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We present several results involving three concepts: Prifer domains, the strong 2-
generator property, and integer-valued polynomials. An integral domain D) is called a
Priifer domain if every nonzero finitely generated ideal of ) is invertible. When each 2-
generated ideal of D has the property that one of its generators can be any arbitrary selected
nonzero element of the ideal, we say D has the strong 2-generator property. We note that,
if D has the strong 2-generator property, then ) is a Priifer domain. If () is the field of
fractions of D, and £ is a finite nonempty subset of [); we define Int(£, D) = {f(X) &
Q[X] | f(a) € D for every a € E} to be the ring of integer-valued polynomials on D with
respect to the subset £. We show that [ is a Priifer domain if and only if Int(£, D) is a
Prifer domain. Our main theorem is that Int( /7, 1)) has the strong 2-generator property if

and only if D is a Bezout domain (that is, every finitely generated ideal of D is principal).
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1 Introduction

In this thesis, we make a connection between two interesting structures, Priifer domains and integer-
vaiued polynomials. We begin this introduction by looking at each one from a historical perspective.

For Priifer domains, we begin in the middle of the 19th century, when Ernst Eduard Kummer
contributed a large amount of work in attempting to prove Fermat's Last Theorem, that is. that
the equation " +y™ = z" has no nonzero integer solutions for z, ¥, and z when n > 2. In trying
to prove Fermat's Last Theorem, he introduced the notion of “ideal numbers” in rings of integers
in algebraic number fields. He was able to prove Fermat's Last Theorem for a large class of prime
exponents n, namely, those exponents which are “regular.”

At the end of the 19th century, Richard Dedekind showed that the ideal elements of Kummer
could be reinterpreted as certain subsets of a ring, satisfying closure under both addition and multi-
plication by ring elements; he called these sets “ideals.” One of the highlights of Dedekind’s theory
is a unique factorization theorem for ideals in rings of integers in algebraic number fields. He gave
several proofs of this fundamental result, one of which involved showing that all nonzero ideals in
such rings are “invertible,” one of the key concepts in this thesis.

In the early 20th century, Emmy Noether axiomatized the rings D for which this unique factor-
ization of ideals holds in terms of three properties which they must satisfy: (i) D must be integrally
closed in its field of fractions; (ii) nonzero prime ideals of D must be maximal; and (iii) every ideal of
D must be finitely generated. Such rings are now called Dedekind domains, although in this thesis,
we use the (equivalent) definition as an integral domain in which all nonzero ideals are invertible.
Rings satisfying condition (iii), studied extensively by Noether in the first part of the 20th century,
are now known as Noetherian rings.

Also in the early 20th century, Ernst Paul Heinz Priifer studied integral domains in which every
nonzero finitely generated ideal is invertible; not surprisingly, such rings are now called Prifer
domains.  From the definitions, it follows that D) is a Dedekind domain if and only if D is a

Noetherian Priifer domain (Corollary 30).



One can show that. in a Dedekind domain, each ideal I can be generated by two elements, where
one of the two elements is an arbitrary nonzero element of /. Such an ideal is called strongly 2-
generated; as we shall see, nonzero strongly 2-generated ideals must be invertible (Theorem 34). A
ring in which every 2-generated ideal is strongly 2-generated is said to have the strong 2-generator
property, also an important concept in this thesis.

For the second key algebraic structure, integer-valued polynomials, we begin in the 17th century,
when polynomials of the form (:) = ELX__IL_WA'M)’ where n is a positive integer, first appeared in
interpolation formulas. Although the coefficients of these polynomials are not integers when n = 2.
these polynomials take on integer values for all integers. It has been known for a long time that
these polynomials form an additive basis for the additive group of all integer-valued polynomials in
Qx].

More generally, for any integral domain D with field of fractions Q, if £ C D is a nonempty subset,
we define the set of integer-valued polynomials on E to be Int(£, D) = {f(X) € Q[X] | f(a) € D for
every a € E'}. In the beginning of the 20th century, Georg Pélya and Alexander Ostrowski studied
Int(E, D) when D is the ring of integers in an arbitrary algebraic number field Q2. In the middle of
the 20th century, Thoralf Skolem studied the set Int(D), D) as a ring, rather than as a D-module. In
1979, Demetrios Brizolis showed that Int(Z, Z) is a Priifer domain, leading to an interest in studying
integer-valued polynomial rings as a source of examples of Priifer domains. For example, if £ is a
finite nonempty subset of D, then D is a Priifer domain if and only if Int(F, D) is a Priifer domain
(Theorem 49). Thus, the Int( £, D) construction gives a method for building new Priifer domains
from old.

Throughout this thesis, we restrict our attention to a nonempty finite subset 2 C ID. The theme
of this thesis is the relationship between the structure of finitely generated ideals of D and those
of Int(E, D). The main result (Theorem 51) is that, if D is a Priifer domain, then Int(£, D) has
the strong 2-generator property if and only if D satisfies an even stronger property, namely, that all
finitely generated ideals of D are principal. (Such rings are called Bézout domains.) We show that
an integral domain with the strong 2-generator property is a Priifer domain (Corollary 35). Also,
a Bézout domain is a Priifer domain. Thus, the assumption that D be a Priifer domain can be
omitted in the main theorem.

The content of this thesis is as follows. Chapter 2 consists of background material on fractional

ideals, including operations on fractional ideals, invertibility, and cancellation. Chapter 3 focuses
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on the strong 2-generator property. For integral domain D, let Z(D) denote the set of invertible
fractional ideals of D, and P(D) denote the set of nonzero principal fractional ideals of . We note
that the quotient group Z(12)/P(D) is called the ideal class group (or Picard group) of D. A prime
n is called regular (and, as noted above, Kummer’s proof of Fermat’s Last Theorem holds for n), if
n does not divide the order of the ideal class group of the ring of algebraic integers in Q[(, ]|, where
¢, is a primitive n-th root of unity.

In Chapter 4, we turn our attention to integer-valued polynomials, and we begin by recalling a
few elementary facts about polynomials with coefficients in a field. Our main tool is Proposition 46.
which characterizes ideals of Int(£, D) having nonzero intersection with D. (Such ideals are called
unitary ideals.) This characterization shows that Int(£, D) has the almost-strong Skolem property
(Corollary 48), that is, two finitely generated unitary ideals I and J of Int(E, D) are equal if and
only if, for each element a € F, the set of values I(a) of the polynomials in I evaluated at a equals

the set of values J(a). Finally, in Chapter 5, we prove the main theorem mentioned above.



2 Preliminaries

Throughout this thesis, DD always denotes an integral domain with field of fractions Q.
Theorem 1 The following conditions are equivalent for a commutative ring R.

(i) R has the Ascending Chain Condition: Fuery increasing sequence of ideals Iy C I C I3 C ...
eventually stabilizes; that is, for some positive integer n, I, = ooy = 0= .. ..

(it) R satisfies the mazimum condition: FEuvery nonemply sel X of ideals of R has a mazimal
clement; that is, there erists some I € X such that, for all J € X, if I C J, then I = J.

(iii) Every ideal of R is finitely generated.

Proof. For (i) = (ii), suppose that X is a nonempty set of ideals with no maximal element. Then
we need to show that some increasing sequence of ideals does not eventually stabilize. Choose an
ideal I; € X. I is not maximal in X by assumption, so there must be I, € X such that Iy < I.
But /3 is not maximal in X by assumption, so there must be I3 € X such that Io < /3. And so
on. By induction, we get an ascending chain I} © Iz < I3 C ... which never stabilizes. Therefore,
some increasing sequence of ideals does not. eventually stabilize.

For (ii) == (iii), let I be an ideal of R. Let X = {ideals J | J C I and J is finitely generated}.
Now (0) is finitely generated and (0) C 7, (0) € X, so X is nonempty. By (ii), X has a maximal
element J. Now J C [ and J = Ray; + ...+ Ra,, for some ay,...,a, € J. Then we need to show
that J = 1. Suppose that J # I, so J < I. Choose b€ [ —.J. Then Ra; + ...+ Ra, + Rb C I,
so Ray +...+ Ra, + Rbe X. But J ¢ Ra; +... + Ra, + Rb because b ¢ J. This is impossible
since J is maximal in X. So, J = I. Therefore, every ideal of R is [initely generated.

For (iii) = (i), let I C I, C I3 C ... be ascending chain of ideals of R, and let I = U2 I,.
Since (0) C I, [ is closed under addition, and I preserves scalar multiplication, then I is an ideal.
Since [ is finitely generated by assumption, then [ = Ra; + ...+ Ra; for some a,,...,a; € I.
For each ¢, a; € I,, for some n;. Choose N = max{ni,...,n}, then ay,...,a; € In. So,
l=Ra;+...+Ra; C Iy CI which implies [ = Iy = In.; = .... Therefore, R has the ascending

chain condition. a



We characterize the property specified by these conditions in the following definition.

