotient group. We call this quotient group the 

(ideal} class group (or the Picard group) of 0. 
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4 Integer-valued polynomials 

\-\'e begin this chapter by recalling three element HrY facts Rhout. polynomiRls and their roots. 

Theorem 36 (Root Theorem} 1/ f(X) i~~ a polynomial with corfficiPnls in a .field F, a11d a E F , 

/.hen f(a) = 0 if and only if X- a divid<:s f(X). 

Proof. (===?) Suppose that f(a) = 0, so a is a root of /(X). By the Division Algorithm . 

f(X) = p,-- o)·q(X) + r(X) , where q(X) , r(X) E F [X ], and deg(r(X)) < deg(X - a.) = I . So, 

r(X) is a constant polynomial rEF. Evaluat in?; at a, .f(a) = (a- a.)-q(o.) +T. From this together 

11·ith the assumption that f(a) = 0, we have that 0 = O+r = T , so /(X)= (X -a)·q(X). Therefore, 

X- a is a factor of f(X), so X- a di1·ides f(X). 

( <===) Suppose that X -a di,· id~ .f(X) , so X -a is a factor of f(X). Then .f(X) =(X -a)·q(X ) 

for some q(X) with coefficients in F. Evaluating at a, f(o) = (a - a)·q(a) = 0. Therefore. a is a 

root of f(X) , so f(a) = 0. • 

Corollary 37 (D'AlPmlwr·t) .4 nonztTo JWlynomial /(.\ ' ) of degr·ee n in F[X], Fa field, has at. most 

n distinct roots in F . 

Proof. By induction on n, the degree of f(X ). If deg(f(X)) = 0, then f is a nonzero constant 

polynomiaL so f(X) has no roots in F. Suppose that f(X) is a polynomial of degree n > 0, and 

suppose that .f(X) has r distinct root:-> a 1 , .. . , a.r in F. It is sufficient to show that r :s;; n. Since 

f(X) has 7' distinct roots a1 , ••• , a,., then f(a, .) = 0, so by Tlleorem 36, f(X) =(X- ar)·g(X) , 

"·here g(X) has degree n- l. For each i, l :s;; i :s;; r- l, f(a ;) = (a;- ar)·g(a;) in F. Since 

f(a;) = 0 and the a;'s are distinct so that a; # O.r, then g(a, ) = 0. So, g(X) has roots a1 , •.• , a.r - l · 

_By induction, r·- l :s;; n - I= deg(g(X)). Therefore, r :s;; n = deg f(X). • 

\Ve will find the following consequence of n·Alembert's Theorem extremely useful in this thes is. 

Corollary 38 If f(X) and g(X) ar-e polynomials urith coefficients in a field F wher-e dcg(f(X)), 

deg(g(X)) < nand if f(a ;) = g(a, ) f or n distinct. clements a 1 , .. . , an E F, th en f(X) = g(X) as 

polynomials. 
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Proof. Suppose that f(X} and g(X} are pol~rnomials \\·ith coefficients in F where deg(f(X) ). 

deg(g(X}) < n but J(a.;) = g(a.;) for 11 distinct elements a1 , • •• , 0. 11 E F. Theil deg(f(X)-g(X)) < n 

but f(X) - g(X} has n root~, so it must be the zero polynomial. Therefore, f(X} = g(X) a,.; 

polynomials. • 

\Ve now define the other main object of study of t.his thesis. pol.nwmials which take on restricted 

values on some subset of the domain. For the remainder oft his thesis , we fix E = { a1 •••• , a,.}, a 

finite nonempty subset of D. 

Definition 39 Let Int(E,D) = {f(X) E Q[X] \ f(a.) E D for ever-y a. E E}.. called the set of 

integer-valued polynomials on D with respect to the subset E. One easily checks that 

Jnt(E , D) is a. sttbring of Q[X]. containing D[X]. 

Definition 40 Let I be an ideal of Int.(E, D), and let a E E. We denote by I(a) = {f(a) I f(X) E 

I}. One easily checks that l(a) is an idml of D, called the ideal of values of 1 at a .. 

\Ve begin with a result relating the ideal structure of Int.(£, U) to the idea l structure of D. 

Proposition 41 ff !nt(E. D) has the stmng 2-gencm./.or property, then D has the strong 2-generator 

property. 

Proof. Let d be a nonzero element of a 2-generated ide-<'11 1 of D. Set J = lnt(E, D) ·l. By 

assumption. J is strongly 2-generatecl and dE J, so there exists g(X) E J with J = In t(E, D)·d+ 

lnt(E, D) ·g(X). Evaluating at a; for some a.; E E, we get J(a;) = Dd + Dg(a;). However, J = 

Int(E, D)· I implie:; that J(a-;) =I since elements of Int.(E, D) evaluated at a; are in D. Therefore. 

