

ENSEMBLE-CLASSIFIER APPROACH TO NOISE

ELIMINATION: A CASE STUDY IN SOFTWARE

QUALITY CLASSIFICATION

by

Vedang H. Joshi

A Thesis Submitted to the Faculty of

The College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

August 2004

ENSEMBLE-CLASSIFIER APPROACH TO NOISE ELIMINATION:
A CASE STUDY IN SOFTWARE QUALITY CLASSIFICATION

by

Vedang H. Joshi

This thesis was prepared under the direction of the candidate's thesis advisor, Dr .
Taghi M. Khoshgoftaar, Department of Computer Science and Engineering, and has
been approved by the members of his supervisory committee. It was submitted to
the faculty of The College of Engineering and was accepted in partial fulfillment of
the requirements for the degree of Master of Science.

Date

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Taghi M. Khoshgoftaar, for the valu

able comments and the kind support he has offered in completing my thesis. Dr.

Khoshgoftaar, a great researcher in his own right, has inspired me in more than

many ways with some of his greatest qualities as a researcher. It has been a real

privilege working under his guidance. Special thanks are due to Dr. Martin K.

Solomon and Dr. Bassem AlHalabi for agreeing to serve on my thesis committee

and reviewing my thesis.

I cannot sufficiently thank all my colleagues who made a wonderfully well

coordinated effort to carry out the experimental work presented in this thesis, in the

most efficient manner. I would also like to thank Naeem Seliya and Kehan Gao for

sharing their knowledge of f5.1£X with me and meticulously reviewing my thesis.

Many thanks to current and former members of the Empirical Software En

gineering Laboratory, in particular Naeem Seliya, Kehan Gao, Jayanth Rajeeval

ochanam, Laurent Nguyen, Angela Herzberg, Yi Liu, and my fellow graduate stu

dents - Pierre Rebours, Yunling Wang, Hua Lin, and Nawal Abraham - for being

such a great team to work with.

iii

Author:

Title:

Institution:

Thesis Advisor:

Degree:

Year:

ABSTRACT

Vedang H. Joshi

Ensemble-Classifier Approach to Noise Elimination: A
Case Study in Software Quality Classification

Florida Atlantic University

Dr. Taghi M. Khoshgoftaar

Master of Science

2004

This thesis presents a noise handling technique that attempts to improve the

quality of training data for classification purposes by eliminating instances that are

likely to be noise. Our approach uses twenty five different classification techniques

to create an ensemble of classifiers that acts as a noise filter on real-world software

measurement datasets. Using a relatively large number of base-level classifiers for

the ensemble-classifier filter facilitates in achieving the desired level of noise removal

conservativeness with several possible levels of filtering. It also provides a higher

degree of confidence in the noise elimination procedure as the results are less likely

to get influenced by (possible) inappropriate learning bias of a few algorithms with

twenty five base-level classifiers than with a relatively smaller number of base-level

classifiers. Empirical case studies of two different high assurance software projects

demonstrate the effectiveness of our noise elimination approach by the significant

improvement achieved in classification accuracies at various levels of filtering.

lV

To my loving parents

CONTENTS

TABLES . ix
FIGURES XV

1 INTRODUCTION . 1
2 SOFTWARE METRICS 7

2 . 1 Measurements 7
2.2 Software Measurements . 8

2 .2 . 1 Product Metrics . 9

2 .2. 1 . 1 Call Graph Metrics . 10
2 .2 . 1 .2 Control Flow Graph Metrics . 10

2 .2 .2 Statement Metrics 1 1
2 .2 .3 Process Metrics . . 1 1
2 .2 .4 Execution Metrics . 1 2

2 .3 Software Metrics Used in This Study 1 2

3 METHODOLOGIES 15

3. 1 Data Quality . . . 1 5

3. 1 . 1 What Affects Data Quality? 1 5
3.1.2 Aspects of Data Quality . . 16

v

3.2

3 .3

3. 1 .3 Why Is Data Quality Important?

Coping with Noise

3 .2 . 1
3.2 .2
3.2 .3
3.2 .4

Robust Algorithms
Noise Elimination/Filtering
Related Work
Polishing

Our Approach to Noise Handling

3.3 . 1
3.3.2

Handling Exceptions . . .
Distinction of Our Approach .

3.4 Classification Modeling

3.4. 1
3.4.2
3.4.3
3.4.4
3.4.5

Objective for Classification Models
Calibrating Classification Models .
Expected Cost of Misclassification .
Two-way ANOVA: Randomized Complete Block Design .
Multiple Pairwise Comparisons

3 .5 Z-Test Comparison of Two Proportions .
3 .6 Software Quality Classification Techniques

3 .6 .1
3 .6 .2
3 .6 .3
3.6.4
3.6.5
3.6.6
3.6 .7
3 .6 .8
3 .6 .9

Case-Based Reasoning
TREEDISC
Logistic Regression . .
Lines-Of-Code
Genetic Programming
Artificial Neural Networks
Rule-Based Modeling . . .
Rough Sets
Combining Classification Technique

3 .6 .9 .1
3 .6 .9 .2
3 .6 .9 .3
3 .6 .9 .4

Bagging . .
Boosting . .
LogitBoost
MetaCost

3.6 .10 Decision Table

Vl

17

18

19
22
24
26

29

33
34

35

35
39
41
45
47

48
49

50
50
51
52
52
53
54
54
55

56
57
58
58

60

3.6 . 1 1 Alternating Decision Tree
3 .6 . 12 SMO .
3.6 . 13 IB1 . .
3 .6 .14 IBk . .
3 .6 .15 PART
3 .6 .16 OneR
3 .6 . 17 JRip .
3.6. 18 Ridor .
3 .6 .19 J48 . .
3 .6 .20 NaiveBayes
3 .6 .21 Hyperpipes
3 .6 .22 LWLStump

4 EXPERIMENTS . . .

4. 1 System Description
4.2 Noise Elimination .
4.3 Classification Results

4 .3 . 1
4 .3 .2

Misclassification Summary for the JM1 System
Misclassification Summary for the KC2 System

4.4 ECM Results

4 .4. 1 ECM Results for the JM1 System .
4.4 .2 ECM Results for the KC2 System .

4 .5 ANOVA Results
4.6 Multiple Pairwise Comparison Results

60
61
62
62
63
64
65
66
66
67
68
68

70

70
72
76

76
82

82

87
96

96
104

4.6 . 1 Multiple Pairwise Comparison Results for JM1 System 105
4 .6 .2 Multiple Pairwise Comparison Results for KC2 System 109
4.6 .3 Discussion 1 12

4. 7 Z-Test Comparison Results of Two Proportions
4.8 Predictive Performance Results

1 16
122

4.8 . 1 Predictive Performance of JMl Models on KC2 Datasets 122
4.8 .2 Predictive Performance of KC2 Models on JM1 Datasets 129
4 .8 .3 NECM Results for JM1 Models Applied to the KC2 Datasets,

c=10 . 139

Vll

4.8 .4 NECM Results for JM1 Models Applied to the KC2 Datasets,
c=20 . 145

4 .8 .5 NECM Results for JM1 Models Applied to the KC2 Datasets,
c=30 . 151

4 .8 .6 NECM Results for JM1 Models Applied to the KC2 Datasets,
c=50 . 157

4 .8 . 7 NECM Results for KC2 Models Applied to the JMl Datasets,
c=10 . 163

4 .8 .8 NECM Results for KC2 Models Applied to the JMl Datasets,
c=20 . 168

4 .8 .9 NECM Results for KC2 Models Applied to the JM1 Datasets,
c=30 . 173

4.8 . 10 NECM Results for KC2 Models Applied to the JM1 Datasets,
c=50 . . . 178

4.8 . 1 1 Discussion 183

5 CONCLUSIONS 184
BIBLIOGRAPHY . 188

viii

TABLES

2.1 Metric Description of JM1 and KC2 datasets .

3.1 Notations

4.1 Dataset Details for JM1 and KC2 Systems

4.2 Quality-of-Fit Results for JM1-8850 and KC2-520 Datasets

4.3 Classification Accuracy Results for JM1-4425 Datasets

4.4 Classification Accuracy Results for JM1-23C Datasets .

4.5 Classification Accuracy Results for JM1-20C Datasets .

4.6 Classification Accuracy Results for JM1-17C Datasets .

4. 7 Classification Accuracy Results for JM1-13C Datasets .

4.8 Classification Accuracy Results for KC2-260 Datasets .

4.9 Classification Accuracy Results for KC2-23C Datasets .

4.10 Classification Accuracy Results for KC2-17C Datasets .

4.11 Classification Accuracy Results for KC2-13C Datasets .

4.12 NECM Results for JM1 Dataset, c=10

4.12 NECM Results for JM1 Dataset, c=10, contd . . .

4.13 NECM Results for JM1 Dataset, c=20

lX

13

36

72

75

77

78

79

80

81

83

84

85

86

88

89

90

4.13

4.14

4.14

4.15

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

NECM Results for JM1 Dataset, c=20, contd . . .

NECM Results for JM1 Dataset, c=30

NECM Results for JM1 Dataset, c=30, contd . . .

NECM Results for J M 1 Dataset , c=50 • • • • 0

NECM Results for JM1 Dataset , c=50, contd . . .

NECM Results for KC2 Dataset, c=10

NECM Results for KC2 Dataset, c=20

NECM Results for KC2 Dataset, c=30

NECM Results for KC2 Dataset, c=50

Two-Way ANOVA Models for JM1 Fit Datasets

Two-Way ANOVA Models for KC2 Fit Datasets

Two-Way ANOVA Models for JM1 Test Datasets

Two-Way ANOVA Models for KC2 Test Datasets

Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=10

Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=20

Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=30

Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=50

Multiple Pairwise Comparison Results for JM1-Test Datasets, c=10

Multiple Pairwise Comparison Results for JM1-Test Datasets, c=20

Multiple Pairwise Comparison Results for JM1-Test Datasets, c=30

Multiple Pairwise Comparison Results for JM1-Test Datasets, c=50

X

91

92

93

94

95

97

98

99

100

101

102

103

103

106

107

108

109

110

111

112

113

4.32 Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=lO 1 14

4.33 Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=20 115

4.34 Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=30 1 16

4.35 Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=50 1 17

4.36 Multiple Pairwise Comparison Results for KC2-Test Datasets, c=lO 118

4.37 Multiple Pairwise Comparison Results for KC2-Test Datasets, c=20 1 19

4.38 Multiple Pairwise Comparison Results for KC2-Test Datasets, c=30 120

4.39 Multiple Pairwise Comparison Results for KC2-Test Datasets, c=50 121

4.40

4.41

4.42

4.43

4.44

4.45

Predictive Quality of JM1-8850 models on KC2 datasets

Predictive Quality of JM1-4425 models on KC2 datasets

Predictive Quality of JM1-23C models on KC2 datasets

Predictive Quality of JM1-20C models on KC2 datasets

Predictive Quality of JM1-17C models on KC2 datasets

Predictive Quality of JM1-13C models on KC2 datasets

4.46 Predictive Quality of KC2-520 models on JM1 datasets

.

.

.

.