Definition 2 A commutative ring R is called noetherian if it satisfies the equivalent conditions of

Theorem 1.

Many of the definitions and results in the remainder of this chapter can be found in [7]. The

following definition is a fundamental concept in this thesis.

Definition 3 A fractional ideal of D is a D-submodule .J of Q such that d.J C D for some nonzero

de D.

Example 4 Let D=2Z, Q= Q, and J = {5 |a € Z}. Then J C Q is a Z-submodule, and 2J C D

so that J is a fractional Z-ideal.

The following proposition answers the question of when two D-submodules are isomorphic.

Proposition 5 If M,N C Q are D-submodules, then M =2 N if and only if M = aN for some

nonzero & € Q.

Proof. Suppose that M, N C Q are D-submodules.

(=) Suppose that 0 : N — M is a D-module isomorphism. If N = {0}, then M = §(N) = {0}
also, so @ can be any nonzero element of Q. So, we can suppose that N # {0}. Fix0# n € N.
For each n' € N, let 0 # d € D be a common denominator for n and n’, so that dn,dn’ € D. Now,
dnf(n') = 6(dnn') = dn'0(n). Since dn # 0, then f(n') = dL;igﬂ = 2(;?271' = an’ where a = 2%;"—2.
Therefore. M = §(N) = aN.

(«<=) Suppose that M = aN for some 0 # « € (). We need to show that 6 : N — M defined
by #(n) = an is a D-module homomorphism, one-to-one, and onto. So, for all n,n’ € N and for all
BEQ,On+n')=an+n")=an+an =0(n)+0(n') and 0(3n) = a(3n) = (af)n = (Ba)n =
B(an) = 36(n), so that ¢ is a D-module homomorphism. By the First Isomorphismm Theorem, N /
ker # = im 6. Since if O(n) = 6(n'), then an = an’ implies that n = n’ (because « # 0). So, 0 is
one-to-one. Since by assumption M = aN, then M = aN = 60(N), so 0 is onto. &

Applying Proposition 5 to fractional ideals, we obtain the following consequence.

Corollary 6 If M C Q is a D-submodule, then M is a fractional D-ideal if and only if M =2 [ for

some ideal I C D.
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Proof. Suppose that A1 C Q is a D-submodule.

(=>) Suppose that M is a fractional D-ideal. Then this implies that oAl C D for some
0# a € D, where oM is an ideal in D, and M = aM by Proposition 5.

(<=) Suppose that A7 = ] for some ideal I C D. By Proposition 5, this implies that A = af
for some 0 # « € Q, where a = § for some 0 # a,b € D. Then bM = bl = al C D. Therefore,
M is a fractional D-ideal. m

The example given in Example 4 is a special case of the following much more general class of

examples.
Proposition 7 A finitely generated D-submodule J of QQ is a fractional D-idcal.

Proof. Suppose that J is a finitely generated D-submodule of Q. 1f 2y = a,/by,.... 2, = a,/b,
zenerate J and b = by-.. .-b,, then bJ C D. Therelore, J is a fractional D-ideal. @

For the converse of Proposition 7, we require the additional condition that every ideal be finitely

generated.

Proposition 8 If D is noetherian. then a fractional D-ideal J of D is a finitely generated D-

submodule of Q.

Proof. Suppose that D) is noetherian, and suppose that J is a fractional D-ideal of D. Then J is
isomorphic to an ideal of D, by Proposition 6. By assumption, every ideal of D) is finitely generated,
so J must be finitely generated as well. &

Certain operations on fractional ideals (or, more generally, submodules of Q) are important for

this thesis.

Definition 9 For submodules I and J of Q, recall the usual binary operations of sum I + J and
intersection [ N .J and define two more binary operations called the product 1.J = {X7_,a:b, | a; €
I,b; € Jn<w} and the residual [ : J = {q€ Q| qJ C1}. The sum, intersection, product. and

residual of I and J are again submodules.
Example 10 Let [ = 3Z and J = Z. Thenl:J={q€Q|qJ CI}=3ZL.
Let F(D) denote the set of nonzero fractional D-ideals.

Theorem 11 F(D) is closed under finate sums, intersections, products, and residuals.



Proof. Let I and J be fractional D-ideals of F(D). Then I is a D-submodule of ) such that
dl C D for some nonzero d € D and J is a D-submodule of @ such that eJ C D for some nonzero
e € D. For the sum, we have that de({ + J) C dl +eJ C D so I + J is a fractional D-ideal. For
the intersection, we have that d(/ NJ) C dI C D so that I NJ is a fractional D-ideal. For the
product, we have that delJ = (dI)(eJ) C D so that IJ is a fractional D-ideal. For the residual,
J(I : J) C I by definition, and then multiplying both sides by d, we have d.J(I : J) CdI C D. So,
for any nonzero ¢ € dJ, ¢(I : J) C D. But ¢ may not be an element of D, so we multiply by ¢ since
eJ C D. We have that ce is a nonzero element of D such that ce(/ : J) CeD C D,so (I:.J)isa
fractional D-ideal.
By incduction, F(D) is closed under finite sums, intersections, products, and residuals. ®

We record some useful properties of these operations on fractional ideals in the following theorem.
Theorem 12 Let I,J and K be submodules of Q; then:

(i) I(J+K)=1J+IK,

(ii) 1:(J+K)=(:J)n{I:K):

(i) (Ind):K=1:K)n{J: K}

(Gula (I:J): K =I:JK;

(il I JE =TI 2 I) s

{w) I(ET = d) = LJ;

(vi) INJ)+(INK)CIN(J+K);

(vii) I(JNK)CIJNIK;

(viii) (I K)+(J:K)C(I+J): K.
Proof. For (i), first, to show that I(J+ K) CIJ+ IK, takea € [ and b+c € J + K where b € J
and c€ K. Sincea € [ and b € J, then ab € IJ and since a € I and ¢ € K, then ac € [K. So,
now ab € IJ and ac € IK implies that ab+ac € IJ+ K. Now, to show that IJ+IK C I(J+ K),
take ab+ a'c € [J + IK where ab € [.J and a’c € IK. So, ab € IJ implies that ab € I(J + K)
because a € [ and b € J and a’c € 1K implies that a’c € I(J + K) because o' € [ and ¢ € K. So.
ab+a'c€ I(J+ K). Therefore, I(J+ K)=1J+IK.

For (i), first, to show that (I : (J+K)) C ((I : J)N(I : K)), first takea € (I : (J+ K)). Then
a(J+K)CI. Takeanybe.J. Thenbe JCJ+ K. So,ab€al Ca(J+K)CIsoal CIso
a€(l:J). Nowtakeany b€ K. Thenbe K C.J+ K. So,ab€ aK Ca(J+K)CIsoaKk C1I



soa€ (I:K). So,ae ((I:J)N(I:K)). Now, toshow that (/:J)N(I:K))CI:(J+K),
takea € (I : J)N(I : K)). Thena € (/:J)anda € (I : K)soaJ C [ and aK C 1. Now
aJ+aK=a(J+RK)CIsoa€ (I:(J+K)). Therefore, [ : (J+ K)=(I:J)N{l:K).

For (iii), first, to show that (INJ) : K) C (I : K)N(J : K)). take a € (({ N .J) : K) so
aK C(INJ)soaK CIand aK C.J. Then we have that a € (I : K) and a € (J : K) which
implies that a € ((1 : K)N (J : K)). Now, to show that (I : K)N(J: K)) C ((INJ) : K), take
a€((I:EK)N(J:K)). Then,ac (I :K)janda € (J:K)soaKk CIand aK C JsoaK C(INJ)
soa€ ((INJ): K). Therefore, {NJ): K=(:K)n(J:K).

For (iv)a, first, to show that ((/ : J) : K) C (I : JK), take a € ((I : J) : K) so aK C (I : J).
Then aKJ C I so aJK C [ soa € (I : JK). Now, toshow that I : JK C (I : J) : K, take
ac(I:JK)soaJK C1I and then aKJ C Isoak C (I :J)soa€ ((I:J):K). Therefore,
(Lod) : K=1zJK,

For (iv)b, first, to show that (I : JK) C ((I/ : K) : J), take a € (I : JK). Then aJK C I so
aJC(I:K)soae ((I:K):J). Now, toshow that (({ : K):J) C (I : JK),takea € (({ : K) : J).
Then aJ C(I: K)soaJK Clsoaé& (I:JK). Therefore, I : JK = (I : N): J.

For (v), first, to show that [(IJ :I) C IJ,takea € [ and b€ (IJ : ). Since b& (1J : 1), then
bI C 1J. Since a € I, then ba = ab € I.J. Now, to show that [J C [(IJ :[), takea €[ and b€ J
so that ab € I.J. Since b€ J, then bl C JI =1J,s0b € (I.J:1),s0abe I(IJ:1). Therefore,
I(1J: 1) = 1J.