I is st rongly 2-generated, so D ha.'> the strong 2-generat.or property. • 

Corollary 42 ff Int.(E, D) has the stmng 2-genera.tor propeTty. then both Int(E , D) and D- (Jre 

Prii..feT' domains. 

Proof. Follows from Proposition 41 and Corollary 35. • 

Definition 43 An ideal I of Int(E, D) is calhc.d unitary if In D # {0}; that is, I contains a 

non::ero constant polynomial. 

We shall find the following technical fact quite useful. 
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Lemma 44 (McQuillan, Lemma 2.2, (9}) Let (0) =/= I ~ fnt(E, D) be a finil.cly generated non

u:nitary idea./. Then tht ·re an~ 0 =/= r E JJ, g E Int.(E , U), and a unitary ideal ! 1 ~ Int(E, D) such 

tlw.t r·I = g·h. 

Proof. Let I= lnt(E, D)·/1 +. .. + Int( E, D)·.ft (i.e., / 1 , ... , / 1 generators of I as ideal ofint(F, D) ). 

:\Tow Dp,·] ~ Int(E, D)~ Q[X], where Q[X] is a PID. Let g1 E Q[X] be a gcd of !I, .... ft in Q[X]. 

Then g1·Q[X] = J1·Q[.\'] + ... + ft-Q[ X] . We 11<.."<.--d an element of D[X] that is a gcd of ft, . . . , .ft in 

Q[X]. Let 0 =/= d E D I.Je R common denominator for all of t.he coefficients of 91, and let g = d·g1. 

Then g·Q[X] = d·g1·Q[X] = d·f1 ·Q[X] + ... + d·frQ[)(j = ft-Q [X] + ... + ft-Q[X] . Write/; = g·h; 

for some h; E Q[X]. for all i. Let 0 =/= T E D be a common denomi11ator for all coefficients of all of 

h 1 , ••• ,h1• So, r·J; =g·r·h; wherer·J; ,g , r·h; E Int(E,D). Now, Jet. h = Int(E,D)·1'·ht + ... + 

Ir,t (E, D)·T·ht ~ Jnt(E, D). From these equations, r.J = y·/ 1 • 

Last!~·, we need to show that ! 1 is unitary. For this , we will use the equations g·h; = J; for all i and 

g·Q[.>,:] = f 1 ·Q[X] + ... + ft-Q[X ]. Now g E y·Q[X] implies that g = h ·b1 + .. . + fcbt for some 

b1, .. . , b1 E Q[X]. So, we have that g = g·h 1 -IJ 1 + .. . +g· h 1·b1 which implies that 1 = h1·b1 + .. . +h1·b1• 

Now multiplying through by 1··s, where sis a common denominator for all of the coefficients of all of 

b1 , . .. , b1 , we have that 0 =/= r·s = (r·h 1 )(s·b 1 ) + ... + (rh 1 )(s·b1 ). Recall h = Inl(E, D) ·r·h 1 + ... + 

1nt(E, D)·r-flt ~ Jnt(E, D), so we now have that h n D =/= {0}. • 

Lemma 45 TI1e follou >ing s/.a/.emcnts m·e P,quivalent. 

(i} Int(E, D) has the strong 2-genemtor property. 

(ii} The 2-genemted unitary ideals of fnt(E , D) are strongly 2-generated. 

(ii-i) '171e '2-genem/.ed non-unitary ideals of Jnt(F , D) ar·e st.nmgly 2-genemtcd. 

Pr~f. Clearly (i} is equivalent to the combinatio11 of (ii} and (iii). We claim that (ii} implies 

(iii} which will then show that (ii} implies (i}. Suppose that (ii) holds and that I is a 2-generated 

non-unitary ideal of lnt(E, D). By Lemma 44 and Proposition 5, I =: It for some unitary ideal I 1 . 

Therefore, It is also 2-gcnerated. (ii} says I 1 is stro11gly 2-generated. Therefore, since I =: / 1 , then 

I is strongly 2-generated so the cll'lim is proven . 

Next, we claim that (iii} implies (ii} which will then show that (iii) implies (i). Suppose 

that (iii} holds and that I is a 2-generated unitary idea l of lnt(E, D). Take f(X) E D[X] with 

deg(f(X)) > 0, and let It = f(X).J. Then 11 is non-unitary. Since I is 2-generated, then h is 
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also :2-generated , so (iii) says It is strongly :2-generated . Therefore, ::.ince I ::::' it , then I is strongly 

:2-generated so the cla im is proven. Tliis completes t.he proof. • 

The following is an exercise in [:3] P. 90, and it gives several ,·er.v useful facts about unitary ideals. 

Proposition 46 Set f = n. "';"' ,.(X- a,) and, for· 1 ~ j ~ r, let <p.i = n ,toj(X- a;) I (aj - a;). 