• 0 • • • •

• 0 • • • •

123

124

125

126

127

128

129

4.46 Predictive Quality of KC2-520 models on JM1 datasets, contd. . . 130

4.47 Predictive Quality of KC2-260 models on JM1 datasets 131

4.4 7 Predictive Quality of KC2-260 models on JM1 datasets, contd. . . 132

4.48 Predictive Quality of KC2-23C models on JM1 datasets 133

4.48 Predictive Quality of KC2-23C models on JM1 datasets, contd. . . 134

4.49 Predictive Quality of KC2-17C models on JM1 datasets

Xl

135

4.49 Predictive Quality of KC2-17C models on JM1 datasets, contd . . . 136

4.50 Predictive Quality of KC2-13C models on JM1 datasets 137

4.50 Predictive Quality of KC2-13C models on JM1 datasets, contd . . . 138

4.51 ECM Results for JM1-8850 Models Applied to KC2 datasets, c=lO 139

4.52 ECM Results for JM1-4425 Models Applied to KC2 datasets, c=lO 140

4.53 ECM Results for JM1-23C Models Applied to KC2 datasets, c=lO 141

4.54 ECM Results for JM1-20C Models Applied to KC2 datasets, c=10 142

4.55 ECM Results for JM1-17C Models Applied to KC2 datasets, c=lO 143

4.56 ECM Results for JM1-13C Models Applied to KC2 datasets, c=lO 144

4.57 ECM Results for JM1-8850 Models Applied to KC2 datasets, c=20 145

4.58 ECM Results for JM1-4425 Models Applied to KC2 datasets, c=20 146

4.59 ECM Results for JM1-23C Models Applied to KC2 datasets, c=20 147

4.60 ECM Results for JM1-20C Models Applied to KC2 datasets, c=20 148

4.61 ECM Results for JM1-17C Models Applied to KC2 datasets, c=20 149

4.62 ECM Results for JM1-13C Models Applied to KC2 datasets, c=20 150

4.63 ECM Results for JM1-8850 Models Applied to KC2 datasets, c=30 151

4.64 ECM Results for JM1-4425 Models Applied to KC2 datasets, c=30 152

4.65 ECM Results for JM1-23C Models Applied to KC2 datasets, c=30 153

4.66 ECM Results for JM1-20C Models Applied to KC2 datasets, c=30 154

4.67 ECM Results for JM1-17C Models Applied to KC2 datasets, c=30 155

4.68 ECM Results for JM1-13C Models Applied to KC2 datasets, c=30 156

xii

4.69 ECM Results for JM1-8850 Models Applied to KC2 datasets, c=50 157

4.70 ECM Results for JM1-4425 Models Applied to KC2 datasets, c=50 158

4.71 ECM Results for JM1-23C Models Applied to KC2 datasets, c=50 159

4.72 ECM Results for JM1-20C Models Applied to KC2 datasets, c=50 160

4.73 ECM Results for JM1-17C Models Applied to KC2 datasets, c=50 161

4.74 ECM Results for JM1-13C Models Applied to KC2 datasets, c=50 162

4.75 ECM Results for KC2-520 Models Applied to JM1 datasets, c=10 163

4.76 ECM Results for KC2-260 Models Applied to JM1 datasets, c=10 164

4.77 ECM Results for KC2-23C Models Applied to JM1 datasets, c=lO 165

4.78 ECM Results for KC2-17C Models Applied to JM1 datasets, c=10 166

4.79 ECM Results for KC2-13C Models Applied to JM1 datasets, c=10 167

4.80 ECM Results for KC2-520 Models Applied to JM1 datasets, c=20 168

4.81 ECM Results for KC2-260 Models Applied to JM1 datasets, c=20 169

4.82 ECM Results for KC2-23C Models Applied to JM1 datasets, c=20 170

4.83 ECM Results for KC2-17C Models Applied to JM1 datasets, c=20 171

4.84 ECM Results for KC2-13C Models Applied to JM1 datasets, c=20 172

4.85 ECM Results for KC2-520 Models Applied to JM1 datasets, c=30 173

4.86 ECM Results for KC2-260 Models Applied to JM1 datasets, c=30 1 74

4.87 ECM Results for KC2-23C Models Applied to JM1 datasets, c=30 175

4.88 ECM Results for KC2-17C Models Applied to JM1 datasets, c=30 176

4.89 ECM Results for KC2-13C Models Applied to JM1 datasets, c=30 177

xiii

4.90 ECM Results for KC2-520 Models Applied to JM1 datasets, c=50 178

4.91 ECM Results for KC2-260 Models Applied to JM1 datasets, c=50 179

4.92 ECM Results for KC2-23C Models Applied to JM1 datasets, c=50 180

4.93 ECM Results for KC2-17C Models Applied to JM1 datasets, c=50 181

4.94 ECM Results for KC2-13C Models Applied to JM1 datasets, c=50 182

XlV

FIGURES

2.1 A Call Graph . 10

XV

Chapter 1

INTRODUCTION

In today's IT-driven and highly competitive world, information holds the key

to success for any organization. However, just having vast amount of data/information

may not necessarily work to an organization's advantage if the quality of the data

and the usefulness of the data, in turn, is questionable. Not only can data of poor

quality, if not handled correctly, hinder an organization's success, but it could also

have disastrous consequences. Therefore, it is imperative for an organization to

ensure that the data is of good quality before performing any task that involves

extensive data analysis and/or decision making based on data mining results using

the data available.

Indeed, the quality of data is important from a data mining point of view. In

ductive learning algorithms, the heart of data mining, aim to generalize the concepts

learnt from a set of training instances so as to improve the classification accuracy

on previously unseen observations (instances) . The predictive accuracy of a classi

fication technique is influenced by two (among others) major factors: (1) Quality

of the training data, and (2) Appropriateness of the chosen algorithm for the given

1

data. Poor-quality (noisy) data, when used during training, can have undesirable

consequences due to decision making based on incorrect results. Hence, using an

appropriate noise handling procedure as a preamble to any data mining / KDD task

is of paramount importance.

The problem of effectively dealing with data noise can be approached mainly

in three different ways. To cope with noise, one can either use robust (noise-tolerant)

algorithms, try to correct noisy instances, or filter out noisy instances from the

dataset. In the first approach, a robust learning algorithm is employed in such a way

that the classifier built will not be overfitted to the possibly noisy training instances.

This simple but subtle approach of handling noise finds its roots in the Occam's razor

principle applied to Inductive Learning [33] . Teng [100] has explored a different

approach, called polishing, in which instead of removing the instances identified as

being noisy, corrections are made to either one or more features (attributes) or the

class label of the instances suspected of being noisy. The concept of Polishing takes

advantage of the fact that different components in a dataset may not be totally

independent except in the case of irrelevant attributes. The third approach, noise

elimination, is a rather direct approach that attempts to improve the quality of

input data for hypothesis formation by removing potentially noisy instances so that

they do not influence the hypothesis constructed [31] . This is the approach we have

adopted to handle potentially noisy datasets in the domain of Software Quality

Classification.

2

The empirical study presented in this thesis investigates the use of a noise

elimination procedure, based on ensemble-classifier approach, in the context of Soft

ware Quality Classification problem. A Software Quality Classification model can

assist software quality improvement efforts by identifying software program modules

that are likely to be fault-prone (fp) during operations. This facilitates cost-effective

utilization of resources allocated for software testing, inspection, and quality en

hancement. Software measurements are key in developing a Software Quality Es

timation model because of the software engineering assumption that they hold the

underlying information regarding software product quality.

Noise elimination with ensemble-classifier approach was deemed appropriate

for our study. The basic assumption in our study is that if a large number of

classifiers misclassify a given software module, then it is likely that it is a noisy

instance in the dataset . More specifically, such a software module suggests that

its software measurements and quality data do not adhere to (or represent) the

underlying characteristics of the quality of the software product. Noisy instances in

a poor-quality dataset may have either erroneous attribute values (attribute noise)

or corrupted class labels (class noise) . However, since machine learning algorithms

usually treat noisy examples as being mislabeled [32] , we feel that the noise identified

by our approach could actually be either attribute noise or class noise.

Our study extends the ensemble-classifier approach, first introduced by Brad

ley and Friedl [9] , by experimenting with relatively large number of base-classifiers

3

to explore different levels of filtering instead of just majority- and consensus-based

filtering. In the ensemble-classifier approach presented in [9] for noise elimination,

only three base-level classifiers were employed. A similar work with five different

base-level classifiers was presented in [10] . In our opinion, the number of base-level

classifiers can be a key factor when the ensemble-classifier approach is used in noise

detection and elimination. In the context of [9] , one can argue that it is quite possi

ble that two out of the three different classifiers or even all the three classifiers could

misclassify genuinely noise-free instance(s) . Similar argument can be made for five

base classifiers [10] for noise filtering.

Indeed, it may not be wise to form an opinion about an instance being noisy

by considering only a small number of classifiers, because the appropriateness (or

bias) of the chosen learning algorithms applied to a particular dataset also plays

a significant role. It may well be that the few chosen classifiers don't have the

appropriate bias to learn the concepts for the given domain.

Experimenting with a rather large number of classifiers can ensure that we

are reducing the probability of throwing away good-quality data and raising the

level of confidence in the identification of actual noisy instances. In our study, we

used 25 different base-level classifiers from different computational categories, such

as Bayesian, instance-based, rule-based, decision-tree based, pattern-based, and sta

tistical techniques, etc. , for our ensemble-classifier noise removal approach. Unlike

Brodley and Friedl's approach [9] that only considers majority filtering (the least

4

conservative approach) and consensus filtering (the most conservative approach) ,

our study examines the effects of different levels of noise filtering on the predictive

accuracy of classifiers. By using 25 base-level classifiers, we were able to achieve var

ious levels of filtering (levels of conservativeness) for noise removal from the software

measurement data investigated.

To our knowledge, this work is one of the few studies that examines the effect

of a noise handling technique on a real-world dataset with potential inherent noise.

Many empirical investigations, such as [9, 100, 117] , have evaluated different noise

handling mechanisms on datasets in which noise is artificially injected, either in the

class label or in the attribute values. In such cases, there is no way to ensure that

the noise handling procedure improves the true classification accuracy. Whereas,

with our approach, noise free evaluation dataset is available because of the way

noise filtering is performed.

The effectiveness of our noise elimination approach is evident in the signifi

cant improvement achieved in classification accuracies at various levels of filtering

for both the case-studies of high assurance software projects empirically investigated

in our study. The results statistically confirmed our intuitive assumption that the

classification performance would improve as more and more software modules likely

to be noise are eliminated. This is evidenced by the significant performance dif

ference between the datasets with different levels of noise filtering. This was also

apparent as the NECM values decreased from the most conservative level to the

5

least conservative level of noise filtering.

A Z-test was performed to compare two different proportions - proportions

of the modules identified as likely-noise by two different noise filtering approaches.

First , we compared the proportion of the modules identified as noisy (and hence

eliminated) by our approach (ensemble-classifier consensus filter with 25 base-level

classifiers) to the proportion of the instances identified as noisy by ensemble-classifier

consensus filter with only 5 base-level classifiers [10]: J48, IBk, SMO, JRIP, and

LWLStump. The results revealed that ensemble-classifier consensus filter is, statis

tically speaking, much more conservative with twenty five base-level classifiers than

with only five classifiers. Thus, experimenting with relatively large number of clas

sifiers can provide us a flexibility to choose the amount of conservativeness desired

for noise elimination.

This thesis begins with an introduction to software measurement and the

metrics involved in this study. Chapter 3 describes the various methodologies in

volved. They include different noise handling procedures,. different classification

techniques used as base-level classifiers, Expected Cost of Misclassification as a sin

gular practical classification performance measure, Z-test for proportions, Two-way

Analysis of Variance (ANOVA) model, and Multiple Pairwise Comparison. Chapter

4 describes the experiments conducted and the results obtained. Finally, Chapter 5

draws conclusions from this study, and indicates directions for future study.

6

Chapter 2

SOFTWARE METRICS

At the heart of every engineering activity, there is measurement. In fact ,

measurements pervade almost every aspect of our lives to such a great extent that

it is literally impossible to make a meaningful progress without measurements . In

this chapter, we present how measurements play a significant role in our life, with

a particular reference to software engineering activities.

2.1 Measurements

Indeed, measurements are so widely used in our daily activities that they

have become commonplace. From professional technologists to normal human be

ings, everyone uses measurements to gain better understanding of the environment ,

interact with the surroundings, and improve life by taking important decisions in

an objective and scientific manner.

Fenton and Pfl.eeger [23] define measurement as a process by which numbers

or symbols are assigned to attributes of entities in the real world in such a way as

to describe them according to clearly defined rules.

7

The corollary to DeMarco's rule in [23]: You cannot control what you can

not measure [18] incisively points out how vital measurements are in scientifically

assessing our current situation, tracking progress, and evaluating effectiveness, etc.

From an engineer's point of view, the importance of measurement is three

fold. First, it is essential for better understanding of the environment and assessing

present conditions so that baseline goals can be established in terms of expected

performance, productivity, etc. , and realistic view of current situations and future

possibilities can be attained. Secondly, with measurements come the knowledge of

how the entities involved interact and the insight on how to make changes to pro

cesses and/ or products that would help us reach our goals. Third, measurements

encourage us to improve our processes and products. The focus of our study is soft

ware quality classification, and hence, we describe the importance of measurements

with a specific reference to software related activities in the following subsection.

2.2 Software Measurements

Software measurement, once an obscure and esoteric specialty, has become

essential to good software engineering [23]. Although not always acknowledged as

essential to good software engineering, software metrics play an important role.

By measuring characteristics of a software, developers can figure out whether the

requirements are consistent and complete, whether the design conforms to the re

quirements, when the code can be tested, and the amount of resources required

8

during different phases of the software development process. Many effective project

managers have successfully used various software metrics related to the process and

the product to predict the project completion time and the amount of resources

required for software development projects.