For (vi), to show that (INJ)+(INK)) C (IN(J+ K)), take a+be (INJ)+(INK))
wherea € (INJ)and be (INK). So,a€landa€ Jandbe [ andbe K. So,a+ b€ I and
a+be (J+K). Therefore,a+be (IN(J+ K)).

For (vii), to show that I(JNK) C (IJNIK), takea € I and b € (JNK). Then b € J and
be K. Sincea € I and b € J, then ab € 1.J, and since @ € [ and b € K, then ab € IK. So,
abe (IJNIK). Therefore, I(JNK)C (IJNIK).

For (wviii), to show that ((/ : K)+ (J : K)) C (({ +J) : K), takea+b € (({ : K)+ (J : K))
wherea € (I : K)and b € (J: K'). Then ek C [ and BN CJ. So, (a+b)K CaK +bK CI+J
soa+be ((I+J):K). Therefore,(/ : K)+(J:K)C(I+J): K. m

Two of the four operations mentioned previously, namely, the sum and product, yield finitely

generated ideals when applied to finitely generated fractional ideals.



Proposition 13 If I and J arc finitely gencrated fractional ideals. then I + J and 1.J are finitely

generated fractional ideals.

Proof. Suppose thai [ = Diy+...+ Di, and J = Dji +. ..+ Dj,, are finitely generated fractional

ideals. Then by Theorem 11, [ + J and IJ are fractional ideals. So, it is sufficient to show then

that I +.J and I.J are finitely generated. But I 4J = Diy +...+ Di, + Djy + ...+ Djy, is finitely

generated, and one easily checks that /.J = EK;[Cngikj,, so that [J is finitely generated as well.
1<i<m

Therefore, I + J and IJ are finitely generated fractional ideals. ®

Another fundamental concept in this thesis is the following.

Definition 14 A nonzero fractional ideal I of D is called invertible if there exists a J € F(D)
such that IJ = D. This fractional ideal J, if it exists, is uniquely determined by I and is called the

inverse of I, denoted by I~ 1.
The following example shows that nonzero principal fractional ideals are invertible.
Example 15 If I = Da is a nonzero principal fraciional ideal, then 17! = Da™!.

Lemma 16 If [ and J are fractional ideals. then [.J is imvertible if and only if both I and J are
invertible.
Proof. Suppose that I and .J are fractional ideals of D.

(=) Suppose that IJ is invertible. Then (/J)K = D for some K C D. Now, I(JK) =D
implies that [ is invertible. Similarly, J(IA) = D implies that J is invertible. Therefore, both I

and J are invertible.

(«<=) Suppose that both [ and J are invertible. Then IK = D and JL = D for some K,L C D.
So. IJ(KL) = D. Therefore, I.J is invertible. &
For fractional ideals, the following property is also an object of study but will not play a major

role in this thesis.

Definition 17 A fractional ideal I is said to be cancellative if for J, L € F(D), IJ = IL @mplies

that J = L.
This next example shows that invertible fractional ideals are cancellative.

Example 18 If I.J = IL and I is invertible, then multiplying both sides by 171 gives J = L. so I

is cancellative.



Combining Example 15 and Example 18 we get the following.
Example 19 Nonzero principal fractional ideals are cancellative.
The equivalence given in Lemima 16 holds also for the cancellative property.

Proposition 20 If I and .J are fractional ideals, then 1J is cancellative if and only if I and J are

cancellative.

Proof. Let I and J be fractional ideals.

(=) Suppose that IJ is cancellative. Then IJK = IJL implies K = L. So, now suppose
that IK = IL. Then IKJ = ILJ and so IJK = IJL so K = L. Similarly, if JK = JL, then
IJK =1JL so K = L. Therefore, I and J are cancellative.

(«<=) Suppose that I and .J are cancellative, and suppose that (1J)K = ([J)L. Then I(JK) =
I(JL) which implies that JK = JL since [ is cancellative which implies K = L since J is cancellative.
Therefore, 1.J is cancellative. ®

We now note three equivalent characterizations of cancellability.
Proposition 21 For a nonzero fractional ideal 1, TFAE:

(i) I is cancellative;

(ii) IJ:1=J for all fractional ideals J;

(iii) for J, K € F(D), IJ CIK impliecs J C K.
Proof. (i) = (ii) Suppose that [ is cancellative. By property (v) of Theorem 12, [(1J : I) = 1J.
By assumption, [ is cancellative. Therefore, 1J : I = J for all fractional ideals .J.

(i) = (iii) Suppose that IJ : I = J for all fractional ideals J. 1f IJ C /K, then J = 1J :
1CIK:I=K. Therelore, for JJ K € F(D), I.J C IK implies J C K.

(i) == (i) Suppose that for J,K € F(D), {J C IK implies J C K. If IJ = IK, then
IJCIK,soJC K,and IK CIJ,so K C.J. So,J =K. Therefore, I is cancellative. &

The next few results contain technical facts needed in what follows.

Proposition 22 If I is a cancellative fractional ideal of D, and P,,..., P, are distinct mazimal

ideals of D, then U}_,IP, ¢ 1.

Proof. Suppose that P C D is a maximal ideal, and suppose that I, J C D are ideals.

10



We claim that, if 7J C P, then I C P or J C P. To prove this claim, suppose that I £ P and
J Z P. Thentherearea€ I —Pandbe J—P. So, ab#g I’ because P is prime. ab€ I.J - P.so
IIE P.

Now Py 0Byt Pppr o o Py C P01, . VP 1 MPyjqa N...N Py Suppose that FiN...MP-1N
Pjs1N... " P, C P;. Using induction and the argument in the previous paragraph, this implies
that P; C P; for some ¢ # j. But I’ is maximal by assumption (and P; proper). which forces
P; = P;, impossible.

Since [ is cancellative, then by Proposition 21 I(N;x; P;) £ IP; (because cancellation of I would
vield Nz ;P € P; again, which we showed is impossible). For each j, choose an a; € I(ﬂ,-;é_,-P,)
\ IP;. Thena=a;+...+a, € I. We claim that a ¢ IP; for cach i. This is because of the
following. If j # %, then aj € I(Mix;Px) C IP;. Fromaj € I(Nig;P;) \ 1P;, we have that a; & [P,

Therefore. a =a; +a1+...+a; 1+ a1 +...+a, € IP, foralli. a

Lemma 23 (i) Let Jy,...,J, be a finile collection of ideals of D, and | an ideal of D such that
I CUL,Ji. If at most two of the ideals J; are not prime, then I C J; for some j.

(ii) If Ji.....Ju are incomparable prime ideals (e.q., different mozimal ideals), then J; ¢ UjzJ;

Proof. For (i), we use induction on n. First, for n = 1, the claim is trivial. For n = 2, suppose
that I C J; U.Jo. Then it is sufficient to show that I C J; or I C J,. By way of contradiction,
suppose that I £ Jy and I ¢ Jo. Pick 2y € I —.Jy and &3 € [ — Jo. Then z; + 22 € I because
1.2 € I. an ideal. So, z; +x € I C J; U Jy by assumption, say x| + x2 € J; (similarly for .J3).
But @; ¢ J; by choice which implies that 2y ¢ J;. This is because if we write 1 = (21 + 22) — 22,
since ¥y + 29 € J; and @y € J1, then 22 ¢ J;. But this is a contradiction because x9 € I C J; U J;.
Now, for n > 3, assume true for n— 1. Suppose that I C JyU...UJ,. We can assume J, is prime.
If I CJyU...UJ, 1, then we are done by induction, so suppose that I ¢ J; U...UJ,_1, and pick
y €l—(HU...Udpy). S Cdpfork,1<hk<n—1,then I C JjU.. . UJp_1UJgps1U...Udy,
so again we are done by induction, so suppose that .J; 5{ Jyforallk,1<k<n—-1. ¥IC J,, then
we are done. so suppose [ ;.Z .  Then Fodys..-dp—1q Z J,, because .J, is prime and [ Q Jn and
Jp L Jpfork=1,....n—1. Pickzo € I-Jy-..."Jp 1 —Jy. Sincexy € I,z € I-Jy-...-Jp—1 C I,
and / is an ideal, then 2y +a2 € I. If 1 <k <n—1,then 2y ¢ J; U...UJ,_; which implies that

X1 & Jp,but ag € I-Jy-o. .- Jyy g C Jp. Then 2y + a9 € J.. Since vy € I C J; U...UJ,, then
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2y € Jy,but 2y € 1 U...UJ,—1. Now since xy ¢ J, by choice, then z; +xy ¢ J,. Thisis a
contradiction since x; +xg € I, but &y +x2 ¢ J, U...U.J,.