Then: 

(i) If g is a polynomial with coef]icienls in Q and h is the r·cnwinr!.cr· of the Euclidean dit>ision 

of g by f, then g E Jnt(E , D) if and only if hE Jnt(E. D). 

(ii) Int (E, D) = J.Q[X] + D1p1 + ... + D<p, .. 

(iii) If a1 , ... , Or are nonzero ideals of D, then I = .f·Q[X] + a1 <p1 + ... + OrifJr is an ideal of 

Jnt( E, D) such that I n D = n1.;;,;.;; ,.n;. 

(iv) Each unitar:q ideal I of lnt(E, D) may be -unJqufly written I= f·Q [X] + a 1<p1 + ... + O,·ifJr: 

where a1 arc non::,t:ro ideals of D. 

Proof. For (i), suppose that g E Q[X], g = J.q + h for some q, h E Q[X], deg(h) < deg(f) = r. 

First, suppose that g E Int(E, D). Since g E Int(E.D). then g(aJ), ... , g(ar) ED. The equation 

no\\' gives g( a;) = f( a; )·q( a;) + h( a;) for all i . But f( a;) = 0 for all i so g( a; ) = h( a;) for a ll i. 

Since g E Int(E, D) and g(a;) = h(a;) for a ll i, then hE Int(E, D). Conversely, suppose t hat hE 

Jnt(£, D). Then h(o J) , ... , h(ar) E LJ. T he equation now gives h(a;) = g(a;)- f (a;)·q(a;) for a ll 

i. But f( a;) = 0 for all i so h(a;) = g(a,) for all i. Since h E lnt(E, D) and h(a;) = g(a;) for all i, 

then g E Int.(£, D) . 

For (ii), first, we will show t ha t f ·Q[X]+D:p 1 + .. .+ D<p,. ~ Jnt (E, LJ). If f ·q E f·Q[X ], q E Q(X], 

then (f·q)(a;) = f (ai)·q(a.;) = 0 E D for all i, so .f-q E Int( E, D) meaning J.Q[X] ~ Int(E, D). 

Now given d·c;_; E D·<p,; for 1 ~ j ~ 1·, and dE D. Then (d·'.P;)(ai) = d· r{j(a;) = {~ ~~ ;~ ;:~ . So. 

d·<;1 E Int(E, D), so D·r.p_1 ~ Int.(E, D). Therefore, f·Q [X] + D;,p1 + ... + Dcp,. ~ Int(£, D). For 

the other conta inment, take g E Int.(£, D) . Then write g = f·q + h for some q, h E Q[X], deg(h) < 

deg(J) = r. Now h E Jnt(£, D ) (by part (i) ), a nd f-q E Q[X]. It is sufficient to show t hat 

h = dti,-~ 1 + .. . +d,.<p,. for some d1 , ... , d,. E D. 1\ot.e that. for d1, ... , dr E D, (dt <p1 + .. . +dr <f'r )(a;) = 

d1 ·;p1 (a.;)+ . .. + d,.·rp,.(a;) = d; for each i. So, let. d; = h(a;) E D for each i . Since both hand t he 

<;; 's have degree at most T - 1, then by Corollary :38, h = d1 <p 1 + ... + d,.:pr E D<p1 + . .. +Dip, .. 

For (iii), suppose that a1 , ... , a,. a re nonzero ideals of D a nd g E Q[X]. 
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Claim. g E J-Q[X] if and only if g(a;) = 0 for Rl! i, 1 ~ i ~ .,._ To prove the claim, first suppo"e 

that g E J ·Q[X]. Then s ince g = f-h for some h E Q[X] and f = ll h; i .,;,. ();- a;) . then g(a;) = 0 

for all i. 1 ~ i ~ T . For the converse, suppose that g(a;) = 0 for al l i , 1 ~ ·i ~ T. Then we can 

write g = f-q + h for some q E Q[X] and deg(h) < deg(f) = r. Now evaluating at a;, we have that 

g(a;) = J(a;) ·q(a;) + h(a;). Since g(ad = 0 and f(a;) = 0 for e.nch i, then h(ai) = 0 for a ll i. Now 

by Corollary 37, h must. be the zero polyuomial. 