Software metrics can be classified mainly into three categories: process met

rics, product metrics, and execution metrics. Process metrics quantify the software

related activities associated with a time-scale. Product metrics quantify the at

tributes of the object or entity involved. Execution metrics measure the parameters

involved during the execution of a program. Besides these three categories, some

metrics are categorized as Quality Metrics, e.g. , the number of faults in a module.

Quality Metrics are very good indicators of the reliability of software. Practitioners

and researchers alike usually try to predict the value of a quality metric in advance,

using process, product, or execution metrics, to get an idea about the reliability of

the software and guide the development efforts accordingly.

2.2.1 Product Metrics

Software product metrics can be categorized mainly into three groups : call

graph metrics, control flow graph metrics, and statement metrics. Call graph metrics

depict the relationship among procedures in terms of invocation. Control flow graph

metrics indicate the flow of control from one statement to another. Statement

metrics measure properties of program text without any inference on the meaning

9

Procedure A calls B, C
Procedure B calls D
Procedure C calls D, E

D

Figure 2.1: A Call Graph

E

of the text or the ordering of different components in a software module.

2.2.1.1 Call Graph Metrics

Call graph metrics are extracted from a very high level design of the software

being developed, and hence, can be collected at a very early stage in the software

life cycle. A directed call graph depicts how different procedures are invoked by

examining the abstract model of the design. Figure 2 .1 [23] shows one such example

of a directed call graph. Number of distinct procedure calls , CAL UNQ, and the

number of second and following calls , CAL2, are some of the metrics that belong to

this category.

2.2.1.2 Control Flow Graph Metrics

Control flow graph metrics graphically reveal the structural description of

the algorithms in a given software module. They are concerned with the sequence

in which instructions are executed in a program/software module, and are usually

10

modeled with directed graphs, where a node represents a program statement, and

each directed edge (arc) represents the flow of control from one statement to another.

Number of nodes, number of arcs, in-degree of a node (the number of arcs

arriving at the node) , and the out-degree of a node (the number of arcs leaving the

node) are some of the examples of control flow graph metrics. These metrics are

available at a very early stage in the software development life cycle - right after

detailed design is completed, even before the implementation phase begins.

2.2.2 Statement Metrics

Statement metrics are the measurements related to the property of text in

a software module, with no inference on the meaning or ordering of program state

ments. The value of statement metrics essentially remains the same even if the order

in which the program statements appear changes, and does not indicate what the

program statements imply. Typical statement metrics used in practice include lines

of code, number of executable statements, number of distinct include files, number

of unique/total operators, and number of unique/total operands, etc.

2.2.3 Process Metrics

For successful completion of a software development project, one needs to give

due attention to the associated process, and ideally, should not just focus on the

product (software) being developed. Process metrics are the measurements related

11

to software development activities, and in many cases, are good indicators/predictors

of the quality metric of interest.

For example, the experience of programmers is a very important factor. The

more experienced the programmers, the less likely they are to introduce bugs in

the software. The number of requirement errors found during inspection can be a

good indicator of how effective the reviewing process actually is . Furthermore, the

number of personnel working on the project within a period can give us insight into

the resources needed for the development process.

2.2.4 Execution Metrics

Execution metrics are the metrics that measure the attributes concerning

the execution of a software. The attributes measured could relate to the execution

time under given conditions, e.g. , RESCPU, B USCPU, and TANCPU, or the con

sumption of resources, such as memory usage [44] . RESCPU is the execution time

(microseconds) of an average transaction on a system serving consumers. B USCPU

is defined to be the execution time (microseconds) of an average transaction on a

system serving businesses, whereas TANCPU is the execution time (microseconds)

of an average transaction on a tandem system.

2.3 Software Metrics Used in This Study

For the case studies reported in this thesis, we used data from two C++

NASA projects, which are available through Metrics Data Program (MDP) website.

12

Table 2.1: Metric Description of JM1 and KC2 datasets

I Metric Type I MetricNotation-JMl I Metric Notation-KC2 I
McCabe Cyclomatic_Complexity v(G)

EssentiaL Complexity ev(G)
Design_ Complexity iv (G)
Loc_Total loc

Derived Halstead_Length N
Halstead Halstead_ Volume v

Halstead_Level L
Halstead_Difficulty D
Halstead_Content I
Halstead_Effort E
Halstead_Error _Est B
Halstead_Prog_ Time T

Line Loc_Executable loCode
Count Loc_Comment loComment

Loc__Blank loB lank
Loc_Code_And_Comment loCodeAndComment

Basic N urn_ U nique_Operators uniq_Op
Halstead Num_Unique_Operands uniq_Opnd

Num_Operators totaLOp
Num_Operands totaLOpnd

I Branch I Branch_Count branch Count

The two data sets are denoted by JM1 and KC2, the former being the larger (10, 883

modules) of the two and the latter being the smaller (520 modules) .

Both the JM1 and KC2 datasets contain 21 software metrics, which include

the McCabe Metrics, the Halstead Metrics, the metrics of Line Count, as well as

the metric of Branch Count. The metric description is listed in Table 2 . 1 . Besides

these twenty one metrics, KC2 has three quality metrics: Error Rate (number of

defects in the module) , Defect (whether or not the module has any defects) , and

Deject Density, whereas JM1 has two quality metrics: Error Rate and Defect. Out

13

of the available twenty one metrics, we used only the thirteen primitive metrics for

our study. All the eight derived Halstead metrics were discarded. Also, we used

only one quality metric, namely Error Rate (number of defects in the module) , for

the purpose of classification in our case studies. The class label fp (fault-prone)

or nfp (not-fault-prone) was determined from the number of defects. An instance

(module) was labelled nfp if it did not have any defect, and fp otherwise.

14

Chapter 3

METHODOLOGIES

This chapter aims to portray the theme of our study on noise handling in

Software Quality Classification domain. Various aspects concerning data quality

are introduced, and literature on different noise handling techniques reviewed. A

conceptual framework for proposed noise handling technique is detailed, followed by

detailed modeling methodology and a brief delineation of the different classification

techniques used as a preamble to our approach.

3.1 Data Quality

Unfortunately, it is common for large datasets to have various kinds of errors,

either random or systematic. According to [78, 87] , unless an organization takes

severe measures attempting to prevent data errors, the error rates involved in data

entry and/ or data acquisition typically range from 5 % or more.

3.1.1 What Affects Data Quality?

According to Tayi and Ballou [99] , data quality is defined as fitness for use,

which implies that quality is relative to the use of data. If the data have deficiencies,

15

generally known as noise, the data cannot land itself to use.

In practice, the quality, correctness, consistency, completeness, and reliability

of a large dataset can be affected by several factors [22, 106, 107] . The dataset

could have inconsistencies in terms of required format/syntax, semantics, or values,

or it may have incorrect or missing values. The deficiencies could creep into the

dataset for various reasons, such as poor interface design, data entry errors, failure

of measurement device, lack of necessary information, subjectivity of the entity being

measured, etc. No matter what the cause, data quality remains a prime concern in

the fields involving extensive data analysis.

3.1.2 Aspects of Data Quality

There are several aspects to the quality of data, such as completeness, rel

evance, reliability, amount of data, consistency, correctness, timeliness, precision,

unambiguity, accuracy, objectivity, conciseness, etc. [97, 105] . The list is not ex

haustive, but is certainly representative of the type of attributes involved concerning

the quality of data.

Reliability of data implies that the data stored is trustable, and can be taken

as true information. Consistency of the data means that there is no contradiction

between the data stored. When the data is objective, it means that the data does

not depend on the judgement, interpretation, or evaluation of people. Informal

definition for each of these attributes can be found in [6] .

16

It should be noted that these aspects or dimensions of quality may actually

be related to one another. For example, if the level of objectivity is low, i .e . , if the

data is subjective, then it does adversely affect the correctness and reliability of the

data.

3.1.3 Why Is Data Quality Important?

Using the information at their disposal, organizations make well-informed

decisions that improve their practice in order to attain their objectives and maintain

a competitive edge in the market . The quality of data can have a great impact on

the business decisions an organization may take. It is not difficult to realize what

Redman [87] has so righteously noted - "decisions are no better than the data on

which they are based". When the data suffers from poor quality, it may lose its

usability, or can lead to incorrect decisions resulting in variety of losses.

Data with poor quality, when put to use, could very well translate into disas

trous scenarios. The social and economic impact of poor-quality data could actually

cost billions of dollars [61 , 70, 79, 107] . One such example has been reported in [98] ,

where hospital managers studied and used faulty information related to patients,

and concluded that most of the patients suffered from the disease hemorrhoids. The

managers allocated the hospital resources, such as number of beds, nurses, medical

equipment, etc . , accordingly to better serve the patients suffering from hemorrhoids.

17

This turned out to be a wrong and costly decision, not because the rationale in de

cision making was wrong, but because the information on which this decision was

based was not completely accurate. The reason for inaccuracy in this case was poor

interface design for data entry. At the check-in application, hemorrhoids was the

default choice, and clerks selected it, because it was difficult to look for the correct

choice. No matter what the cause was, the hospital finances suffered a great deal

because of deficiency in data quality.

Indeed, data quality problems have become increasingly evident, especially

in organizational databases. According to Tayi [98] , 50 to 80% of computerized

criminal records in the U.S. were found to be inaccurate, incomplete, or ambiguous.

With the increasing use of computerized information to take important decisions

that could even affect people's lives, the quality of such information/ data has become

important more than ever, and practitioners certainly realize it.

3.2 Coping with Noise

With any task that involves extensive data analysis and/or decision making

based on available data, one needs to be vigilant of data quality issues. If the

available data suffers from poor quality, i.e. , has significant level of noise, appropriate

noise handling procedures should be employed before the data is put to use.

For example, it is crucial in Knowledge Discovery in Database (KDD) pro

cesses to effectively handle noisy data for any data mining task and results to be

18

meaningful, applicable, and hence, valuable. Data Quality Mining, a deliberate ap

plication of data mining techniques for the purpose of data quality measurement

and improvement, can supplement KDD, and contribute to improve the results of

KDD projects, note Hipp et al. [38] .

Over the past decade or so, researchers have proposed and studied various

techniques, such as Data Quality Mining (DQM) techniques and statistical tech

niques to improve the quality of data. A brief survey of these techniques is delineated

in the following subsections.

The problem of effectively dealing with noise can be approached mainly in

three different ways. To cope with noise, one can either use robust algorithms,

filter out noisy instances from the dataset , or try to correct noisy instances. A

comparative study of three different noise handling techniques from each of this

category has also been carried out, and is reported in [102] .

3.2.1 Robust Algorithms

In the first approach, a robust learning algorithm is employed in such a

way that the classifier built will not be overfitted to the training instances. This

simple but subtle approach of handling noise finds its roots in the Occam's razor

principle applied to Inductive Learning [33] . According to Li and Vitanyi [65] , the

principle as originally stated - "Entities should not be multiplied beyond necessity"

- could be interpreted as: "Among the theories that are consistent with the observed

19

phenomena, one should select the simplest theory".

Simply put, the Occam's razor principle, in the context of hypothesis forma

tion, advocates the selection of the simplest hypothesis among all the hypotheses

that best reflect the underlying concept of the training example set. According to

Rissanen [89] , the hypothesis thus selected would most likely be a generalization

of the inherent concept(s) , and could bring about significant improvement in the

predictive accuracy of the algorithm.

This principle is fairly well-known in the inductive learning community, and

has often been used not just to improve predictive accuracy of the algorithm, but

also as a mechanism to handle noisy data by avoiding overfitting. Choosing the

simplest structures to represent the underlying concept(s) and/or subconcept(s)

over the complex ones (either by pruning in the case of tree-based algorithms or

by truncating rules in the case of rule-based algorithms) , perhaps at the expense of

classification accuracy on the training example set in some cases, makes sure that

the classifier does not become complex any more than necesf?ary just to account for

the noise. C4.5 [84] and CN2 [12] are examples of robust learning algorithms that

come with in-built pruning mechanism.