For (ii), by part (i) and assuming that .Jy,.. ., J, are incomparable prime ideals, then J; ¢ Ujzid;

Definition 24 D is called semilocal if D has only finitely many marimal ideals. D is called local

if D has a unique mazimal ideal.
Proposition 25 Let [ be an invertible fractional idecal of D. Thew:

U I t=0n:E

(i1) 1 is finitely generated;

(iii) if D is semilocal, then I is a principal fractional ideal; if D is local, then every generating
set of I contains an element generating I:

(iv) if I is an integral ideal and there is an a € I contained in only finitely many maezimal
ideals, then I = Da+ Db for some b € D.

Proof. For (i), suppose that I.J = ). Then J is cancellative. Therefore, part (ii) of Proposition
21 implies that J =1J : 1 =D': L

For (ii), since I is an invertible fractional ideal, then IJ = D for some [ractional ideal J. Now
1 € D, so we can write 1 = a,b; + ... + a,b, for some ay,...,0, € I and by,..., b, € J. We
need to show that / = Day + ...+ Da,. First, the containment Da; + ... + Da, C [ is clear
since ay,...,a, € I, a fractional ideal. For the containment [ C Day + ...+ Da,, choose w € I,
then w = (wby)ay + ... + (wby)a, € Day + ...+ Da, since wb; € IJ for each i. Therefore,
I =Da;+...+ Day,,so [ is finitely generated.

For (iii), assume that D is semilocal, namely, that D has finitely many maximal ideals. So, let
{P1,..., Py} be the set of maximal ideals of 1). Proposition 22 ensures that 1 2 UT_,IP;. It is
sufficient to verify that any a € I \ U], 1P, satislies I = Da. So, Da C I and multiplying both
sides by 77! yields al ! C D.

We claim that, from Da / U 1P, we obtain al "' ¢ U™, . To prove this claim, suppose
that a1 C UL, P;. Then Lemma 23 implies that al ! C P; for some . Then el 'l C IP; and so
Da C I'P; C U IP; which is a contradiction. So, we do obtain a/ ' ¢ U, P, from Da € Ul | I P,.

Now al~!is an integral ideal not contained in any maximal ideal of D, so al "' = D. Multiplying

by I yields Da = I. Therefore, I is a principal fractional ideal.
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Assume now that D is local. namely, that D has a unique maximal ideal, and also assume that
I =X ,De; = Da. Then, for each i < n, a; = d;a and a = X7_, e;qa; for suitable d;,e; € D. Then
1 =X ,die;. Since every nonunit lies in some maximal ideal and there is only one maximal ideal,
then all of the nonunits are in this maximal ideal. But since maximal ideals are proper, then d; is
a unit for some ¢, so I = Da; for such an 7.

For (iv), if a = 0, then D is semilocal, and the claim is a consequence of (#i). So, suppose
that @ # 0. 1If I = Da, then we are done; so let Da C I. Then al ! is a proper ideal of D and
Da=1I"'aC I 'a. Let P....,P, denote the maximal ideals containing I~ 'a. By Proposition
22, there exists a b € [ \ U™, IP. Such a b satisfics I 7'0 C D and [0 ¢ P, for all © < n,
thus I='a + I~'b is not contained in P, for any @ < n, neither is in any other maximal ideal of D.

Therefore, I 'a+ [~ 'b = D, and so Da + Db = I after multiplying both sides by /. &
Definition 26 An ideal which can be generated by two elements is called 2-generated.

An important fact is that, in a sense, the 2-generated ideals determine the behavior of all finitely

generated ideals. The key is the following interesting fact.
Lemma 27 For fractional ideals I, J. K, (I + J)(J+ K)(K +[)=(I+J+ K)(IJ+JK + KI).

Proof. Multiplying out the left-hand side gives (I+J)(J+N)(K+1) = (IJ+IK+JJ+JK)(K+I) =
TJK+IJI+HIKK+HIKI+JIJK+JJI+JRKK+JKI = IJK+11J+I1IK+JJI+JJRK+KKI+KKJ.
On the right-hand side, (I +J+ K)(IJ +JK + KI)=1JJ+ IJK +IKI+ JIlJ+JJK +JKI +
KIJ+KIK+KKI=11J+IKI+JIJ+JJK +1JK + KJK + KKI. Therefore, since D is

commutative, then (/ + J(J+K) K+ 1) =[+J+ K)IJ+JK+KI). m

Theorem 28 The invertibility of all 2-generated fractional ideals of D implies that all finitely gen-

erated fractional ideals of D are invertible.

Proof. By induction.

For n = 1, since principal ideals are invertible, then true.

For n = 2, true by assumption.

Forn > 3,let I = Day + ...+ Da, 2, J = Da,_ ,, and K = Da,. Then we have that
((Day+...+Dayn_2)+ Day—1)(Dayn -1+ Day, )(Day +(Day +.. .+ Day_2)) = ((Day+.. .+ Dayp _2)+
Day_1 + Dag)((Day + ... + Day 2)(Day—1) + ((Dan-1)(Day)) + ((Day)(Day + ... + Day_2))).
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This equality follows immediately from Lemma 27. Since we have invertibility up to n — 1 and, by
Lemma 16, the product of invertibles is invertible, then the invertibility of the left-hand side implies
invertibility cf the right-hand side. Therefore, ((Day + ...+ Day_2) + Da, y + Day) is invertible
by Lemma 16, completing the induction. &

We conclude this chapter by defining one of the main objects ol study of this thesis, Priifer

domains, and note two special cases.

Definition 29 An integral domain in which every nonzero finitely generated ideal is invertible is
called a Priifer domain. An integral domain in which every finitely generaled ideal is principal
is called a Bézout domain. Since principal ideals are invertible by Example 15, then a Bézout
domain is a Prifer domain. An integral domain in which cvery nonzero ideal is invertible is called

a Dedekind domain.
Corollary 30 D is a Dedekind domain if and only if D is a Noetherian Prifer domain.

Proof. (=) Suppose that D is a Dedekind domain. Then every nonzero ideal of D is invertible,
making D a Priiffer domain.  Also, since invertible ideals are finitely generated by part (i) of
Proposition 25, then D is Noetherian. Therefore, D is a Noetherian Priifer domain.

(=) Suppose that D is a Noetherian Priifer domain. Then every ideal of D is finitely generated
and so invertible. This is exactly the definition we give for Dedekind domain in Definition 29.

Therefore, D is a Dedekind domain. =
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3 The strong 2-generator property
The following definition plays a major role in the remainder of this thesis.

Definition 31 A 2-generated fractional ideal I is strongly 2-generated if one of the two genera-
tors can be chosen as an arbitrary nonzero element in I. A ring in which each 2-generated ideal is

strongly 2-generated is said to have the strong 2-generator property.

We show now that, in the definition of the strong 2-generator property, we could have equivalently

required that all finitely generated ideals be strongly 2-generated.

Proposition 32 If D has the strong 2-generalor property, then every finitely generated ideal of D

is strongly 2-generated.

Proof. By induction on the number of generators. For n = 1, the result is trivial. Suppose true for
n, and let [ = Dby ...+ Db, + Db,,__; for some by, ... by, b1 € I. Now Dby+...4+ Db, = Dc+Dd
for some c,d € I by induction so that I = Dc+ Dd+ Db, . If b,.q =0, then [ = Dc+ Dd is
strongly 2-generated by assumption. Similarly, if ¢ = 0, then [ is strongly 2-generated. So, we
can suppose that ¢,b,.; # 0. Now 0 # ¢b, . € Dc+ Dd where De + Dd is 2-generated which
implies that Dc + Dd is strongly 2-generated by assumption, so that Dec + Dd = Dcb, 1 + Da
for some a. Now Dc + Dd + Db,y = Dcb,yy + Da + Dby,iq, but Dcbyiqy € Dbpiy.  So,

Dcbypyy + Da + Db,y = Da+ Db, is 2-generated ﬂur(_]; so is strongly 2-generated by assumption.

This completes the induction. =

Proposition 33 If I is a strongly 2-generated cancellative fractional ideal of D, then [ / IJ = D

/ J for any nonzero ideal J.

Proof. Suppose that [ is a strongly 2-generated cancellative fractional ideal of D. Pick any
0#ae€ IJ C I I strongly 2-generated means that I = Da + Db for some b € I. Define
@w:D— 1 /1Jbyp(d) =dbo+1J). ¢ is well-defined since an element of D is being mapped

to its coset. ¢ is a D-homomorphism because for all d,e € D, p(d +¢) = (d+e)(b+1J) =
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(d+e)b)+1J = (db+1J) + (eb+ 1J) = d(b+ 1J) +e(b+ [J) = ¢(d) + ¢(e) and ¢(de) =
(de)(b+1J) = d(eb+ 1J) = d(e(b+ 1.J)) = dp(e). For any ¢ € I, ¢ = da + €b for some d,e € D
because [ = (a,b). So,c+1J=da+eb+1J =¢e(b+1J)=(€) € im(¢). So, ¢ is onto. Next. to
show ker(p) = J, first to show ker(y) C J. Choose d € ker(y). Then (d) = db+ 1J = IJ implies
that db € IJ. But a € I.J by assumption, so da € 1.J, and so dI C IJ. Therefore, d € (IJ : I).
Since (IJ : I) = J by part (ii) of Proposition 21 (because / is assumed to be cancellative), then
ker(y) C J. Next, to show that J C ker(yp), take d € J, so ¢(d) = db+ 1J = IJ. Therefore, d &
ker(y). By the First Isomorphism Theorem, D / ker(y) = im(p) =1 / 1J. Therefore, I / I1J = D
/ J for any nonzero ideal J. =&

We will now see from the following result that, for an ideal, there is a connection between being

strongly 2-generated and being invertible.