I is an additive group since both f-Q[X] and a1<p1 + ... + a,.<pr are closed under sums. Now, 

for each j . ;pf - t.p.i E J·Q[X] by the above claim , s ince for i =I= j, IP_](a;)- cp1(a ; ) = 0-0 = 0 , and 

<t] (aj)- (pi(aj) = 1-1 = 0. Also, for ea('h i =I= j. IP;'Pj E f ·Q[X] since for each i =I= j, (cp;<p 1)(ak) = 0 

for a ll k , 1 ~ k ( T. This is because if k =I= i, then 9;(ak:) = 0 aud if k = i , then cp 7(ak) = 0. Now 

to show that I is closed under scala r multiplication , take t E l11t(F, D) a nd 8 E l. By (part (ii)) we 

can write t = f-g + Ej= 1 dJP1, g E f·Q[X ], d1 , . .. , d,. E D and b:v definit ion of I , s = f-h + '£';=1 C;<,?;, 

h E f-Q[X], c 1 , ••• , c,. E n; for all i. Now t ·s = J(f gh + g· L.i"=t c; <p; + h· E'i= 1 d.i'-P.i ) + ('E; ,.ic;dji.{J;f'}). 

As just noted, c;d.i'Pi'PJ E f·Q[X] for i =I= j. tor i = j , \Hit.e e;d;;p~ = c;d;(i.f~ - cp; ) + c;d;c,:';

Since (;pr- IP; ) E f-Q[X], then c;d;(cpr- 'P; ) E f ·Q[X] and since c;·{J; E a;·cp;, t hen c;d;;p; E 

o1 '1-"t + ... + n,.<p,.. So, c;d;<pr E I . T herefore, I is dosed under scalar multiplication and hence an 

ideal. 

Last ly, we daim I n D = n 1 ~ .i ~ r nj. First . take b E I n D. T hen b is a constant polynomia l. 

Also, we can write b = f-g + c1;p 1 + . . . + c,.<p,. for some g E Q[X], c; E a; for each i by defin ition 

of I . It is sufficient to show that b E n; for a ll i. Evaluati ug at a;, we have t hat b = O·g(a;) + 

c,-0 + ... + c; -1 + ... + e;·O = c; which implie3 t hat b = c; E a;. Lastly, for the other containment, 

take a E n 1 ~ .i ~ raj. Then a= a<p1 + .. . + a<p,. . This is because, by Corollary 38, since both a 

and a<p1 + ... + a<p,. a re polynomia ls , deg( a) ~ 0 and deg( a<p 1 + ... + acpr) ~ T - 1 (so both have 

degree less than r ), tl1en evaluating both a and ocp 1 + .. . + a;pr at a;, we get a on the left-hand 

side and a on t he right-hand ::; ide. Now a E I because, using the fact that for each a E n 1 ~j~ r· a:i > 

a= a<p 1 +- . . +a;pr, a E a1 <p1 +- .. +n,.cpr and a ED because a E n1 ~ j ~ r o.J, so a E InD. Therefore, 

I n D = nu;j~ r Oj . 

For (iv), let I ~ lnt(E, D) be a unitary idea l. Let a1 = 1(a1) = {y(a1) I g E I}~ D (g(a1) ED 

for g E I because I ~ Int(E, D) ). \Ve now show that ni =I= (0) is an ideal of D . First, this is 

because a.i is nonempty s ince, by definition, I is non empty being an ideal. Also, a j is closed under 

addition, because, given b,c E Oj, t.herc is g, h E I such that y(a1) =band h(aj) = c so tlJat 
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b + c = (g +h)( a_;) E n.i benmse g +hE /. Sitllilarl~·. for negat ivt'S, given dEn,;. there ism E 1 

such that m(a_;) = d so that -d = (-m)(a_;) En; because-mE I. So. n_; is nonempty and closed 

under addition and ne~atives . For scalar multiplication, take d E D and bE Clj sob= g(aj) some 

g E 1. We want to look at d·g. Now d·g E 1 because dE Int(£, D) , g E 1 , and I is an ideal. So, 

(d·g)(a.i) = d·g(a._;) = d·b anrl so (d·g)(a._;) E a_;. Next, we show that n1 =f. (0) . Since In D =f. (0), 

then let 0 =f. c E In D. Now c = c(aj ) E nJ, son; =f. (0). Therefore, a,; =f. (0) is an ideal of D. 

Given I. form the sum f·Q[X] + n1<p 1 + ... + a,.ip,. which is an ideal in Int(E, D) by part {ii-i}. 

Next. for the existence, we show that I= f-Q[X] + n1ip 1 + .. . + a.,. ip, .. For this, we claim that 

f-Q[X] ~I. Note that f·Q[X] ~ lnt(E, D) because (f·q)(a;) = (f(a,;))·(q(a1)) = 0 ED for all j. 

1 nD =f. (0), so take 0 =f. c E 1 nD. So, ~ E Q. Then for any q E Q[X], f·q = c·~Iq = ci( ~-q) E I 

because I is an ideal. Now it is sufficient to show that n11,-' 1 + ... + n,.ip,. ~ 1 for each i. For this, 

let c E n;. There is g E I such that g(a; ) =c. Then g· '{'; E I. Dividing g· cp, by f, we have that 

g·ipi = f-q + h where deg(h) < deg(f) = r. Note that hE I because g·ip;,f·q E 1. Now h(a;) = 0 

if j =f. i and h(aJ) = c if j = i. Abo note that G-l,.?;(aJ) = 0 if j =f. i aud c-t,.?;(a:i) = c if j = i. 