Even though the principle has been successfully employed in various machine

learning algorithms, there are some debatable issues which raise concerns, as Lavrac

and Gamberger point out in [62] . Robust algorithms are appealing to practitioners,

because they do not require any preprocessing of the data, but a classifier thus built ,

20

i .e. , the hypothesis thus formed, may have been influenced by the presence of noisy

instances in the dataset, warn Gamberger et al. [31] . Also, the term complexity for

a learning algorithm is a loosely defined term, and is subject to how one perceives

complexity. That is why there is no single and universally agreed upon complexity

measure to our avail. There are several different complexity measures available,

such as Kolmogorov complexity based measure [65] , Minimum Description Length

(MDL) [89] , and Tree size in the case of tree-based algorithms, etc.

Different complexity measures, such as Kolmogorov measure [65] and MDL [89] ,

when used to select the simplest hypothesis, may in fact select different hypothe

sis for the same training dataset, caution Lavrac and Gamberger [62] . Therefore,

choosing the most appropriate complexity measure for a given learning algorithm

can be tricky at times.

The other issue of concern is that applying Occam's razor principle may not

always yield the best predictive
.
accuracy. In the empirical work [86] that threatens

the validity of Occam's razor principle, boosting and bagging techniques (rather

complex techniques) were found to yield better predictive accuracy.

Despite all these, Occam's razor principle is valid, and can be applied, pro

vided certain conditions are fulfilled. Gamberger and Lavrac discuss the conditions

required to be met for the principle's applicability, and present related theorems in

an elaborative manner in [33] .

21

3.2.2 Noise Elimination/Filtering

Many researchers [9, 31 , 42] have explored the noise elimination approach to

improve data quality by identifying and eliminating instances evaluated as being

noisy according to certain criteria before applying the chosen algorithms. This is

a rather direct approach which attempts to improve the quality of the input data

for hypothesis formation so that the noisy instances do not influence the hypothesis

constructed [31] . The concept of removing the instances suspected of being noisy

resembles the approach used in robust regression and outlier detection techniques

in statistics [91] .

Brodley and Friedl [9] have introduced a method for identifying and elim

inating mislabeled instances. It should be noted that although noise in training

examples may be due to erroneous attribute values and erroneous class labels , ma

chine learning algorithms usually treat noisy examples as being mislabeled [32] . This

would mean that the method proposed by Brodley and Friedl [9] is not just appli

cable for removing instances with class noise, but is also applicable for eliminating

instances that have corrupt attribute values.

The technique was inspired by a similar approach employed for removing

outliers in regression analysis [108] . The fundamental concept behind the method

is to use a number of learning algorithms that would filter out the instances likely

to contain noise on the basis of misclassification by majority or consensus. The first

step involves identification of the instances likely to contain noise. All the training

22

examples/instances are classified using m different learning algorithms (called the

filter algorithms) by performing n-fold cross-validation. In the second step, all the

training instances that are misclassified either by the majority or by all of the m

base level classifiers (filter algorithms) are eliminated, and then input to the final

learning algorithm(s) . The results reported in [9] are quite promising, and have

empirically substantiated that filtering can, in fact , improve classification accuracy

for the datasets that suffer from poor-quality data.

It is obvious that the technique is a generalized method for noise removal,

which can be used regardless of the learning algorithm(s) selected for filtering out

noisy instances. The approach is distinct from other previous approaches in that

it assumes that the data errors are independent of the particular model being fit

to the data, and attempts to identify the datapoints that would be outliers in any

model(s) , explain Brodley and Friedl [9] .

While noise elimination / instance selection has been shown to improve the

performance of learning algorithms significantly [9 , 10 , 31 , 32, 102] , one has to be

judicious in removing instances suspected of being noisy to balance the amount of

noise removed from the data set and the amount of data retained for training. When

only meager amount of data is available, this approach may or may not be feasible.

Since our study extends the approach proposed by Brodley and Friedl (9] , the

procedure involved was presented in an elaborate fashion. Various other instance

23

selection / noise elimination techniques have long been used to improve the perfor

mance of different learning algorithms, and instance-based techniques in particular,

a brief survey of which is presented in the subsection that follows. A comprehensive

literature survey can be found in [9] .

3.2.3 Related Work

Wilson [109] used a 3-NN classifier to select instances that were then used to

form a 1-NN classifier; the instances that were misclassified by the 3-NN classifier

were eliminated from the instances that would be used to build the 1-NN classifier.

Extending the same approach, Tomek [103] experimented with several in

creasing values of nearest neighbors as a mechanism for elimination of instances.

Wilson and Martinez [110 , 1 1 1] have incorporated this approach into a suite of

instance selection techniques for exemplar-based learning algorithms.

Aha, Kibler, and Albert [1] showed that if the instances are selected on the

basis of their contribution towards the classification accuracy of an instance-based

classifier, the accuracy of the resulting classifier can be improved.

A comprehensive overview of instance selection techniques for exemplar-based

learning algorithms can be found in [1 11] . Applicability of the instance selection

techniques is not limited to instance-based classifiers. It has also been applied to

other types of classifiers. Winston [1 12] demonstrated the utility of selecting "near

misses" when learning structural descriptions.

24

Skalak and Rissland [95] have proposed an instance selection mechanism that

uses a case-based retrieval algorithm's taxonomy of cases for a decision tree algo

rithm. Lewis and Catlett [64] demonstrated that instances could also be selected

by using an estimate of classification certainty.

Gamberger et al. [31 , 32] have taken a different approach to dealing with

nOise. They have proposed a technique to identify and eliminate noisy examples

from the training set by using a simple compression measure, namely MDL (Min

imal Description Length) . First, all the inconsistent examples from the training

data are removed. Subsequently, the features are transformed into a binary feature

set. An examination is carried out to see which set of examples, when removed,

would reduce the complexity in terms of MDL so that the current set of instances

would be consistent . By eliminating appropriate examples this way, a consistent

and complete hypothesis can then be built from the set of remaining examples by

using a learning algorithm, not necessarily a robust (noise-tolerant) one. Zhu et

al. [117] have introduced a new strategy to identify and eliminate noisy instances on

a partition-based scheme that is particularly useful when dealing with distributed

and/ or large datasets.

To address the problems of inaccuracies in feature measurements , Zhao and

Nishida [116] have adopted fuzzy logic approach to represent and calculate inaccura

cies in the training data. Noise in the attribute values are identified using qualitative

correlations among different attributes. For example, when n-1 out of n symptoms

25

indicate that a patient has a particular disease, then it is quite possible that the

nth symptom was incorrectly measured or entered [9] . Zhao and Nishida's [116]

method dynamically determines fuzzy intervals for inaccurate data, and calls for

domain knowledge to be able to divide the features into sets whose members are

qualitatively dependent.

A study by Marcus and Maletic [69] demonstrates that Association Rule

Mining can be useful in identifying not only interesting patterns in various fields of

interest, but also patterns that uncover errors in the data sets. In their study [69] ,

Marcus and Maletic investigated the use of Ordinal Association rules to identify

potential errors in the dataset with reasonably low computational complexity and

high efficiency.

Guyon et al. [35] have described a method for data cleaning by discovering

meaningless or garbage patterns likely to be noise. In their paper on Data Quality

Mining, Hipp et al. [38] have also explored the use of association rules as a means

to detect , quantify, explain, and correct data quality deficiencies .

3.2.4 Polishing

Teng [100, 101, 102] has explored a different approach, an approach he calls

polishing, in which instead of removing the instances identified as being noisy, cor

rections are made to either one or more features or the class label of the instances

suspected of being noisy. If employed correctly, this approach could approximate a

26

noise-free condition preserving maximal information.

The concept of Polishing, introduced in [100, 101 , 102] , takes advantage of

the fact that different components in a data set may not be totally independent

except in the case of irrelevant attributes. The interdependence between different

components in a data set is the driving factor of the whole process. Conceptually,

this technique of coming up with possible correction values using interdependence

between different components in the dataset sounds very similar to using association

rules.

As Teng describes in [100, 101 , 102] , the basic algorithm for polishing has

two stages, namely, prediction and adjustment. In the prediction phase, attributes

suspected of being corrupted are identified, and appropriate replacement values are

suggested for each of these attributes. The replacement values are obtained by

swapping the role of the target class and the attribute of interest for each of the

attributes in the dataset. When a predicted value of the attribute is different from

its original value in the dataset, the predicted value is a pote:J;ltial correction for that

particular attribute. Adjustment phase consists of selectively correcting values of

the suspected attributes of the identified noisy instances in the dataset . A detailed

description of the procedure can be found in [100] .

This procedure has a distinctive advantage over other noise handling proce

dures in the situations where the size of the dataset is small, making it unfeasible

to toss out the noisy instances from the dataset, or where data recollection is costly

27

or practically impossible. Also, correcting noisy instances rather than eliminating

has been shown to give better results in some cases [20] .

While polishing has its merits in identifying and correcting noisy instances,

it is no silver bullet. One still needs to be wary of the fact that the method comes

with some limitations and certain degree of risk associated with it.

The major detrimental aspect of polishing is that it is applicable to datasets

with nominal attributes only, which would mean that for datasets with real/numeric

attributes, one cannot really correct the noisy instances without having to perform

discretization. As Teng [100, 101 , 102] points out, another limitation of the proce

dure is the time complexity involved. Not only does one need to build significant

number of classifiers (models) with each of the attribute swapped with the respective

class label, but one also needs to run down a potentially very long list of suggested

changes in order to come up with appropriate replacement value(s) for respective

attribute(s) . The amount of time thus consumed may, in many cases, turn out to

be a restricting factor.

In attempts to correct the noisy data, one may unintentionally introduce

further noise, cautions Teng [100] . The task of correcting noisy instances can indeed

be a precarious one. The suggested values from the prediction phase are not full

proof, and can be bizarre because of the unfortunate fact that the process itself is

based on imperfect data. The suggested correction values can contain errors also if

there is a little or no degree of interdependence between different features and class

28

labels as in the case of irrelevant attributes.

In this approach, the adjustment procedure tries to change the attribute

values even when there is noise in the class label and not in the attribute values of

the instance. While the suggested corrections may be appropriate for the noisy class

label, in effect , they serve nothing more than to introduce more noise. This effect ,

according to Teng [100] , becomes prominent in data sets where a small number of

attributes are highly predictive of the class label, as then only a few changes to these

attributes would be enough to fit the altered class value.

There is still some room for improvement in the way Polishing is imple

mented [100, 101 , 102] for data correction. Polishing fails to treat an instance fairly

in the case when both the class label and some of the attribute values of the instance

have corrupted values, because in the current implementation, the attribute values

for a noisy instance are changed first if possible, and if that fails , the class label is

changed appropriately. Teng [100] also points out that a more stringent criterion

needs to be adopted to subject more noisy instances to data correction.

3.3 Our Approach to Noise Handling

There are many similarities between our approach to noise handling and the

approach that Brodley and Friedl [9] have employed. But there are some major

differences too. In essence, one can say that our study leverages the work done by

29

Brodley and Friedl [9] in order to effectively handle the noise. Because of the limita

tions and risks associated with polishing, noise elimination with ensemble classifier

approach was deemed appropriate for our study. Also, the size of the dataset was

not compellingly small to choose polishing over noise elimination.

Similar to [31 , 32] , we first remove inconsistencies from the dataset, i .e. ,

the instances for which we found inconsistent class labels . This was achieved by

clustering the instances according to their feature values, and then removing the

instances for which the class labels were different, but the attribute values were

identical.

Subsequently, an approach similar to the ensemble classifier approach [9] was

used to identify and eliminate possibly noisy instances. Ensemble classifiers combine

the outputs of a set of base-level classifiers [4, 36, 1 14] .

In their ensemble classifier approach towards noise elimination, Brodley and

Friedl [9] have reported results with only three different base-level classifiers, and

Brodley and Utgoff [10] have carried out similar experiments with five different base

level classifiers. In our opinion, the number of base level classifiers can be a key

factor when ensemble classifier approach is used in noise detection and elimination.

Especially, with regards to [9] , one can argue that it is quite possible that two out

of the three different classifiers or even all the three classifiers could misclassify

genuinely noise-free instance(s) . On the same line of argument, we can say that

even the use of five base level classifiers may not be conservative enough.

30

Indeed, it would be naive to form an opinion about a module being noisy by

considering only a small number of classifiers, because the appropriateness (bias) of

the chosen learning algorithm applied to a particular dataset also plays a significant

role . It may well be that the few chosen classifiers don't have appropriate bias to

learn the concepts for a given domain. It is well known in the inductive learning

community that classifiers do not perform consistently well across different domains.

For example, a classifier which performs well in Software Quality Classification do

main may not fare as well in a Medical Diagnosis domain. Experimenting with a

rather large number of classifiers can ensure that we are reducing the probability of

throwing away good data and raising the level of confidence in the identification of

noisy modules.