Theorem 34 (Lantz and Martin, Theorem 1, [§]) Suppose that 1 C D is a nonzero strongly 2-

generated ideal. Then I is invertible.

Proof. 1t is sufficient to show that (D : I)] = D. First, for the containment (D : I)I C D,
recall that by definition, D : I = {g € Q | ¢l C D}, so then (D : I)] C D is clear. For the other
containment D C (D : I)1, it is sufficient to show that, for each maximal ideal M C D, (D : I)I £ M.
For a given maximal ideal M, MI # {0}, so choose 0 # a € M. Since [ is strongly 2-generated,
then 7 = Da + Db for some 0 # b € I. Since a € MI, then I = Da + Db C MI + Db C 1,
so I = MI+ Db. So, we can write a = ra + sb +tb for some r,s € M and t € D. So, from
a = ra + sb+ tb, we have that (1 — r)a = (s +t)b, where 7 € M which implies that 1 —r ¢ Al
Then a% =5+t € Dsince s € M andt € D and M is an ideal. Also, bl—;i =1-re€ D.
So, 1_(—)45 € (D :1). But b% =1—r¢gM,so(D:1)I ¢ M. So, D C (D :I)I. Therefore,
(D :I)I = D, I has an inverse, so [ is invertible. ®

There is a connection between having the strong 2-generator property and being a Priifer domain.

Corollary 35 If D is an integral domain satisfying the strong 2-gemerator property, then D is a

Prifer domain.

Proof. Suppose that I C D is a 2-generated ideal. Then by assumption, [ is strongly 2-generated,
so by Theorem 34 [ is invertible. Since all 2-generated ideals of D are invertible, then by Theorem

28 all finitely generated ideals of D are invertible. Therefore, D is a Priifer domnain. m
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Recall that F(D) is the set of nonzero fractional D-ideals. This set (D) forms a multiplicative
semigroup with identity D. The set Z(D) consisting of all invertible fractional ideals of D is a
multiplicative group and is the largest subgroup of F(D) whose identity is D). Furthermore, the
set P(D) consisting of the nonzero principal fractional ideals is a multiplicative subgroup of Z(D).
Note that I, J € F(D) are congruent modulo P(D) if and only if J = K for some K € P(D) if and
only if J = al for some 0 # «a € Q if and only if 1 = J (by Proposition 5). Since P(D) is a normal
subgroup of F(D), then F(D) modulo P(D) is a quotient semigroup, called the class semigroup of
D. Furthermore, the class semigroup of D can be thought of as the semigroup of the isomorphy
classes [I] = P(D)-1 = {al |0# a € Q} = {J € F(D) | J = I} of the fractional ideals I # 0 of
D, where multiplication is induced by ideal multiplication: [/]-[J] = [I-J]. Since P(D) is a normal
subgroup of Z(D), then Z(D) modulo P(D) is a quotient group. We call this quotient group the

(ideal) class group (or the Picard group) of D.
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4 Integer-valued polynomials
We begin this chapter by recalling three elementary facts about polynomials and their roots.

Theorem 36 (Root Theorem) If f(X) is a polynomial with cocfficients in a field F, and a € I,
then f(a) =0 if and only if X — a divides f(X).

Proof. (=) Suppose that f(a) = 0, so a is a root of f(X). By the Division Algorithm.
f(X) = (X —a)q(X) +r(X), where ¢(X),7(X) € FF[X], and deg(r(X)) < deg(X —a) = 1. So,
r(X) is a constant polynomial r € F. FEvaluating at a, f(a) = (a—a)-q(a)+r. From this together
with the assumption that f(a) = 0, we have that 0 = 0+r = r,so f(X) = (X —a)-¢(X). Therefore,
X —a is a factor of f(X), so X — a divides f(X).

(«<=) Suppose that X —a divides f(X),so X —a is a factor of f(X). Then f(X) = (X —a)-q(X)
for some g(X) with coefficients in F'. Evaluating at a, f(a) = (a — a)-q(a) = 0. Therefore, a is a

root of f(X),so f(a)=0. m

Corollary 37 (D’Alembert) A nonzero polynomial f(X) of degree n in F[X], F a field. has at most

n distinct roots in F'.

Proof. By induction on n, the degree of f(X). If deg(f(X)) = 0, then f is a nonzero constant
polynomial, so f(X) has no roots in F'. Suppose that f(X) is a polynomial of degree n > 0, and
suppose that f(X) has r distinct roots ay,...,a, in F. It is sufficient to show that » < n. Since
f(X) has r distinct roots ag,...,a,, then f(a,) = 0, so by Theorem 36, f(X) = (X — a,)-g(X),
where g(X) has degree n — 1. For each 7z, 1 <@ < 7 -1, f(a;) = (a; — a,)-g(a;) in F. Since
f(a;) =0 and the a;’s are distinct so that a; # a,, then g(a;) = 0. So, g(X') has roots a;,...,a,_1.
By induction, 7 —1<n—1= deg(g(X)). Therefore, r <n=deg f(X). m

We will find the following consequence of D*Alembert’s Theorem extremely useful in this thesis.

Corollary 38 If f(X) and g(X) are polynomials with cocfficients in a field F' where deg(f(X)),
deg(g(X)) < n and if f(a;) = g(a,) for n distinct elements ay, ... a0, € F, then f(X) = g(X) as

polynomials.



Proof. Suppose that f(X) and g(X) are polynomials with coefficients in F' where deg(f(X)).
deg(g(X)) < nbut f(a;) = g(a;) for n distinct elements ay,. .., a, € F. Thendeg(f(X)—g(X)) <n
but f(X) — g(X) has n roots, so it must be the zero polynomial. Therefore, f(X) = g(X) as

polynomials. =@

We now define the other main object of study of this thesis, polynomials which take on restricted
values on some subset of the domain. For the remainder of this thesis, we fix £ = {a;,...,a,}, a

finite nonempty subset of D.

Definition 39 Let Int(E,D) = {f(X) € Q[X] | f(a) € D for every a € E}, called the set of
integer-valued polynomials on D with respect to the subset FE. One easily checks that

Int(E, D) is a subring of Q[X], containing D[X].

Definition 40 Let I be an ideal of Int(E, D). and let a € E. We denote by (o) = {f(a) | [(X) €

I}. One easily checks that 1(a) is an ideal of D, called the ideal of values of 1 at a.
We begin with a result relating the ideal structure of Int(L, D) to the ideal structure of D.

Proposition 41 [f Int(E, D) has the strong 2-generator property, then D has the strong 2-generator

property.

Proof. Let d be a nonzero clement of a 2-generated ideal I of D. Set J = Int(£,D)-I. By
assumption, J is strongly 2-generated and d € J, so there exists g(X) € J with J = Int(E, D)-d+
Int(£, D)-g(X). Evaluating at a; for some a; € F, we get J(a;) = Dd + Dg(a;). However, J =
Int(£, D)-I implies that J(a;) = I since elements of Int(E, D) evaluated at a; are in ). Therefore,

1 is strongly 2-generated, so D has the strong 2-generator property. =

Corollary 42 If Int(E, D) has the strong 2-generator property. then both Int(E,D) and D are

Priifer domains.
Proof. Follows from Proposition 41 and Corollary 35. m

Definition 43 An ideal I of Int(E, D) is called unitary if [ 0D # {0}; that is, I contains a

nonzero constant polynomial.

We shall find the following technical fact quite useful.
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Lemma 44 (McQuillan, Lemina 2.2, [9]) Let (0) # 1 C Iut(I2. D) be a finitely generated non-
unitary ideal. Then there are 0 # r € D, g € Int(E, D), and a unitary ideal I, C Int(E, D) such

that -1 = g-1.

Proof. Let [ =1nt(E, D)-fi+...+ Int(F, D)-f; (i.e,, fi,.... fi generators of I as ideal of Int(F, D)).
Now D[X] C Int(E, D) € Q[X], where Q[X] is a PID. Let g; € Q[X] bea ged of fi, ... f; in Q[X].
Then g1-Q[X] = f1-Q[X]+...+ f-Q[X]. We need an element of D[X] that is a ged of fy,..., fr in
Q[X]. Let 0% d € D be a common denominator for all of the coeflicients of g;, and let g = d-g;.
Then ¢-Q[X] = d-g1-Q[X] =d-1i-Q[X]+...+d [-QIX] = [1-Q[X]+...+ [r-Q[X]. Write f; = g-hy
for some h; € Q[X]. for all i. Let 0 # r € D be a common denominator for all coefficients of all of
hi,....he. So, r-f; = g-r-h; where r-f;,g,r-h; € Int(E, D). Now, let I} = Int(£,D)-r-hy + ...+
Int(E, D)-r-hy C Int(E, D). From these equations, -1 = g-1,.

