You are here

Molecular pathway identification using microarray technology

Download pdf | Full Screen View

Date Issued:
2004
Summary:
Harnessing the human genome using bioinformatics lead to the discovery of a highly cancer-selective gene, Single Minded 2 gene (SIM2). An isoform of the SIM2 gene, the short-form (SIM2-s), was shown to be specific to colon, pancreas, and prostate tumors. Antisense inhibition of SIM2-s in a colon carcinoma derived cell line (RKO) caused inhibition of gene expression, growth inhibition and apoptosis in vitro and in nude mice tumorigenicity models. To understand the mechanism of Sim2-s antisense, the antisense treated RKO colon cancer cells were monitored for genome wide expression using Affymetrix GeneChipRTM technology. A list of apoptosis related genes was generated using GeneSpringRTM software. Select GeneChip RTM output was validated by Quantitative RT-PCR. Relevance of a key gene, Growth arrest and DNA damage inducible (GADD45a), in the SIM2-s pathway was established. These results will provide a basis for the future experiments to understand the mechanism underlying Sim2-s activation in specific tumors.
Title: Molecular pathway identification using microarray technology.
1079 views
62 downloads
Name(s): Tress, Matthew David.
Florida Atlantic University, Degree grantor
Narayanan, Ramaswamy, Thesis advisor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2004
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 70 p.
Language(s): English
Summary: Harnessing the human genome using bioinformatics lead to the discovery of a highly cancer-selective gene, Single Minded 2 gene (SIM2). An isoform of the SIM2 gene, the short-form (SIM2-s), was shown to be specific to colon, pancreas, and prostate tumors. Antisense inhibition of SIM2-s in a colon carcinoma derived cell line (RKO) caused inhibition of gene expression, growth inhibition and apoptosis in vitro and in nude mice tumorigenicity models. To understand the mechanism of Sim2-s antisense, the antisense treated RKO colon cancer cells were monitored for genome wide expression using Affymetrix GeneChipRTM technology. A list of apoptosis related genes was generated using GeneSpringRTM software. Select GeneChip RTM output was validated by Quantitative RT-PCR. Relevance of a key gene, Growth arrest and DNA damage inducible (GADD45a), in the SIM2-s pathway was established. These results will provide a basis for the future experiments to understand the mechanism underlying Sim2-s activation in specific tumors.
Identifier: 9780496257263 (isbn), 13146 (digitool), FADT13146 (IID), fau:10007 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Thesis (M.S.)--Florida Atlantic University, 2004.
Charles E. Schmidt College of Science
Subject(s): Medical informatics
DNA microarrays--Diagnostic use
Cancer--Genetic aspects
Apoptosis--Molecular aspects
Human genetics--Variation
Gene expression--Research--Methodology
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/13146
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.