In our study, we used 25 different base-level classifiers from different cate

gories , such as bayesian, instance-based, rule-based, decision-tree based, pattern

based, and statistical techniques, etc. , for our ensemble classifier approach towards

noise elimination.

Unlike Brodley and Friedl's [9] approach that only considers majority filter

ing and consensus filtering, the former being the least conservative, and the latter

being the most conservative, our study attempts to examine the effects of several

different levels of conservative approach to noise elimination on predictive accuracy

of classifiers. We experimented with four different levels of filtering. In our work, we

decided to eliminate the instances misclassified by 23 or more classifiers (the most

31

conservative approach, i .e. , misclassification by over 90% classifiers) , 20 or more

classifiers (misclassification by over 80% classifiers) , 17 or more classifiers (misclas

sification by over 68% classifiers) , and 13 or more classifiers (the majority filtering

approach - the least conservative one) .

Most importantly, all the empirical work towards noise detection and han

dling we have come across [9, 10, 100, 101, 102] have a flaw in that the quality of

evaluation set is ignored. Without having a noise-free evaluation set , the predictive

accuracies reported for different classifiers with different noise handling techniques

may not be the true indicators of how the noise handling technique(s) fared. It is

certainly not fair to any algorithm or any noise handling technique when the results

are compared in terms of predictive accuracy of a classifier without ensuring that the

evaluation set used was in fact noise free. In order to address this issue, we perform

filtering on the dataset before generating impartial splits for training and evaluation

set. The filtering is performed on the basis of the misclassification by ensemble of

classifiers with cross-validation. Thus, our approach cleans not only the training set

but also the evaluation set. This would give us a better idea of classifiers' predictive

accuracy and efficacy of our noise handling approach than would any other existing

approach.

Other than the factors mentioned above, our approach, theoretically speak

ing, is similar to Brodley and Friedl's [9] approach.

32

3.3.1 Handling Exceptions

Danyluk and Provost [17] note that learning from noisy data is difficult be

cause it is hard to distinguish between instances that are noisy and instances that

are exceptions to the general rule, especially if the noise is systematic. Brodley and

Friedl also indicated in their paper [9] that one has to be cautious not to unknow

ingly remove exceptions from the dataset while trying to eliminate noisy instances.

Several researchers [35, 76, 77, 96] have done work on how to distinguish exceptions

from noise.

While it is indicated that further research is required to address this issue with

ensemble-classifier approach in [9] , we think that our ensemble-classifier approach,

especially the approach with the most conservative level of filtering, does counteract

the problem to a certain degree.

It is true that not all the classifiers can capture the atypicality of the instances

that are exceptions to the general case. However, with our most conservative ap

proach, it is likely that at least three of the twenty five classifiers would have the

appropriate bias that could allow them to correctly classify exceptions or the in

stances that are "hard-to-classify" . This would mean that our most conservative

approach, where all the instances misclassified by 23 or more classifiers are elimi

nated, is the least likely of all the four different levels of filtering approaches to take

exceptions for noise and eliminate those instances inadvertently. However, it should

33

be noted that this study was not particularly aimed at addressing this issue, be

cause from induction point of view, exceptions have the same effect on the induction

process as erroneous examples themselves [62] .

3.3.2 Distinction of Our Approach

To our knowledge, our study is one of the few studies that examine the effect

of a noise handling technique on a real-world data with inherent noise. Many empir

ical studies have been carried out evaluating different noise handling mechanisms on

the datasets in which noise is artificially injected [9, 10, 100, 101 , 102, 1 17] , either

in the class label or in the feature values. One potential problem with this approach

is that a naturally occurring noisy class label may get changed to correct value, or

irrelevant attributes might get their values changed. The effect of amount of noise

handled (corrected/removed) on classification accuracy may not give the right idea

in this situation.

Noise free evaluation dataset is available .because of the way filtering is per

formed in our noise handling procedure.

Number of classifiers is rather large, and different learning algorithms from

different categories have been chosen to form a set of base-level classifiers. This

enables us to use different levels of filtering to eliminate noisy instances, avoids

results from being influenced by inappropriate bias of a few classifiers, and raises

the confidence level in the process of tossing out the instances suspected of being

34

noisy.

3.4 Classification Modeling

We deployed the proposed noise elimination technique on software quality

data, as the domain of interest is Software Quality Classification. Twenty five

different classification techniques1 were used for the purpose of Software Quality

Classification, a proven technique in achieving better software quality control [21 ,

74, 75, 94] .

Typically, a two-group classification, in which software modules are classified

as either fault-prone (fp) or not fault-prone (nfp) , is employed for software quality

classification. In the context of two-group classification, two types of misclassifica

tion can take place - false positive (Type I) and false negative (Type II) . Type I

error occurs when a not fault-prone module is misclassified as fault-prone, and Type

II error occurs when a fault-prone module is misclassified as not fault-prone. All the

different notations used in this study have been tabulated in Table 3 . 1 .

3.4.1 Objective for Classification Models

It is well-known in the Software Quality Engineering community that there

is a significant disparity between the costs of the two types of misclassification. For

software development projects, Type II errors are invariably more severe in terms of

the cost involved. As opposed to extra reviews involved when software modules are

1 Each classification technique is briefly described in Section 3.6.

35

j Symbol
ECM
NECM
fp
nfp
CI
Cn
1rfp
1rnfp
p
0:
CBR
TD
LR
LOC
GP
ANN
LBOOST
RBM
BAG
RSET
MCOST
ABOOST
DTABLE
ADT
SMO
IB1
IBK
PART
ONER
JRIP
RDR
J48
NBAYES
HPIPES
LWLS

Table 3.1: Notations

Description
Expected Cost of Misclassification
Normalized Expected Cost of Misclassification
A fault-prone or high risk module
A not fault-prone or low risk module
Cost of Type I misclassification error
Cost of Type II misclassification error
Prior probability of fp modules
Prior probability of nfp modules
The p-value for hypothesis testing
The significance level for hypothesis testing
Case-Based Reasoning [57, 63]
The Theedisc classification tree algorithm [48]
Logistic Regression [46]
Lines-of-Code
Genetic Programming [3, 59]
Artificial Neural Network [67, 73]
LogitBoost [29]
Rule-Based Modeling [68]
Bagging [7]
Rough Sets [58]
Meta Cost [19]
AdaBoost [27]
Decision Table [55]
Alternating Decision 'frees [26]
Sequential Minimal Optimization [81]
1-Instance Based Learning
k-Instance Based Learning
Partial Decision 'frees [25]
OneR [40]
Repeated Incremental Pruning to Produce Error Reduction Algorithm [13]
Ripple Down Rules [14, 15]
Implementation of C4.5 algorithm [85]
Naive Bayes [24]
Hyper Pipes [80]
LWL Stump [2]

36

misclassified according to Type I, Type II error involves inspection and correction

after the software product becomes operational, which is obviously costlier, and can

also hurt the organization in terms of its reputation and credibility.

While Type II errors (misclassifications) can cost more than Type I errors,

the cost ratio �, ratio of the cost of misclassification of Type II to the cost of

misclassification of Type I, is not constant, and varies depending on the quality

improvement needs of the software development project and also the application

domain and the nature of the system being developed. For example, for mission

critical and high-assurance systems, the cost-ratio r�:) could be as high as 100,

and on the contrary, for non-critical business applications, the cost-ratio (�) could

be as low as 10.

Looking at the vast disparity between the costs of the two types of mis

classification, one might think that building a classification model with the lowest

Type II error would be a very good strategy since it would be able to detect as

many fault-prone (fp) modules as possible. While this strategy is certainly appeal

ing, one cannot just overlook Type I error. In practice, it is observed that as the

Type I error increases, Type II error decreases, and vice versa [46, 48, 49, 50, 52] .

Hence, a classification model with very low Type II error is likely to have Type I

error of a very high magnitude, misclassifying many not fault-prone(nfp) modules as

fault-prone(fp) modules in an attempt to correctly classify as many fault-prone (fp)

modules as possible. This strategy may not be feasible when software development

37

organizations are confronted with limited quality enhancement resources .

A more pragmatic approach, one that is recommended by many software

quality engineers, would be to select a classification model that offers balanced

Type I and Type II errors, with Type II as low as possible. Adopting this strategy

would mean that not only the Type II error rate is reasonably low, which ensures

detection of significantly large number of fault-prone (fp) modules, but also the

Type I error is reasonably low, which keeps the number of ineffective reviews and

testing of the modules predicted to be fault-prone (fp) in check. Taking all these

into consideration, we opted to select this model selection strategy for our case study

with both the software systems (JMl and KC2) .

However, one should be aware that the appropriateness of a model-selection

strategy also depends on the nature of the system being modeled and the amount of

quality enhancement resources at the organization's disposal. If ensuring maximum

software reliability is the prime concern, and there is no constraint on the resources

to be expended for quality improvement, a classification model that offers the lowest

Type II error, irrespective of Type I error, would be of interest. Such a strategy

would be more appropriate for mission-critical software systems.

In summary, the classification modeling objectives for the two case studies

presented in this study were: (1) to select appropriate classification model for each

classification technique, (2) to use the predictions of the classification techniques to

perform noise elimination using the proposed ensemble classifier approach, and (3)

38

to evaluate predictive performance of different classification techniques in terms of

ECM (Expected Cost of Misclassification) values computed for different cost ratios

on the data sets with different levels of noise.

3.4.2 Calibrating Classification Models

Every attempt was made to make the empirical investigation an impartial and

unbiased one. We adopted common model-selection and model-evaluation strategy

for all the twenty five classification techniques used as the base level classifiers in

the noise elimination based on our ensemble-classifier approach.

The software quality modeling process involved building, selecting, and vali

dating classification models for all the twenty five classification techniques on datasets

with different level of noise. The process was carried out in the following steps:

1 . Preprocessing and Formatting Data: Various classification modeling tools,

such as SAS, WEKA, SMART, RBM, etc . , were used to perform the necessary soft

ware quality classification. The input data to each of the tools had to be converted

into the format acceptable by the tool.

2. Building Models: The datasets for both the software systems (JMl and

KC2) were proportionately split (before noise elimination and after noise elimination

at various levels of noise filtering) into two halves to create training (fit) and evalu

ation (test) datasets . 10-fold cross validation was performed on the training dataset

to build classification models with almost all the classification techniques , with a few

39

exceptions2 of resubstitution (in the case of Rule-Based Modeling (RBM) , Treedisc,

Logistic Regression, Lines-of-Code, and GP) and n-fold cross-validation (in the case

of Case Based Reasoning (CBR)) .

For building classification models, various parameters specific to the model-

ing tool/ classification technique and the cost of misclassification were varied. For

example, when building a classification model for J48 (WEKA's implementation of

the famous decision tree algorithm, C4.5) , parameters, such as Pruning Confidence

(C), Minimum number of instances per leaf node(M) , etc. and cost of misclassifica-

tion, were varied to build classification models. The model, which best satisfies our

model-selection strategy, among all the possible choices, was selected to be applied

to evaluation dataset . This procedure is very similar to the generalized classification

rule presented in [47] to classify software modules as either fp or nfp.

It is worth mentioning here that the original unsplit dataset (the dataset

with 8850 modules for JMl and the dataset with 520 modules for KC2 system) was

used to build a classification model each (mostly with 10-fold cross validation, as

mentioned earlier) for all the twenty five classifiers to form the basis for the proposed

noise filtering. A distinctive advantage of performing noise elimination this way is

the availability of evaluation dataset , besides the training set, both with reduced

level of noise, upon splitting the dataset after noise removal.

2 Exceptions had to be made either because of infeasibility of cross-validation for the technique
or because of limitation of the modeling tool used.

40

3. Selecting and Evaluating Models: The classification model selected based

on the quality of fit for each classifier was applied to the evaluation set to assess

the classifier's predictive performance as compared to its counterparts at a given

level of noise filtering. The performance of each classifier was evaluated in terms

of Expected Cost of Misclassification (ECM) , a function of Type I and Type II

errors. Using a singular measure for comparison makes the task of comparing the

performance of twenty five different techniques on the datasets with different levels

of noise much simpler.

3.4.3 Expected Cost of Misclassification

It was observed by our research group [48, 50, 52, 83, 90] that comparing

different classification methods just based on the two misclassification rates is rather

difficult, and that there is a need for a singular measure to make the task relatively

easier.