Lastly, we need to show that I is unitary. For this, we will use the equations g-h; = f; for all ¢ and

gQIX] = 1 Q[X] +...+ fi-Q[X]. Now g € g-Q[X] implies that g = f1-b1 +... + fi-b, for some

Now multiplying through by 7-s, where s is a common denominator for all of the coefficients of all of
by...., b, we have that 0 # r-s = (r-hy)(s:by) + ...+ (rhe)(sb). Recall Iy = Int(F2, D)-r-hy +...+

Int(E, D)-r-hy C Int(E, D), so we now have that I; N D # {0}. m
Lemma 45 The following statements are equivalent.

(i) Int(F, D) has the strong 2-generator property.

(i) The 2-generated unitary ideals of Int(F, D) are strongly 2-generated.

(#ii) The 2-generated non-unitary ideals of Int(F, D) are strongly 2-generated.
Proof. Clearly (i) is equivalent to the combination of (i) and (#i). We claim that (i) implies
(iii) which will then show that (i) implies (i). Suppose that (iZ) holds and that [ is a 2-generated
non-unitary ideal of Int(F, D). By Lemma 44 and Proposition 5, I = [; for some unitary ideal I;.
Therefore, I is also 2-generated. (i) says I; is strongly 2-generated. Therefore, since I = [, then
1 is strongly 2-generated so the claim is proven.

Next, we claim that (%) implies (2i) which will then show that (#i) implies (). Suppose
that (iii) holds and that I is a 2-generated unitary ideal of Int(E, D). Take f(X) € D[X] with

deg(f(X)) > 0, and let I, = f(X)-I. Then Iy is non-unitary. Since [ is 2-generated, then /; is



also 2-generated, so (éii) says I, is strongly 2-generated. Therefore, since I = I;, then I is strongly
2-generated so the claim is proven. This completes the proof. ®

The following is an exercise in [3] P. 90, and it gives several very useful facts about unitary ideals.

Proposition 46 Set f = Il i< (X —a,) and, for 1 < j <7, let ¢; = igj(X —ai) / (a; — ai).

Then:

(i) If g is a polynomial with coefficients in Q@ and h is the remainder of the Euclidean division
of g by f, then g € Int(F, D) if and only if h € Int(E. D).

(ii) Int(E,D)= f-Q[X]+ D¢, +...+ Dg,.

(iit) If aq,...,a. are nonzero ideals of D, then I = f-Q[X]+ a;¢; +...+ a,p, is an ideal of
Int(E, D) such that I N D = Mg jc, ;.

(iv) Each unitary ideal 1 of Int(E, D) may be uniquely written I = f-Q[X]+ajp, +...+ ap ¢,

where a; are nonzero ideals of D.
Proof. For (i), suppose that g € Q[X], ¢ = f-q + h for some ¢, h € Q[X], deg(h) < deg(f) = r.
First, suppose that g € Int(£, D). Since ¢ € Int(F2, D). then g(a,),...,g(a,) € D. The equation
now gives g(a;) = f(ai)-q(a;) + h(a;) for all .. But f(a;) = 0 for all 7 so g(a;) = h(a;) for all i.
Since g € Int(#, D) and g(a;) = h(a;) for all ¢, then h € Int(F, D). Conversely, suppose that h €
Int(E, D). Then h(ay),..., h(ar) € D. The equation now gives h(a;) = g(a;) — f(a;)-q(a;) for all
i. But f(a;) =0 for all 7 so h(a,) = g(a,) for all i. Since h € Int(£, D) and h(a;) = g(a;) for all 7,
then g € Int(F, D).

For (ii), first, we will show that f-Q[X]+Dy,+...+Dp, CInt(E£, D). If f-q € [-Q[X], ¢ € Q[X],
then (f-¢)(a;) = f(a;)-q(a;i) = 0 € D for all i, so f-¢ € Int(£, D) meaning f-Q[X] C Int(FE, D).
Now given d-p; € D-p; for 1 < j<r,and d € D. Then (dy;)(a;:) = dyj(ai) = {gig :§ Z{ So.
d¢; € Int(E. D), so D-¢; C Int(E, D). Therefore, f-Q[X]+ Dy, + ...+ Dy, C Int(E. D). For
the other contaimment, take g € Int(£, D). Then write g = f-q + h for some q,h € Q[X], deg(h) <
deg(f) = r. Now h € Int(E,D) (by part (i), and f-¢ € Q[X]. It is sufficient to show that
h=dyp,+...+d g, forsomed,,....d. € D. Notethat,fordy,...,d, € D, (dyp,+...+drg, )(a;) =
di-oq(a;) + ...+ drg,(a;) = d; for each i. So, let d; = h(a;) € D for each 7. Since both A and the
;s have degree at most r — 1, then by Corollary 38, h = dyp; +... +drp, € Dy + ...+ Dyp,..

For (iii), suppose that ay,...,a, are nonzero ideals of D and g € Q[X].



Claim. g € f-Q[X] il and only if g(a;) = 0 for all 7, 1 < < 7. To prove the claim, first suppose
that g € f-Q[X]. Then since g = f-h for some h € Q[X] and f = Il ¢ (X — 0;), then g(a;) =0
for all 2, 1 < ¢ < r. For the converse, suppose that g(a;) = 0 for all 7, 1 <2 < r. Then we can
write g = f-q+ h for some ¢ € Q[X] and deg(h) < deg(f) =r. Now evaluating at a;, we have that
g(a;) = f(a:)-q(a;) + h(ai). Since g(a;) = 0 and f(a;) = 0 for each ¢, then 2(a;) =0 for all 2. Now
by Corollary 37, h must be the zero polynomial.

I is an additive group since both [-Q[X] and a;¢, + ...+ a,, are closed under sums. Now,
for each j. % — ¢; € f-Q[X] by the above claim, since for i # j, ¢%(a;) — ;(a;) = 0—0=0, and
¢3(aj)—,(a;) =1-1=0. Also, for eachi # j, p,0; € f-Q[X] since for each i # j, (v;0;)(ar) =0
for all k, 1 < &k < r. This is because if k # 1, then ,(a;) = 0 and if & = 7, then ;,:j(ak) =0. Now
to show that [ is closed under scalar multiplication, take ¢ € Int(#, D) and s € [. By (part (ii)) we
can write t = f-g+X}_,d;jip;, g € f-Q[X], di,...,dr € D and by definition of I, s = f-h+Xi_,cigy,
h€ f-QIX], c1,...,¢ € a; foralli. Now t-s = f(fgh+g- X cip; +h-X5_1djp;) + (i jeidjpipg).
As just noted, e;djp;p; € f-Q[X] for i # j. For i = j, write cidip? = cidi(¢? — ;) + cidip;.
Since (? — ;) € f-Q[X], then cidi(p? — p;) € f-Q[X] and since ¢;-p; € a;-p;, then cidip; €
a9y + ...+ a0, So, ¢;dip? € 1. Therefore, I is closed under scalar multiplication and hence an
ideal.

Lastly, we claim I N D = NMy¢jcra;. First, take b€ TN D. Then b is a constant polynomial.
Also, we can write b = f-g+ c1py + ... + ¢, for some g € Q[X], ¢; € a; for each ¢ by definition
of I. 1t is sufficient to show that b € a; for all 7. Evaluating at a;, we have that b = 0-g(a;) +
GO0+...+¢-1+4...4¢-0= ¢ which implies that b = ¢; € a;. Lastly, for the other containment,
take a € Ni¢j<ra;. Then a = ayp, + ... +ap,. This is because, by Corollary 38, since both a
and ay, + ...+ ap, are polynomials, deg(a) < 0 and deg(ap, + ... +ap,.) < — 1 (so both have
degree less than r), then evaluating both a and ap; + ...+ ap, at a;, we get a on the left-hand
side and a on the right-hand side. Now a € I because, using the fact that for each a € Ny¢jc 0y,
a=ap;+...+ap.,a € a1, +...4+ a4, and a € D because a € Ny¢j¢-q;,s0a € IND. Therefore,
IND =Ngj<ra;.