Comparing hand C·'{';, we see that h = C·ip; by Corollary 38, because deg(h) , cleg(c·<p;) ~ T- 1 but 

agree on a1, ... , Or . So, c·<p; E I for each i as desired, and hence n1 tp 1 + ... + Or'f'r ~ I. For the 

other containment , take a polynomial g E f. Again, dividing g by f, we have that g = f-q+h where 

deg(h) < deg(f) = r. \\'e need to show that hE n1ip 1 + ... +n,.r.p,.. Let c; = g(a;) for each i. Then 

c; En;, and we have that h(a;) = (g - f·q)(a;) = g(a;) = c; and (c1 cp 1 + .. . +c,.<p,.)(a;) = c;<p;(a;) = c,. 

This implies that h = Ctl,-" 1 + ... + c,.<p,. by Corollary 38. 

For uuiqueness, suppose that J = f·Q[X] + 'L:'j= 1 P.J I.P; for some ideals 23 1 , ... , 23r ~D. Hecall 

I is an ideal of Jnt.(E,D) and 1 n D =f. (0). It i'5 sufficieut to show that P.,; = 1(a;) for all j. First. 

take c E 23J. Then c·..p:i E J and (c·<pj)(aj) = c·l = c, soc E l(aj ). For the other containment. 

take c E I (aj ). Then c = g(aj) for some g E 1. Now write g = f·q + c1 ·1.{' 1 + ... + c,.·ip,. for some 

q E Q(X], c; E P.; for each i . So, c = g(a,;) = .f(o,;)·q(aj) + cl'<p1 (a,;)+ ... + c,.·<p,.(a1) = Cj E 23,;. 

Therefore, 23j = I ( a1) for all j. • 

'Vc now characterize the property sp<cx: ified by the last part of this proposition in the following 

definition. 

Definition 47 Int(E, D) is said /.o have /.he almost strong Skolem property if whenever 1 and 

J are .finitely gencratrd unitary ideals of lnt~K D) such fh<Jf I(o.) = J(a) for every a E E. th en 
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1 = J. 

As a result of Propooit ion -lG, w~ have the following corolla ry. 

Corollary 48 Int(E , D) has th e almost strong Skolern property. 

Using Proposition 46 , we can show that. the idea of integer-valued pol~· nomia ls give; us a met hod 

for constructing new Priifer domains front old oneb. 

Theorem 49 If E is a. finite nonempty subset of D, then D is a. P1'i.i.fe1· domain if and only if 

Int(E , D) is a. Priifer domain. 

Proof. (==>) Suppobe that D is a Priifer domain . Let. J be a nonzero, finitely generated ideal 

of Int.(£, D). Since I is isomorphic to a unitary ideal by Proposition 5 and Lemma 44, t.hen it 

is sufficient to show that I is invertible if J is unitary. Then I = f·Q[X ] + ~i.= J(a;) 'P; (from 

Proposition 46(iii) ). Each I(a;) is a finitely generated nonzero ideal of D. Since D is a Pri.ifer 

domain by assumption, then I ( a.i) is invert ib le. Recall that. , by Proposition 46{ii), f-Q[X] ~ 

Int(E, D). Also, since I·Q[X] ~ Q[.X], then IIQ[X] ~ f·Q[X ]. So, we ha,·e that IIQ[X] ~ 

f-Q[X] ~ Int(E. D). Us ing this and that J = f·Q[X] + E;·=J(a;)if;, we now have that, for each 

index i, I·I(a. , )- 1
·'{'; ~ f·Q [X] + I(a.;) .J(a;)- 1·1fJ f ~ Int(E, D). 

So, f-Q[.X ]+ Ei=1I(a.;J ·- l <p; ~I- 1 • Using that Ei'= 1I(a.;) - 1 'P; ~ 1- 1 and that, by Corollary 38, 

1 = Ei'=t '{';, it is sufficient to show t hat, for each i, 'P; E I I - J. Since ifT E 1 ( o.; )IP ; ·I (a;) - I <{'; ~ J I - 1
, 

t hen t.pf E n -1 . In addition, recall from the proof of Proposition '1G{iii), t hat IPT - IP; E J-Q[X]. so 

it is sufficient to show that f ·Q[X] ~ /J - 1
. For q E Q[X], fq = ~;·= 1 fq·t.p; = Ei= 1b;'f';(bi 1 · fq) E 

n -1 , where 0-:/:- b; E 1(a.;) for each i, s ince b; <p; E I(a. ;)·<p; ~ 1 and b; 1· fq E f-Q[X] ~ 1- 1 • So. 

f·Q[X] ~ J r -I. T herefore, I is invertible, so Inf.(E, D) is a Pri.ifer domain . 