One may argue that overall misclassification error is a possible alternative

for the use as a singular measure that can facilitate comparison of performance of

different classification techniques. While the argument is certainly valid, it should be

noted that our study addresses software quality classification for two high-assurance

software systems (JMl and KC2) , for which, as we mentioned earlier, there is likely

to be a vast disparity between the costs of the two types of misclassification and also

between the proportions of the two classes (Jp and nfp) . If we were to use overall

41

misclassification as a means to compare the performance of different classification

techniques , it would mean that we would be neither discriminating between the two

types of misclassification nor taking the difference in the class (group) population

into consideration.

This led us to use ECM (Expected Cost of Misclassification) as a unified

singular performance measure to compare the performance of different classification

techniques on datasets with different levels of noise. The ECM measure (Equation

(3 .1)) takes prior probabilities of the two classes and the costs of misclassifications

into account [43] , and hence is considered a practically useful measure for evaluat-

ing the performance of different classification techniques in the context of Software

Quality Classification [53] . Obviously, a preferred classification model is the one

that yields a low Expected Cost of Misclassification.

Practically speaking, in many cases, it may not be possible for an organiza-

tion to quantify the costs of the two types of misclassification. In order to overcome

this problem, Normalized Expected Cost of Misclassification(NECM) , which facil-

itates the use of the cost ratio,%{ , instead of individual misclassification costs by

normalizing the value of ECM with respect to C1 (Equation (3.2)) , is employed.

ECM ��
NECM = 0 = Pr(fplnfp)1rnfp

+ C1
Pr(nfplfp) 1rJp

42

(3. 1)

(3.2)

The prior probabilities of the fp and nfp classes are given by, 1r fp and 1r nfp

respectively. Pr(fp jnjp) is the proportion of the nfp modules incorrectly classified

as fp, and conversely, Pr(njpjjp) is the proportion of the fp modules incorrectly

classified as nfp. The prior probabilities , i .e . , 1rJp and 1rnfp , are estimated as the

respective proportions in the given data set. We compared the performance of

different classification techniques in terms of ECM 3 at different cost ratios, i.e. , by

varying %;- in Equation (3.2) .

In practice, the actual costs of misclassifications are unknown at the time of

modeling. In order to make the empirical investigation more realistic and applicable,

we explored a range of values (10, 20, 30, and 50) for the cost ratio %;- to compute

the ECM. Evaluating models across a range of cost ratios can also shed some light

on the sensitivity (robustness) of a classification model with respect to the possible

costs and effort values.

There is a noticeable difference between the model-selection and the model-

evaluation approach we have adopted. In the model selection, we strive to achieve a

preferred balance between the Type I and Type II errors (Type I and Type II errors

as balanced as possible, with the lowest Type II) , whereas the model evaluation

approach is based on ECM. Looking at the practical usefulness of the ECM measure,

one may wonder why it was not selected as the basis for model selection strategy.

3 In this study, the notation ECM refers to the normalized expected cost of misclassification
(NECM) , and the two are used interchangeably.

43

One of the main reasons is the fact that it is very difficult to estimate the actual

cost ratio %{ at the time of modeling. Also, if the practical quality improvement

objectives (See Section 3.4. 1) are taken into account , it is not difficult to realize why

the use of ECM as the basis for model selection may not be such a good idea even

though it is a very good practical performance evaluation measure. For example, for

a cost ratio of 100 (empirical upper bound for software systems) , if a classification

model demonstrates a very low Type II error rate and a high Type I error rate, its

ECM value is likely to be very low, leading to conclusion that it be selected as the

preferred model. However, as explained in Section 3.4. 1 , this may not be feasible

when software organizations encounter the problem of limited resources for software

quality improvement, which is often the case.

While our model-selection and model-evaluation approaches have been well

justified, the reader should be aware of the underlying assumption that a model,

having been selected according to the preferred balance criterion, would most likely

(but not necessarily) generate balanced misclassification rates, when evaluated with

the test dataset . Having a low value of ECM does not necessarily mean the misclas

sification error rates are balanced. However, tracking the stability and robustness

of model performance (across training and evaluation sets) is out of scope for this

study, and can be addressed in future work.

44

3.4.4 Two-way ANOVA: Randomized Complete Block Design

Analysis of Variance, commonly known as ANOVA, is a popular statistical

technique for examining whether three or more independent groups or populations

are significantly different from one another. We performed Two-way ANOVA : Ran

domized Complete Block Design to compare the performance of twenty five different

classifiers on datasets with different levels of noise for two different software systems

(JMl and KC2) to observe if the different classification techniques and the different

levels of noise filtering were significantly different from their respective counterparts.

Two-Way AN OVA: Randomized Complete Block Design modeling approach [5 ,

71] involves classifying n heterogeneous subjects into r homogeneous groups, called

blocks so that c subjects in each block can then be randomly assigned, one each, to

the c levels of the factor of interest prior to the performance of a two-tailed F test,

to determine the existence of significant treatment effects (Note that n = rc) .

The primary reason to select this experimental design, one that separates

subject variability from variability within data, is to reduce experimental error as

much as possible. The observed data for each dataset with a specific level of noise

filtering constitutes a replication. Since for each such dataset, the observed data is

not affected by the level of noise filtering, blocking by dataset with specific level of

noise filtering will make the experiment more powerful by reducing the experimental

error variability [5] .

NECM (Normalized Expected Cost of Misclassification) , computed for each

45

classification technique applied to the datasets with different levels of noise filtering,

was employed as the response variable in our experimental design. It is worth noting

here that there are certain implicit assumptions, such as normality of the data and

randomness of the variable, etc. , that come with ANOVA, and that we did not

observe significant deviations from these assumptions in our empirical investigation.

Experimental design models were built using the NECM values computed for

the four different cost ratios (%;-) : 10, 20, 30, and 50. Two-Way ANOVA models

for our comparative study involved 25 factor treatments (twenty five classification

methods) , and 5 blocks (one block for the original noisy dataset, and the other four

blocks for the datasets with noise filtering by agreement of 13 or more, 17 or more,

20 or more, and 23 or more classification techniques) for JM1 system and 4 blocks

(one block for the original noisy KC2 dataset , and the other three blocks for the

datasets with noise filtering by agreement of 13 or more, 17 or more, and 23 or more

classification techniques) for KC2 system.

To develop the ANOVA procedure for a randomized complete block design,

Yij , the observation in the ith block of B (i = 1 , 2, . . . , b) under the /h level of factor

A (j = 1 , 2, . . . , a) , can be represented by the model,

(3.3)

where,

1-l = overall effect or mean common to all observations.

46

Aj = f.-t·j - J.-t, a treatment effect peculiar to the ;th level of factor A (classification

technique) .

Bi = f.-ti· - p.,, a block effect (dataset with a specific level of filtering) peculiar to the

ith block of B.

Eij = random variation or experimental error associated with the observation in the

ith block of B under the ;th level of factor A.

f.-t-J = true mean for the jth level of factor A.

1-li· = true mean for the ith block of B.

Yij is NECM value in the context of this study.

The two-way ANOVA block design results for the twenty five classification

techniques are presented in the Section 4.5 .

3.4.5 Multiple Pairwise Comparisons

When comparing more than two means, an AN OVA F-Test is useful to de

termine if the population means are significantly different from each other or not;

however, it does not indicate which means differ from which of the other means.

Multiple comparison methods are useful in obtaining detailed information about the

differences among the various population means. A variety of multiple comparison

methods are available, such as Fisher's least-significant-difference test, Thkey's test,

Scheffe's test , Bonferroni's test , and Waller-Duncan k-ratio t-test [5 , 41, 93, 104] .

In our comparative study, we employed the Thkey's multiple comparison

47

test [37, 41, 60] , in which the two means are declared significantly different by the

Thkey-Kramer criterion if

(3.4)

where Y.i and Yj are the means of group i and group j respectively, ni and nj

are the number of observations in the two groups, s is the root mean square error

based on n - c degrees of freedom, p is the significance level, and q(p; c, n - c) is the

p-level critical value of a studentized range distribution with c and n - c degrees of

freedom. For equal group sizes, Tukey's method rejects the null hypothesis of equal

population means if

3.5 Z-Test Comparison of Two Proportions

(3.5)

The following approximate testing procedure was used for statistically com-

paring two proportions [115] . Using this procedure, we compared two proportions

of the instances identified as noisy with two different noise filtering approaches . The

results are reported in Section 4. 7.

Let ih = Xdn1 and p2 = X2/n2 be the two proportions, where Xi is a count

for a sample of size ni . If we want to test the hypothesis H0 : p1 = p2 , with alternate

hypothesis H A : Pt > P2 then

(3.6)

48

When n1 = n2 , as in our case, then we get the following reductions:

z = P1 - P2

M
(3 .7)

where n is the common sample size, and p = PI �b .

Assuming normal distributions for fh and fj2 , we determine the proportion of

the normal curve which is greater than or equal to the computed value of Z. This

proportion is the level of significance. It is most easily found in a table of proportions

of the normal curve (one-tailed) by looking up the proportion corresponding to the

z-value. If the level of significance is less than a specified limit (usually 5%) , the

null hypothesis is rejected.

3.6 Software Quality Classification Techniques

This section presents a brief description of the classification techniques used

as base-level classifiers to construct the ensemble classifier for filtering out noisy

instances. The aim of this section is to give a brief overview of the classification

techniques involved, and not (due to lack of space) to present an extensive algorith-

mic detail. Our research group has performed extensive empirical research in the

area of Software Quality Classification modeling using all of the methods discussed

herein.

49

3.6.1 Case-Based Reasoning

Case-Based Reasoning (CBR) [57 , 63] is a technique that aims to find solu-

tions to new problems, based on past experiences, which are represented by "cases"

in a "case library". The case library and the associated retrieval and decision rules

constitute a CBR model. In the context of a classification problem, each case in the

case library has known attributes and class membership. The working hypothesis

of CBR is that an instance under examination has probably the same class label as

the instance(s) with similar features or attributes.

A CBR system can take advantage of availability of new or revised informa

tion by adding new cases or removing obsolete cases from the case library. Its good

scalability provides fast retrieval even as the size of the case library scales up . CBR

systems can be designed to alert users when a new case is outside the bounds of

current experience.

3.6.2 TREEDISC

TREEDISC is a SAS macro implementation of modified CHAID algorithm [45] .

It constructs a decision tree to predict a specified categorical dependent variable

from one or more predictor (independent) variables . The decision tree is computed

by recursively partitioning the data set into two or more subsets of observations,

based on the categories of one of the predictor variables until some stopping criterion

is met. The variable that is most significantly associated with the dependent variable

50

according to a chi-squared test of independence in contingency table is selected to

be the predictor variable.

Decision tree-based models are built by varying model parameters in order to

achieve the preferred balance between the misclassification error rates, and to avoid

overfitting of classification trees [54] .

3.6.3 Logistic Regression

Logistic Regression is a statistical modeling technique that offers good model

interpretation. Independent variables in logistic regression may be categorical, dis

crete, or continuous. However, the categorical variables need to be encoded (e.g. , 0 ,

1) to facilitate classification modeling.

Let x j be the lh independent variable, and let xi be the vector of the ith

instance's independent variable values. In the context of two-group classification,

an instance belonging to one of the two classes can be designated as an 'event' . Let q

be the probability of the event, and thus � is the odds of the event. The Logistic

Regression model has the form,

(3.8)

where, log means the natural logarithm, /3j is the regression coefficient associated

with independent variable Xj , and rn is the number of independent variables .

51

Given a list of candidate independent variables and a significance level, a: ,

some of the estimated coefficients may not be significantly different from zero. Such

variables should not be included in the final model.

3.6.4 Lines-Of-Code

Lines-of-code is one of the most important measures that can represent the

complexity of software program modules. The classifier based on lines-of-code works

on the hypothesis that the larger the number of lines of code for a software pro

gram module, the more complex the software program module, and the greater the

chance that program module is fault-prone(fp) . The procedure involved in the clas

sifier based on lines of code is as follows: 1) sort the modules in the ascending order

of the metric, LOC (lines-of-code) . 2) For a given threshold value thdtoc , calculate

the two misclassification error (Type I and Type II) rates. In our study, all the

modules with LOC less than thdtoc are predicted as nfp, fp otherwise. 3) Empiri

cally determine the final threshold value thdtoc that satisfies desired model selection

strategy. We adopted the strategy of selecting a model with the most balanced rates

of misclassification of both types.