For (i), let I C Int(£, D) be a unitary ideal. Let a; = I(a;) = {g(a;) |g € I} C D (g(a;) € D
for g € I because I C Int(F, D)). We now show that a; # (0) is an ideal of D. First, this is
because a; is nonempty since, by definition, / is nonempty being an ideal. Also, a; is closed under

addition, because, given b,c¢ € aj, there is g,h € I such that g(a;) = b and h(a;) = c so that
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b+c = (g+ h)(aj) € a; because g + h € 1. Similarly, for negatives, given d € a;. there is m € /
such that m(a;) = d so that —d = (—m)(a;) € a; becanse —m € I. So, a; is nonempty and closed
under addition and negatives. For scalar multiplication, take d € D and b € a; so b = g(a;) some
g € 1. We want to look at d-g. Now d-g € I because d € Int(£,D), g € I, and I is an ideal. So,
(d-g)(a;) = d-g(a;) = d-b and so (d-g)(a;) € a;. Next, we show that a; # (0). Since I N D # (0).
then let 0 # c€ IND. Now ¢ = ¢(a;) € a;,s0 a; # (0). Therelore, a; # (0) is an ideal of D.
Given I, form the sum f-Q[X]+ a0, + ... + a,4, which is an ideal in Int(F, D) by part ().

Next. for the existence, we show that [ = f-Q[X]+ a;p, + ... + a.¢,. For this, we claim that
[-Q[X] C I. Note that f-Q[X] C Int(E, D) because (f-q)(a;) = (f(a;))-(¢g(a;)) =0 € D for all j.
IND # (0),sotake 0 #c € IND. So,1 € Q. Thenforany g€ QIX], fq=ci-fq=cf(iq)el
because [ is an ideal. Now it is sufficient to show that a;¢, 4 ...+ a,, C I for each 2. For this,
let ¢ € a;. There is g € [ such that g{a;) = c. Then g-¢; € 1. Dividing g-¢; by f, we have that
g-¢; = [-q+ h where deg(h) < deg(f) = . Note that h € I because g-¢;, f-g € [. Now h(a;) =0
if 7 # i and h(a;) = cif j = i. Also note that c-p;(a;) = 01if j # i and cp;(a;) = cif j = .
Comparing h and c-¢;, we see that h = ¢-¢; by Corollary 38, because deg(h), deg(c-p;) < 7 — 1 but
agree on 01,...,0,. So, ¢p; € I for each ¢ as desired, and hence ajp, + ...+ a,p. C I. For the
other containment, take a polynomial g € I. Again, dividing g by f, we have that ¢ = f-g+h where
deg(h) < deg(f) =r. We need to show that h € ayp, +...+a,¢,.. Let ¢; = g(a;) for each 2. Then
¢ € a;, and we have that h(a,) = (9—f-q)(a:) = g(a;) = ¢ and (c1;+. . 4@, )(ai) = apiai) = .
This implies that h = ¢y + ... 4+ ¢, by Corollary 38.

For uniqueness, suppose that [ = f-Q[X] + Yi_1Bjy; for some ideals By,..., B, C D. Recall
I is an ideal of Int(FE, D) and 1N D # (0). 1t is sufficient to show that B; = I(a;) for all j. First,
take ¢ € B;. Then cp; € I and (cp;)(a;) = ¢1 = ¢, s0 ¢ € I(a;). For the other containment,
take c € I(a;j). Then ¢ = g(a;) for some g € I. Now write g = f-g+c1-¢; + ...+ ¢, for some
q € Q[X], ¢i € B; for each i. So, ¢ = g(a;) = f(aj)-q(a;) + c1-¢1(a;) + ...+ crp(aj) = ¢; € B;.
Therefore, B; = I(a;) for all j. =

We now characterize the property specified by the last part of this proposition in the following

definition.

Definition 47 Int(E, D) is said to have the almost strong Skolem property if whenever I and

J are finitely generated unitary ideals of Int(E. D) such that (o) = J(a) for every a € E, then



L=,
As a result of Proposition 46, we have the following corollary.

Corollary 48 Int(F, D) has the almost strong Skolem property.

Using Proposition 46, we can show that the idea of integer-valued polynomials gives us a method

for constructing new Priifer domains from old ones.

Theorem 49 If F is a finite nonempty subset of D, then D is a Prifer domain if and only if

Int(E, D) is a Prifer domain.

Proof. (=) Suppose that D is a Priifer domain. Let [ be a nonzero, finitely generated ideal
of Int(£, D). Since [ is isomorphic to a unitary ideal by Proposition 5 and Lemma 44, then it
is sufficient to show that [ is invertible if [ is unitary. Then [ = f-Q[X] + XI_,I(ai)p; (from
Proposition 46 (4i)). Each I(e;) is a finitely generated nonzero ideal of D. Since D is a Priifer
domain by assumption, then I(a;) is invertible. Recall that, by Proposition 46(ii), f-Q[X] C
Int(E, D). Also, since I-Q[X] C Q[X], then I-f-Q[X] C f-Q[X]. So, we have that I-f-Q[X] C
f-Q[X] C Int(£, D). Using this and that [ = f-Q[X] + XI_,[(a;)¢;, we now have that, for each
index 1, I-1(a;) " 'p; C f-Q[X] + I(a;)-I(a:) “p? C Int(E, D).

So, f-Q[X]+XI_ 1(a;) ', C I '. Usingthat £7_,I(a;) 'y, € 7! and that, by Corollary 38,
1 = Xi_,¢;, it is sufficient to show that, for each i, p; € IT°'. Since ¢? € I(a;)p;-1(a:) Y, C TI7Y,
then ©? € 11" !. In addition, recall from the proof of Proposition 46(ii), that ¢? — ¢, € f-Q[X], so
it is sufficient to show that f-Q[X] C I1"'. For q € Q[X], fq= !_, fqp; = S1_,big;(b; ' fq) €
I171, where 0 # b; € I(a;) for each i, since bip; € I(a;)p; C 1 and b, "-fg € f-QX]C I™'. So,
f-QIX]C IT"'. Therefore, I is invertible, so Int(E, D) is a Priifer domain.

(«<) Suppose that Int(¥, D) is a Prl’ifel.'ivdromain. Let [ = Dby +. ..+ Db,, be a nonzero ideal of D,
and set J = Int(E, D)-by + ...+ Int(#, D)-b,. Since Int(F, D) is a Priifer domain by assumption,
then J is invertible, so JJ ! = Int(E, D). Therefore, we have 1| = g hy + ... + g;hy for some
Gis-ont € J, hy,... by € J'. Since we set J = Int(F, D)-by + ...+ Int(E, D)-b,, then we
have that, for each index 7, g; = k1by + ... + kb, for some ky,..., k, € Int(£,D). Evaluating
at a;, we have that g;(a1) = ki(a1)-by +... + ky(ay)-b, € I. Since hy,...,hy € J71, then h;J C
Int(E, D). Again since we set J = Int(F, D)-b; + ...+ Int(£, D)-b,, then we now have that h;b, <

Int(E. D) C Q[X], so hi € Q[X]. Also, for all indices j, h;b; € Int(F, D), and evaluating at
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a1, we have that. for all indices j, hi(a;)-b; € D. Then we have hi(ay) € I"'. Plugging a
into the equation 1 = gihy + ... + gihy, we get that 1 = gi(ag)hi(ar) + ...+ gi(ai)hi(ay). where
gi{e1),...,g(ay) € I and hy(a1),...,h(a1) € I7'. Therefore, I is invertible, so D is a Priifer
domain. ®=

Making use of the almost strong Skolem property, we can take Proposition 41 a step further.

Proposition 50 (i) If Int(E, D) has the 2-generator property, then D has the 2-generator property.

(ii) If D has the strong 2-generator property, then Int(E, D) has the 2-generator property.

Proof. For (i), let I = D-¢; + ... + D-¢, for some ¢,...,¢, € I. Let J = Int(E,D)I =
Int(E, D)-c;+...+Int(E, D)-¢c,. So,J =Int(E, D)-g(X)+ Int(E, D)-j(X) for some g(X),j(X) € J.
Now J(a;) = {h(ay) | h € J}. We need to show that I = J(ay) = D-g(ay)+ D-j(ay). For the first
equality, take w € [. Then w = dy-¢; +...+dp-c, for some dy,...,d, € D. Butc,...,c, €J by
definition, and d,....d, € D C Int(&, D), so w = dy-¢; +. . .+dp ¢y € J, where w = w(ay) € J(ay).
For the other containment, take h(ay) € J(ay), where i € J. So, h(X) = by(X)e1+... 4+ b, (X) ey for
some by, ..., b, € Int(E£, D). Now h{a;) = bi(a1)e;+...+by(ar)en € I since by(ay),....by(a1) € D
and ¢y,...,c, € I. Therefore, I = .J(a;). For the second equality, take h(a;) € J(ay), where h € J,
so that A =1-g+s-7 for some r.s € Int(F£, D). Then h(ar) = r(a1)-g(ar) +s(a1)-j(ar) € D-g(ay) +
D-j(ay). For the other containment, take d;-g(a;)+dy-j(a;) for some dy,dy € D C Int(£, D). Now
di-g(X) + dg-j(X) € J so that dy-g(ay) + dg-j(a1) € J(ay). Therelore, J(a,) = D-g(a1) + D-j(a1).
so D has the 2-generator propertyv.