(¢::)Suppose that Int.(E, D) is a Priifer domain. Let J = Db1 + ... +Db, be a nonzero ideal of D , 

and set J = lnt(E, D)·b 1 + ... + Int(E, D)·b,.. Since Int( E, D) is a Priifer domain by assumption, 

then J is invertible, so JJ - 1 = Int(E, D). Therefore, we have l = g1 h 1 + ... + g1ht for some 

Yr , ... , g1 E J , h1 , ... , h1 E J - 1
. Since we set J = Int(E, D)-b1 + ... + lnt(E, D)·b,, then we 

have that. for each index i, g; = k1 b1 + ... + k,b, for some k1 , _ •• , k, E Int(E, D) . Evaluating 

at ar. we have that y;(ai) = k 1 (at)·b1 + ... + k,(a 1)-bn E J. Since h 1 , ... , h t E J - 1
, then h ;J ~ 

Int(E, D) . Again since we set J = lnt.(E, D)-b1 + ... + Int(E, D)·bn, then we now have that h;b1 -::= 

Int(E, D) ~ Q[X], so hi E Q[X]. Also, for all indices j, h ;bj E lnt (E, D) , a nd evaluating at 



a1, we haYe that.. for all indices j, h;(aJ)·bi ED. Then we have h;(a.1 ) E J - 1
. Plugging a1 

into the equation 1 = g1h 1 + ... + !Jth1, we get t.hat 1 = 9I(at)hl(a.t) + . .. + 9t(O.J )ht(at), where 

g1 (o t), . . . ,g1(ai) E I and h 1(a 1 ) , ..• , h t (at) E I - 1
. Therefore, I is invertible, soD is a Prilfer 

domain. • 

Making use of the almost strong Skolem property, we can take Proposition 41 a step further. 

Proposition 50 {i} If Tnt( E, D) hns the 2-generat.or pr·operly, then D has the 2-gen erator property. 

{ii} If D has the stmng 2-generator· pmpcrty, then Int( E, D) has the 2-generator proper-ty. 

Proof. For (i}, let I = D·c1 + . . . + D·c, for some c1 , ... , c, E I. Let J = Jnt(E, D)·I 

Int(E, D)·c1 +. .. +lnt(E, D)·c,. So, J = Int(E, D)·g(X )+Int.(£, D)-j(X) for some g(X ), j(X) E J. 

Now J(a.I) = {h(a1 ) I hE J}. We na'Cl Lo show tltat J = J(a.t) = D·g(a.t) + D-j(a1 ). For the first 

equality, take w E I. Then w = d1 ·c1 + ... + d, ·c, for some dt , . . . , d,, E D. But c1 , ... , c" E J by 

definition, and d1 , ... , d, E D <;;"; Int.( C.:, D). sou.'= d 1 ·c1 + ... +d,·c.,, E J , where w = w(a1 ) E J(at). 

For the other containment, take h.( ad E J(at), where hE J. So, h.(->,:)= b1(X)c1 + .. . +b,(X)c, for 

some b1 , .. . , b,. E Int(E, D). Now h(a 1) = b1 (o.t)c1 + .. . +b, (at )c, E I since b1 (at), .. . , b, (at) ED 

and c1 , ... , c, E I . Therefore, 1 = .J(a 1 ) . For the second equality, take h(aJ) E J(a.I), whereh E J, 

so that h.= 1··g+s-j for some r.s E lnt.(E, D). Tlten h(a1 ) = r(a1 )·g(ad +s(at)-j(a.J) E D·g(ai) + 

D-j(ai). For the other containment , take dcg( a 1) +d2-j(a.I) for some d1 , d2 E D <;;"; Int(E, D). Now 

d1 ·g(X) + d2')(X) E J so that d1 ·g(aJ) + d2'](aJ) E J( a.1 ) . Tl1erefore, J(a.J) = D·g(a 1 ) + D-j(ai), 

so D has the 2-generator propertv. 

For {ii}, suppose that D has the st.rong 2-generator property. Let I <;;"; Int(E, D) be a finitely 

generated ideal. By Lemma 44 and Proposition 5, I ':::! 11 for some unitary ideal It <;;"; Int(E, D). 