3.6.5 Genetic Programming

Genetic Programming (G P) is a domain in the field of machine learning sys

tems [59] . A unique advantage of GP is that a solution evolves automatically from

the training data set. The evolution process in GP imitates the Darwinian principle

52

of survival and reproduction of the fittest individuals. Each individual in GP is an

S-expression composed of functions and terminals provided by the problem. A fit

ness value of an individual (or model in our case) indicates its quality with respect

to the problem domain. Hence, it gives a probability of who can be selected for

mating and reproducing for the next generation. We direct the reader to [3] for the

basics of GP.

Use of appropriate fitness functions is an important part of the algorithm.

Weighted average cost of misclassification can be used as a fitness function. Since

GP is a multi-objective optimization algorithm, tree size is often used as one of the

fitness functions, but is not a primary one.

3.6.6 Artificial Neural Networks

Artificial neural networks (ANN) are systems that are deliberately constructed

to make use of some organizational principles resembling those of the human brain.

According to methods of learning rules, ANN can be classified mainly into two cat

egories: supervised-learning networks and unsupervised-learning networks [66] .

Backpropagation [92] is the most popular training algorithm for multilayer

neural networks. The algorithm initializes the network with a random set of weights

and basis, and the network trains from a set of input-output pairs. The batch training

algorithm computes the weight update for each input sample, and stores these values

(without changing the weights) during a pass through the training set (epoch) . At

53

the end of each epoch, all the weight updates are added together, and only then

will the weights be updated with the composite value. We confined our study to

feedforward supervised-learning neural networks, in particular backpropagated [67,

73] neural networks.

3.6. 7 Rule-Based Modeling

Rule-based modeling (RBM) was proposed by our research team [68] for use

in the software quality classification domain. In the context of RBM, if m is the

number of independent variables, there are 2m rules. Each rule is a Boolean function

consisting of one or more Boolean AND operators, the independent variables' values

Xij , and their critical values Cj . Based on its critical value, each independent variable

(Xij) can have two possible values, Xij ::::; Cj and Xij > Cj (0 or 1) . Consequently, each

rule has a distinct index, representing one of the unique 2m possible combinations.

The instances in the training data set are assigned to the rules . The subsequent

work is to classify the rules based on the pre-defined model selection strategy and

finally determine the class of instances in the test data set.

3.6.8 Rough Sets

Based on the classical set theory, rough sets were introduced in 1982 by

Pawlak [58] . Using the concept of equivalence relations, partitions of a set of ob

jects can be formed, subsets of significant attributes identified, and decision rules

extracted, all based on the attribute values of the objects. Rough set theory can

54

be used to analyze the dependency relationship between the independent variables

and the dependent variable to determine whether the dependent attribute can be

characterized by the values of the independent attributes.

In practice, it is often the case that not all the independent variables are

equally significant indicator /predictor of the dependent variable (class label in the

context of classification) . Hence, selecting proper attributes for prediction/classification

is imperative for a technique to be successful. Rough set theory can be used to iden

tify subsets of attributes, called 'reducts' , that have the same discrimination power

as a complete set of attributes. Once the reducts are identified, a set of decision rules

are obtained to perform classification. When the domain values of an attribute are

continuous and relatively large, rough set theory requires that they be discretized.

3.6.9 Combining Classification Technique

Analogous to how people make decisions by consulting with a panel of ex

perts, we can combine multiple classifiers (experts) to achieve a combined classifi

cation [1 13] . The combined classifier may significantly enhance the accuracy of the

individual classifier. We will present Bagging [7] , followed by Boosting [27] , Logit

Boost [29] , and MetaCost [19] . Detailed information about the techniques may be

found in the references above and in [51] .

55

3.6.9.1 Bagging

The simplest way to combine classifiers is to randomly re-sample from the

original training data set, build a classifier for each re-sampled dataset, and use the

prediction of each classifier in a simple vote to obtain the combined decision on the

test data. This technique is known as Bagging. The re-sampling is performed with

replacement: an instance may be re-sampled more than once, others may not be

re-sampled. The re-sampled data sets usually have the same size as the original

training data set. The combined decision or final hypothesis for classification (a

class) is obtained using an unweighed vote.

The classifier used for the combined decision is referred to as the weak learner.

One requirement for the weak learner is to be unstable [7, 1 13] . The instability of the

weak learner ensures that small changes in the training data will yield significantly

different models. There is no point in combining very similar learners since they

will provide very similar outcomes. Decision trees and neural networks are typical

unstable learners [8] . One may also notice that all the learners are generated inde

pendently from each other. Thus, Bagging is an algorithm that is easy to implement

on parallelized architectures [7] . Comprehensive description of the algorithm can be

found in [34] .

56

3.6.9.2 Boosting

Boosting [28] exploits the instability of weak learners in a way very similar

to Bagging. However, while Bagging generates the classifiers independently of each

other, the Boosting algorithm seeks classifiers that complement each other, rather

than generating them randomly [113] . The main difference between Boosting and

Bagging is that while Bagging was obtained by generating independent samples,

Boosting is an iterative method (each model is generated based on previous results) .

The idea in Boosting is to favor classifiers that perform better on instances that

were previously misclassified. Each classifier is thus influenced by the performance

of the previous classifiers. In addition, while Bagging uses an unweighed vote to

generate the final hypothesis, Boosting weighs each classifier's contribution in the

combined decision based on its performance. Thus, the best classifiers are given

more importance in the combined decision.

In Boosting, the weight updating is straightforward: the weight of correctly

classified instances is decreased while the weight of misclassified instances is in

creased. The next classifier will then focus on the hard to classify correctly in

stances: those with high weights. Thus, each instance's weight holds the history of

all the previous classification (correct , incorrect) . The complete Boosting algorithm

(AdaBoost) presented by Freund and Schapire [27] was used as one of the classifiers

in this study.

57

3.6.9.3 LogitBoost

LogitBoost is a re-derivation of AdaBoost as a method for fitting an additive

model in a forward stagewise manner [29] . The idea here is to fit an additive model

by minimizing the squared error loss in a forward stagewise manner. In LogitBoost,

Boosting is viewed as an approximation of additive modeling on a logistic scale

using the maximum Bernoulli likelihood as a criterion [29] . The result is an additive

logistic model composed of functions that represent the weak hypotheses.

The additive symmetric logistic model is fitted in a forward stagewise manner

using Newton steps [29] . Variables are included sequentially in a stepwise regression,

and the coefficients of variables already included in the model remain constant . The

likelihood values are based on estimates of class probabilities. A model is fitted with

observation weights to produce a new weak hypothesis . The complete description

of LogitBoost is given in [29] .

3.6.9.4 MetaCost

MetaCost is a cost-sensitive meta learning method. This method treats the

underlying classifier as a black box, requiring no knowledge of its functioning or

change to it . MetaCost is based on wrapping a "meta-learning" stage around the

error-based classifier in such a way that the classifier effectively minimizes cost while

seeking to minimize error rates.

MetaCost uses a variant of Breiman's [7] bagging as the ensemble method.

58

MetaCost differs from bagging in that the number of examples (modules/instances)

in each resample may be smaller than the training size (in the bagging procedure,

the number of the examples in each resample is the same as that of the original

training data set) . This allows it to be more efficient . If the classifier being used

produces class probabilities, a class' vote is estimated as the unweighted average of

its probabilities, given the models and the example. Also, when estimating class

probability for a given training example x, MetaCost always takes all the models

generated into consideration or only those that were learned on resamples the exam

ple was not included in. The first type of estimate is likely to have lower variance,

because it is based on a large number of samples, while the second is likely to have

lower statistical bias, because it is not influenced by the example's own class in the

training set.

The working procedure of MetaCost can be simply expressed as follows: 1)

yielding multiple bootstrap replicates of the training data set, and learning a classi

fier on each replicate; 2) estimating each class' probability for each example by the

fraction of votes that it receives from the ensemble; 3) using the expected cost of

misclassification to relabel each training example with the estimated optimal class;

4) reapplying the classifier to the relabelled training data set. Readers may refer

to [19] for more details on the MetaCost algorithm.

59

3.6.10 Decision Table

Decision Table is one the simplest methods for learning from input data. The

concepts/rules learnt from the input data have the same form as input - the form

of a decision table, a list of rules in a table format. The problem of constructing a

decision table involves selection of appropriate attributes for inclusion, and getting

rid of irrelevant attributes . When determining a class for a test instance, all one has

to do is to look up the appropriate conditions in the list of the rules - the decision

table.

Because they permit one to display succinctly the conditions that must be

satisfied before prescribed actions are to be performed, decision tables are becom

ing popular in computer programming and system design as devices for organizing

logic [88] .

Decision tables are attractive because of their simplicity, and because they

are very easy to understand, when concise in size. Decision tables are also appeal

ing in real-time environment, since they provide a constant classification time on

average [55] .

3.6.11 Alternating Decision Tree

Alternating Decision Trees (ADTrees) resemble the option trees described by

Buntine in [11] and further developed by Kohavi et al. in [56] . ADTree algorithm, a

60

relatively new machine learning technique proposed by Freund and Mason [26] , com

bines the power of boosting and decision trees in a very simple manner generalizing

decision trees, voted decision trees, and voted decision stumps. Since, ADTree has

alternating layers of decision nodes and prediction nodes in its tree structure, it is

called Alternating Decision Tree. Freund and Mason [26] have shown that ADTree

is able to achieve classification accuracy comparable to boosted decision tree algo

rithms or algorithms that combine boosting in their implementation, keeping the

generated rules much smaller and easily interpretable.

3.6.12 SMO

Sequential Minimal Optimization (SMO), proposed by Platt [81] , is a con

ceptually simple, but subtle algorithm for training support vector machines, which

involves solving a very large quadratic programming (QP) optimization problem,

using Osuna's theorem to ensure convergence. The problem is resolved by divide

and conquer approach in that the large QP problem is divided into smaller pieces

of QP problems (subproblems)which are then solved analytically in steps instead of

the traditional time-consuming way of numerical QP optimization. SMO, with its

novel approach of QP optimization, reduces time complexity dramatically, and can

be, in many cases, more than 1000 times faster than its traditional counterpart, the

PCG (Projected Conjugate Gradient) Chunking algorithm, reports Platt [82] . SMO

holds its appeal also because of its scalability. It is capable to handle large training

61

dataset, since the memory requirements of SMO is linearly dependent on the size of

training dataset .

3.6.13 IB1

Instance-based learning is a popular classification scheme. The working hy

pothesis of the technique is that the instance under examination (test case) would

belong to the same class as that of other similar instances. Different instance-based

learning algorithms vary in the context of the selected number of nearest neighbors,

measures used to compute similarity between instances, and the solution algorithm

for predicting the class of a test instance, etc.

IBl , WEKA's implementation of 1 instance-based classifier, uses only one

nearest neighbor to predict the class of a test instance. The similarity measure used

is Euclidean distance. Despite its simplicity, it can achieve reasonable classification

accuracy. Cover and Hart [16] demonstrated that INN (1-instance- based) classifier

performs as well as Bayesian classifiers do.

3.6.14 IBk

IBk is WEKA's implementation of an instance-based learning technique with

k nearest neighbors. Selecting only one nearest neighbor to predict the class of a

test instance, especially in the presence of noise, may lead to increased inaccuracy

[113] . Selecting more than one nearest neighbor is a much more realistic approach

that is less easily influenced by noisy exemplars. In IBk, the class of the test case

62

is predicted by majority voting of the k nearest neighbors . Like IBl , the similarity

measure used to determine the nearest neighbors is Euclidean distance. But unlike

IBl , when using IBk, the attributes need to be normalized.

As the number of nearest neighbors increases, the associated computation

time, of course, increases. The computation time increases linearly also with the

increase in the training set size. Indeed, IBk can be computationally expensive at

times. But , incremental training and testing could be employed to overcome this

issue.

3.6.15 PART

PART is a simple, yet surprisingly effective, method for learning decision

lists based on the repeated generation of partial decision trees in a separate-and

conquer manner [25] . PART, unlike the two dominant practical implementations

of rule learners, C4.5 [85] and Ripper [13] , avoids the time consuming phase of

postprocessing for global optimization.

PART employs the separate-and-conquer strategy in that it builds a rule,

removes the instances covered by the rule, and continues creating rules recursively

for the remaining instances until none are left [25] . It may sound silly to repeatedly

build a decision tree just to create one rule and then to discard it . But the process

has certain advantages which should not be overlooked. Besides its simplicity, PART

63

offers protection against overpruning because of the way it combines the separate

and-conquer approach with the decision trees, adding flexibility and speed to the

process. Despite its simplicity, PART produces rule sets that are at least as accurate

as those generated by its counterparts, i .e . C4.5 and RIPPER. [25] .