For (ii), suppose that D has the strong 2-generator property. Let I C Int(£, D) be a finitely
generated ideal. By Lemma 44 and Proposition 5, I = [; for some unitary ideal Iy C Int(E, D).
It is sufficient to show that [ is 2-generated. Recall f = Iljc;< (X — a;) and, for 1 < j < 7,
¢; = Iizj(X = a;)/(a; — a;), from Proposition 46. If a;,...,a. are nonzero ideals of D, then
I = [-Q[X] + X[_ja;-¢; is an ideal of Int(E, D) such that [y N D = a; N...Na, # {0} where
a; = I1(a;) for each @ (by part (47) of Proposition 46). [; is a finitely generated (because [ is finitely
generated and [ = I;) Int(E, D)-ideal so a; = [(a;) for each 7 is a finitely generated D-ideal. Since
D has the strong 2-generator property. then by Proposition 32 every finitely generated ideal of D is
strongly 2-generated. So, each q; is strongly 2-generated. Since {0} #1ND=a,N...Na, C a,,
then choose 0 #b € aynN...Na. C a;. Then a; = D-b+ D-¢; for some ¢; € q; for each i. Let

J = Int(E,D)-b+ Int(£, D)-(¥I_,¢ciyp;). J is unitary because 0 # b € JN D. It is sufficient to
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show that J(a;) = I (a;) for each ¢ because then J = [; (by the almost strong Skolem property)
which implies that /; is also 2-generated. For this, since a; = /;(a;) for each i, then it is sufficient
to show that a; = J(a;) for each i. For the containment a; C J(a;), take di-b + da-¢; € a; for some
di,dy € D. Since dy,dy € Int(E, D), then dy-b+ da-(X;_,cipp;) € J. After plugging in a;, we have
that di-b+ da-¢c; € J(a;). For the containment J(a;) C a;, take g-b + h-(X_,cip;) € J for some
g.h € Int(E, D). Then g(a,)-b+h(a;)-(E7_,ci,(a:)) = g(a;)-b+h(a;)-¢; € a; since g(a;), h(a,) € D.
So. a; = J(a;) for each %, so J(a;) = I,(a;) for each ¢. Therefore, J = I; (by the almost strong

Skolem property) which implies that 7, is also 2-generated. m



5 The main theorem
The main theorem further connects the ideal structure of Int(£, D) with the ideal structure of D.

Theorem 51 (Chapman, Loper, and Smith. [5]) Let D be an integral domain and E = {a,,. .., a,}
a finite nonempty subset of D. Then Ini(. D) has the strong 2-generator property if and only if

D is a Bézout domain.

Proof. (=) Suppose that Int(£. D) has the strong 2-generator property. Recall from Proposition
16, the polynomial f(X) = (X —a;)(X —a2)--- (X —a,). [ r(X) is a polynomial in Q[X], then
r(X)-f(X) € I for every unitary ideal [ C Int(F, D), by Proposition 46(iv). In particular, f(X) is
in each unitary ideal of Int(£, D).

Note that, by a straightforward induction, if all 2-generated ideals of D) are principal, then all
finitely generated ideals of D are principal. So, it is sufficient to show that all 2-generated ideals of D
are principal. Let {0} # J = Dd;+Dds C D be a 2-generated ideal of D, and set J;, = Int(F, D)-J =
Int(E, D)-di+ Int(F, D)-d. Then J; is a finitely generated unitary ideal because J C J;. So,
f(X) € Ji,and so Jy = Int(£, D)-f+ Int(#, D)-g for some g € .J; since Int(F, D) has the strong 2-
generator property by assumption. Fix an index i. Now, J = Ji(a;) = D-f(a;)+ D-g(a;) = D-g(a;)
(since f(a;) = 0). So, J is principal. Therefore, all 2-generated ideals of D are principal so that
all finitely generated ideals of D are principal.

(<) Suppose that D is a Bézout domain. Let .J be a 2-generated unitary ideal of Int([, D).
For each 1 < 7 < r, let b; be an element of [D such that Db; = J(a;) (using the assumption that
D is a Bézout domain). Since J is unitary, then b; # 0 for each ¢ by part (iv) of Proposition 46.
Choose a nonzero polynomial s(X) € J. Recall that from Proposition 46, for cach 1 < 7 < r,
©;(X) = g (X — @;) / (a; — a;) and ¢;(a;) = 1 and ¢;(a;) = 0 when ¢ # j, hence each p,;(X) €
Int(E,D). Ift(X)=X7_,b;-¢,(X), then ¢(X) € Int(£, D) and t(a;) = b; for each 1 <@ < r. We
have two cases to consider.

Case 1:  Suppose that {(X) is relatively prime to s(X) over Q[X]. We claim that J =

Int(E, D)-s+ Int(E, D)-t. Now s(X)-u(X)+¢(X)-v(X) =1 for some u,v € Q[X]. Let 0# d € D be



a common denominator for all of the coefficients of v and v. Let I = Int(F, D)-s+ Int(£, D)-t. Mul-
tiplying through by d, we have that s(X)-du(X) +1(X)-dv(X) = d and du(X),dv(X) € D[X] C
Int(E, D) so that s(X)-du(X) + t(X)-dv(X) € I. Since s(X)-du(X) + t(X)-dv(X) € I and
S(X)du(X)+1(X)dv(X)=d, thend € l. Sinced€ Dandde€ I, then0#delInND, solis
unitary. It is sufficient to show that 1(a;) = J(a;) for each 1 < ¢ < r for then the almost strong
Skolem property gives I = .J. For this, note that J(a;) = D-b; for each i by definition so it is now
sufficient to show that /(a;) = D-b; for each 7. First, for the containment I(a;) C D-b;, using I =
Int(E, D)-s+ Int(E, D)-t, I(a;) = D-s(a;) + D-t(a;) C D-b; because s(a;) € J(a;) and t(a;) = b;.
For the containment D-b; C I(a;), I(a;) = D-s(a;)+ D-t(a;) 2 D-b; because t(a,) = b;. Now by the
almost strong Skolem property, [ = .J.

Case 2:  Suppose that ¢{X) is not relatively prime to s(X) over Q[X]. We claim that J =
Int(E, D)-s+ Int(F, D)-t; for some polynomial ¢; € J. Let u(X) be a greatest common divisor of
$(X) and t(X) over Q[X]. Let s(X) = s;(X)-s2(X) be a factorization in Q[X7] such that ged(s1(X).
$2(X)) =1 and s1(X) has exactly the same irreducible factors that u(X) does. For all irreducible
T(X) € Q[X], if 7(X) | ¢(X) and 7(X) | s(X), then 7(X) | u(X) because u(X) is the greatest
common divisor of s(X) and ¢(X). Then 7(X) | s1(X) because 7m(X) is irreducible and s;(X)
has exactly the same irreducible factors that w(.XX) has, so 7(X) t s2(X). On the other hand, if
7(X) | t(X) but 7(X) £ s(X). then 7(X) t s2(X). So, ged(#(X),s2(X)) = 1in Q[X]. Sincet(a;) #0
for each %, then by Theorem 36 (X" —a;) { {(X). Recall that f(X) = (X —a;)(X —az2) - (X —a,).
So, it follows that ged(t(X), f(X)) = 1. Now, let £;(X) = t(X) + s2(X)-f(X). Ultimately, we
want to show that ged(#,(X),s(X)) = 1. Since ¢(X) € Int(#, D) and so(X)-f(X) € Int(L, D),
then £ (X) € Int(£, D). Suppose that 7(X) is an irreducible factor of s(X) over Q[X]. Then we
have two subcases because, by how s(X) is defined, either 7(X') | 8;(X) or w(X) | s2(X).

Subcase 1:  7(X) | s1(X). Then 7(X) | t(X) because s;(X) has exactly the same irre-
ducible factors that wu(X) has, and w(X) | {(X). But 7(X) { s2(X) and ©(X) t f(X) because
ged((X), f(X)) = 1. Therefore, 7(X) £ t(X) + s2(X)-f(X).

Subcase 2: (X)) | s2(X). Since ged(t(X),s2(X)) = 1, then w(X) 4 ¢(X). Therefore, w(X) {
t(A) + s2(X)-f(X) here as well.

But ¢y (a;) = t(a;) + s2(a:)-f(a:;) = t(a:) for each ¢ since f(a;) = 0 for each i. Now as in Case
1, except using t1(X) in place of t(X). I = Int(F, D)-t;+ Int(F, D)-s is a unitary ideal of Int(F, D)

for which I(a;) = J(a;) for each 1 <1 < r. So, again I = J by the almost strong Skolem property.
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Therefore, the 2-generated unitary ideals of Int(%/, D) are strongly 2-generated. By Lemma 45.

all the 2-generated ideals of Int(£. D) are strongly 2-gencrated. m
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