It. is sufficient to show that It is 2-generat.ed. Recall f = II1 :::; ;:::; r(X- a;) and, for 1 :( j :( r, 

if j = Il;,tj (X - a;) / ( O.j - a;) , from Proposition 46. lf a 1 , ... , a,. are nonzero ideals of D, then 

/1 = f·Q[X] + '~ :·=l a;·<;; is an ideal of Int(E, D) such that h n D = at n . . . n a,. :/: {0} where 

a;= I 1 (a;) for each i (by part {iii} of Proposition -tG ). / 1 is a finitely generated (because I is finitely 

generated and I :::! I 1 ) Int(E, D)-idec'll so a; = ! 1 (a.;) for each i is a finitely generated D-ideal. Siuce 

D has the strong 2-generator property, then by Proposition 32 every finitely generated ideal of Dis 

strongly 2-generat.ed. So. each a; is strongly 2-generated. Since {0} I= Il n D = Ot n ... n a,. <;;"; a;, 

then choose 0 =/= b E a1 n . .. n a,. <;;"; a; . The11 a; = D·b + D·c; for some c; E a; for each i. Let 

J = Int(E, D)·b+ Int.(E, D)-(~;·=l C; ipJ. J is unitary because 0 =/= b E J n D. It is sufficient to 

2.') 



show that J(a;) = h(a;) for each i because then J = ft (by th0 almost strong Skolem property ) 

which implies that / 1 is also 2-gencratt-'fl. For t hi'>, since a; = It (a;) for each i, then it is sufficient 

to show that Cl; = J(a;) for each i. For the containment a; ~ J(a;), take d1 ·b + d2·c; E a; for some 

d 1 , d2 ED. Since d1,d2 E Int(E' , D), then d1 ·b+d2·(~;·= 1 c;~;) E .J. After plugging in a.; , we have 

that d1·b+d2·C; E J(a,). For thecontainruent J(a;) ~ o; . take g·b+h·(1:i= 1C;if;) E J for some 

y, hE lnt(E', D). Then g(a.,) ·b+h(a; ) · (~i= 1 c;~,(a. ; )) = y(a;)·b+h(a.;)·c; Eo; since g(a;) , h(a,) ED. 

So, a; = J(ai) for each ·i, so J(a;) = 11 (a;} for each i. Therefore, J = It (by the almost. strong 

Skolem property) which implie; that / 1 is also 2-generated . • 
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5 The main theorem 

The 111ain t.heorern further cunllt..'Cts the ideal structure of lnt(E. D) with the ideal structure of D. 

Theorem 51 (Chapman, Loper, and Smith, {5]) Let D be an integral domain and E = { a 1 , ... , a,.} 

a finite nonempty subset of D. Then !nt(E, D) has the str-ong 2-genemfor proper·t.y if and only if 

D is a Bt:::.ont domain. 

Proof. (:::;,) Suppose that lnt(E, D) has the strong 2-generator prope1i.y. Reca ll from Proposition 

-16 , the polynomial .f(X) = (X- o.J)·(X- nz) ···(X- O.r ). If 1·(X) is a polynomial in Q[X], then 

r(X)-f(X} E I for every unitary ideal r ~ Jnt(£, D), by Proposition 46(iv). In particular, f(X) is 

in each unitary idek1l of Iut(E, D). 

Note that, by a straightforward induction, if all 2-generated ideals of D are principal, then all 

finitely generated ideals of Dare principal. So, it. is sufficient to show that all 2-generated ideals of D 

are principal. Let {0} ::j:. J = Dd1 +/Jd2 ~ D be a 2-generated irleal of D. and set J 1 = Int(E, D)·J = 

Int(E, D)·d + Int(E.D) ·d2 . Then 1 1 is a finitely generated unitary ideal because J ~ 11 . So, 

.f(X) E It, and so J1 = lnt(E, D)·f + Int.(£, D)·y for some g E ./1 since Int(E, D) has the strong 2-

generator property by assumption. Fix an index i. :'\ow, J = J 1 (a ;) = D·f(ai)+D·g(a;) = D·g(a;) 

(since f(o.;) = 0 ). So, J is principal. Therefore, all 2-generatoo ideals of Dare principal so that 

all finitely geueratt..'<.l. ideals of D are principal. 

( ¢:) Suppose that. D is a Dewut domain. Let J be a 2-generat.ed unitary ideal of lnt(E, D). 

for each 1 :( i :( r , let b; be an element of D such that Db; = J(a ;) (using t he assumption that 

D is a Bezout domain) . Since J is unitary, then b; ::j:. 0 for each i by part. (iv) of Proposition 46. 

Choose a nonzero polynomial s(X) E .J. Recall that from Proposition .tG, for each 1 :( j :( T , 

~i(X) = Ih;6J(X- a;)/ (aj- a,) and <f';(aj) = 1 and <p1(a,) = 0 wlten i ::j:. j, ltence each <p1(X) E 

lnt(E, D) . lft(X) = I:i.= 1b;·<p;(..\"), then t(X) E lnt(£, D) and t(a;) = b; for each 1 :( i :( 1'. \Ve 

have two cases to consider. 

Case 1: Suppose that t(X) is relatin'ly prime t.o s(X) m·er Q[XJ. We claim that .] = 

Jnt(E, D)·s+ Int(E, D) ·t . Now s(X)·u(X)+t(X)·v(X) =I for some u, v E Q[X]. Let 0 =/=dE D be 
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a common denominator for all oft he coefficients of u and v. Let. I = Int(E, D) ·s+ I nt(E, D) ·t. :\1 ul

tipl~·ing through by d, we have t ha t s(X)·d·u( X) + t (X )·d·v(X) = d and d·v(X) , d·v(X) E D[X] ~ 

Int.(E, D) so that s(X)·d·u( . .\' ) + t (X)·d·v(X) E I . Since s(X) ·d·1t(X ) + t.(X)·d·v(X) E I and 

s(X)-d-u(X) + t.(X)·d·v( X) = d, then dE J. Since dE D and dE I, then 0 i dE 1 n D, so 1 is 

unitary. It is sufficient to show that 1 (a;) = J( a;) for each 1 ~ i ~ r for then t he almost strong 

Skolem property gives I = J. For this, note t hat J(a.;) = D·b; for each i by definition so it is now 

sufficient to show tltat 1 (a;) = D ·b; for each ·i . First, for the containment I( a;) ~ D ·b;, usi ug 1 = 

Int.(E, D)·s+ Int(E,D)·t , 1(a;) = D·s(o;) + D·t.(a.;) ~ D·b; because s(a.;) E J(a.;) and t(a.;) = b;. 

For the containment D·b; ~I( a;), 1(a;) = D·s(a;) + D·t(a;) 2 D·b; because t(a,) = b;. Now by the 

almost st rong Skolem property, f = J. 

Case 2: Suppose that t (X) is not relatively prime to s(X) over Q[X]. 'v\'e claim tlwt J = 

Int(E, D)·s+ Int(E,D)·t 1 for some polynomial t 1 E J. Let u(X) be a gre<~test common divisor of 

s(.\' ) and t(X) over Q[X] . Let s( X) = s 1 (X)·s 2 (X) ue a factori zation in Q[X] such that gcd(s 1 (X), 

8z (X)) = 1 and s 1 (X) has exactly t he same irreducible factors t hat u( X) does. For all irreducible 

1r(X) E Q[X], if 11'(X) I t(X) and 1r(X) I s(X), then 11'(X) I u(X) because u(X) is the greatest 

common di\·isor of s(.>,:) and t.(X). Then 1r( X ) I s1 (X) because 11'(X) is irreducible and s 1 (X) 

has exactly the sa n1e irreducible factors that u(X) has , so 11' (X) f sz(X). On the other hand , if 

11'(X) I t(X) but 1r(X) f s(X), then 1r(X ) f sz(X). So. gcd(t(X) , s2(X)) = l in Q [X]. Since t(a;) i 0 

for each i, then by Theorem :JG (X - a;) f t(X). Recall that f(X) = (X -ai)·(X - a.2 ) ···(X -a,. ). 

So, it follows !.hat ged(t.(X) , f(X)) = l. Now, let t 1(X) = t(.X) + Sz(X) ·f(X) . Ultimately, \\'e 

want to show that gcd (t1 (X) ,s(X)) = 1. Since t.(X) E Int.(F,D) and s2 (X)·f(X) E Int(E, D), 

then t 1 (X) E Int(E, D). Suppose that 11'( X) is an irreducible fact.or of s(X) oYer Q [X]. Then we 

have two subca'>eS because, by how s(X) is defined, either 11'(X) I s 1 (X) or 1r(X) I s2(X). 

Subcase 1: 1r(X) I s 1 (X). Then 1r(X) I t (X) because s 1 (.X) has exacTly the same irre-

ducible factors that u(X) has, and v.(X) I t(X). But 1r(X) t sz(X) and 1r(X) f f(X) because 

gcd(t(X) , f(X)) = 1. Therefore, 11'(X) f t (X) + s2(X)-f(X). 

Subcase 2: rr(X) I sz(X). Since gcd(t(X) , s:l(X)) = 1, t hen 1r(X) f t(X). Therefore, 1r(X) f 

t(X) + s'2(X)·f(X) here as well. 

But t1 (a;)= t.(a;) + sz (a.;)·f(a;) = I.( a;) for each i s ince f (a;) = 0 for each i. Now as in Case 

1, except using t 1 (X) in place of t(X) . 1 = lnt(E , D) ·t 1+ Int(E, D) ·s is a unitary ideal of Int(E, D) 

for which I( a;)= J(a;) for each J ,:; i ~ 1'. So, again 1 = J by the almost strong Skolem property. 



Therefore, the 2-generatcd unitary ideals of Jnt(~ . JJ) are strongly 2-generated. By Lemma 45. 

all the 2-gencrat.ed ideals of In I ( E.JJ) are sl rongl~· 2-gencrated. • 
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