3.6.16 OneR

OneR algorithm, introduced by Holte [40] , is one of the simplest algorithms

available in machine learning. Despite its simplicity, it compares favorably to many

of the state-of-the-art machine learning techniques. It chooses the most informative

single attribute, and bases the rule on this attribute alone. In practice, simple

rules often achieve surprisingly high accuracy, which could be attributed to the

rudimentary underlying structure of many real-world datasets.

The fundamental concept of the algorithm is succinctly presented in [72] :

For each attribute a, a rule is generated as follows: For each value v from

the domain of a, select the set of instances where a has value v. Let c be the most

frequent class in that set. Add the following clause to the rule for a: if a has value v

then the class is c. Calculate the classification accuracy of this rule. The rule with

the highest classification accuracy is used.

The algorithm requires attributes to be discrete, and can handle missing

values.

64

3.6.17 JRip

JRip is WEKA's implementation of the rule-based learning algorithm, RIP

PER (Repeated Incremental Pruning to Produce Error Reduction) - a modification

of the IREP (Incremental Reduced Error Pruning) . RIPPER was proposed by Co

hen [13] , and was shown to compare favorably with C4.5 . Both RIPPER and C4.5

rules start with an initial model and iteratively improve it using heuristic techniques.

However, for large noisy datasets, the former generally seems to start with an initial

model that is about the right size, while the latter starts with an extremely large

initial model. This means that RIPPER is more search-efficient.

Based on the empirical work done with IREP, Cohen [13] proposed RIPPER,

suggesting three modifications to the IREP algorithm. In order to overcome the

occasional failure of IREP to converge, a different and more intuitive metric to

evaluate the rules during pruning phase was introduced. In view of !REP's undue

sensitivity to the "small disjunct problems" [39] , total description length criterion

was proposed to replace the error rate as a stopping criterion while building the

ruleset . Finally, a postpass that optimizes a rule set in an attempt to more closely

approximate conventional reduced error pruning was introduced.

65

3.6.18 Ridor

The ripple-down rule(RIDOR) technique was introduced by Compton and

Jansen as a methodology for acquisition and maintenance of large rule-based sys-

terns [14, 1 5] .

The basic idea behind the technique is to make incremental changes while

constructing and maintaining a complex knowledge structure in a well-defined and

restricted manner such that the effects of the changes do not propagate globally, and

are well confined in the structure, unlike standard production rules. In RIDOR, rule

activation is considered only in the context of other rule activation [30] . The rules

thus formed can be viewed as a binary decision tree with a compound clause at each

decision node. Unlike a standard decision tree, the rule at each decision node does

not necessarily cover all the instances - a decision can be reached at an internal node.

However, similar to a standard decision tree, only one decision node is activated for

an instance, which makes maintaining the ruleset easier [30] .

3.6.19 J48

J48 is the implementation of C4.5 , the landmark Decision Tree algorithm

introduced by Quinlan [85] . The C4.5 algorithm is an inductive supervised learning

system which employs decision trees to represent the underlying structure of the

input data. The algorithm is comprised of four principal components: decision tree

generator, production rule generator, decision tree interpreter, and production rule

66

interpreter, for constructing and evaluating the classification tree models.

The C4.5 algorithm requires certain pre-processing of data in order for it

to build decision tree models. Some of these include attribute value description

type, predefined discrete classes, and sufficient number of observations for supervised

learning.

The classification tree is initially empty, and the algorithm begins adding

decision and leaf nodes, starting with the root node. At each decision node, the

decision is based on only one attribute, which makes the tree easier to understand.

C4.5 algorithm, much like its counterpart CART, builds a complete tree, and then

prunes it to avoid overfitting, which may seem wasteful. But the act of fully explor

ing the decision tree and then pruning it is worth the extra computation effort for

the improved accuracy.

3.6.20 NaiveBayes

Naive Bayes is one of the most simplistic techniques available for classifi

cation. This simple and intuitive method, based on Bayesian rule of conditional

probability, "naively" assumes that attributes are independent of each other given

the class, which may not be completely true in the real world.

Despite the over-simplification of the actual relationship between the at

tributes, Naive Bayes has been shown to perform fairly well, especially when used

along with feature selection techniques that remove irrelevant attributes [24] . It is

67

important to discard irrelevant and redundant attributes to ensure that the algo

rithm performs to its capability. It can handle missing values without any problem.

3.6.21 Hyperpipes

Hyperpipes also belongs to the category of the simplest classification tech

niques. As described in [80] , for each class label, a hyperpipe that would contain all

the instances having the same class label is constructed. For each hyperpipe, the

attribute bounds are observed and recorded from the instances it contains. When

classifying a test instance, the class label associated with the hyperpipe that most

contains the test instance is assigned.

Hyperpipes is an extremely simple algorithm, but has the advantage of being

extremely fast, and works quite well in presence of many attributes . It cannot handle

missing values in the test cases.

3.6.22 LWLStump

Locally Weighted Learning (LWL) is a non-adaptive lazy-learning technique

that is gaining popularity in the machine learning community. Atkeson et al. have

surveyed locally weighted learning in [2] . Local weighting reduces unnecessary bias of

global function fitting, and gives more flexibility, retaining the desirable properties

such as smoothness, and statistical analyzability [2] . LWL uses locally-weighted

training to combine training data, using a distance function to fit a surface to

68

nearby points. It must be used in conjunction with another classifier to perform

classification, e.g. Decision Stump in the case of LWLStump.

There are mainly three different requirements for Locally Weighted Learn

ing [2] : Distance function, Separable criterion, and Sufficient data. There is a need

for a measure of relevance for learning with Local weighting. The more commonly

used measure of relevance is the distance metric. Additive separability criterion is

typically used so that the training criterion is not a general function of the predic

tions of the training instances. LWL also calls for sufficiency of the data, which, of

course, is subjective, and depends on the nature of the problem domain.

69

Chapter 4

EXPERIMENTS

The focus of this chapter is to describe the experiments conducted and the

results obtained during our empirical investigation.

4.1 System Description

For the case studies reported in this study, we used data from two NASA

projects, namely JMl and KC2, written in C++, which are available from the Met

rics Data Program(MDP) website 4 . This website provides access to the data repos

itory containing software metrics and associated error data at the function/method

level. The data repository stores and organizes the data which has been collected

and validated by the Metrics Data Program. This data has been made available

through this website with the approval of the project(s) which have worked in co

operation with the Metrics Data Program.

The two data sets are denoted by JMl and KC2, the former being the larger

(10, 883 modules) and the latter being the smaller(520 modules) of the two. Even

4 http:/ jmdp.ivv.nasa.gov

70

though KC2 actually contained more than 3, 000 modules, for our study, we con

sidered only 520 modules - the modules which were developed by NASA software

developers, and were not COTS software.

Of the 10, 883 modules in JM1 dataset, 2, 105 modules had errors, ranging

from 1 to 26. The remaining 8, 778 modules were error-free. After removing in

consistent instances (the instances with identical independent variables, but with

different class labels) and the instances with missing values, size of the JM1 dataset

reduced from 10, 883 instances to 8, 850 instances. Out of the 8, 850 modules in the

JM1 dataset, the dataset denoted by JMJ-8850 in Table 4 . 1 , 1 , 687 modules had

one or more defects, whereas the remaining 7, 163 modules did not have any defects.

While it was observed that there were some inconsistent instances among the

520 instances in the KC2 dataset denoted by KC2-520 in Table 4. 1 , we decided

not to toss them out, for the dataset size was rather small, and we wanted to

explore whether these inconsistent examples get filtered out by our noise elimination

approach, which was later confirmed to be true. It was found that all the inconsistent

examples for the KC2 system were misclassified by all the twenty five classification

techniques , and hence were filtered out by the noise elimination process. Of the 520

modules in the KC2-520 dataset, 106 had errors ranging from 1 to 13; while the

remaining 414 were error-free.

71

Table 4.1: Dataset Details for JMl and KC2 Systems

nfp modules fp modules Total
Dataset Count Proportion Count Proportion Count

JM1-8850 7163 80.94% 1687 19 .06% 8850
JM1-4425-Fit 3581 80.93% 844 19 .07% 4425
JM1-4425-Test 3582 80.95% 843 19 .05% 4425
JM1-23C-Fit 3143 80.67% 753 19 .33% 3896
JM1-23C-Test 3143 80.69% 752 19.31% 3895
JM1-20C-Fit 2862 80.44% 696 19 .56% 3558
JM1-20C-Test 2861 80.43% 696 19 .57% 3557
JM1-17C-Fit 2670 80.52% 646 19.48% 3316
JM1-17C-Test 2670 80.52% 646 19.48% 3316
JM1-13C-Fit 2431 80.84% 576 19 . 16% 3007
JM1-13C-Test 2430 80.84% 576 19 . 16% 3006

KC2-520 414 79.62% 106 20.38% 520
KC2-260-Fit 207 79.62% 53 20.38% 260
K C2-260-Test 207 79.62% 53 20.38% 260
KC2-23C-Fit 181 79.04% 48 20.96% 229
K C2-23C-Test 182 79.48% 47 20.52% 229
KC2-17C-Fit 173 79.72% 44 20.28% 217
KC2-17C-Test 172 79.63% 44 20.37% 216
KC2-13C-Fit 166 79.43% 43 20.57% 209
KC2-13C-Test 166 79.43% 43 20.57% 209

4.2 Noise Elimination

We performed noise elimination using the proposed ensemble-classifier ap-

proach for both the software systems (JMl and KC2) . The filtering was based

on the performance of twenty five different classification techniques on the JMl-

8850 and KC2-520 datasets for the JMl and KC2 systems respectively. For most

classification techniques, the predictions on which the filtering was based were ob-

tained using 10-fold cross-validation, with a few exceptions as mentioned in the

Section 3.4 .2 .

72

Experimenting with as many as twenty five classifiers enabled us to explore

several levels of filtering. For the JMl system, we decided to have four different

levels of filtering denoted by 13C, 17C, 20C, and 23C, with 13C being the least

conservative and 23C being the most conservative amongst the four. Noise filtering

at 13C level, a noise filtering level where all the instances misclassified by 13 or more

classification techniques have been eliminated, is analogous to majority filtering since

we are using twenty five classification techniques.

We strived to follow the same filtering approach for the KC2 system. How

ever, since the number of modules to be eliminated at the 20C level was not signifi

cantly less than that at the 23C level, we decided to skip the 20C level for the KC2

system. Hence, in the case of the KC2 system, the noise elimination was performed

at three different levels: 13C, 17C, and 23C. The notations, however, hold the same

meaning for the KC2 system as well.

We did not perform consensus filtering (25C in our case) , for it appeared

to be too stringent a criterion for noise elimination with twenty five classification

techniques.

Having performed the noise elimination, each dataset was proportionately

split into two halves: fit and test sets. The notations used for each dataset and

distribution of fault-prone and not fault-prone modules in each dataset is summa

rized in Table 4. 1 . Most of the notations are self explanatory, with each one having

prefix for the respective software system. For example, JMl-8850 stands for the

73

original dataset (with 8850 modules) used for noise elimination; JMl-4425-Fit and

JMl-4425-Test are the training and the evaluation dataset splits respectively gen

erated before noise elimination; and JM1-23C-Fit and JM1-23C-Test stand for the

fit and test dataset splits respectively generated after noise elimination at the 23C

level. The same also follows for the KC2 system.

It was surprising to note that the distribution of fp and nfp modules in the

datasets remains almost the same after the noise elimination process at different

levels of filtering, for both the systems (JMl and KC2) .

Table 4.2 displays the quality-of-fit in terms of misclassification error statis

tics for all the twenty five classification techniques on the datasets (JMl - 8850

and KC2 - 520) used for noise elimination for the software systems JMl and KC2

respectively. The relatively higher magnitude of the misclassification errors indicate

that the datasets are likely to be noisy, which is confirmed by the improvement in

classification accuracy with increasing level of noise filtering (going from the most

conservative level-23C to the least conservative level-13C) . One obvious observation

from Table 4.2 is that while the misclassification errors are still high for the KC2

dataset, they are not as high as those for the JMl dataset , which may be the indi

cation that relatively less amount of noise is present in the KC2 dataset than in the

JMl dataset.

74

Table 4.2: Quality-of-Fit Results for JMl-8850 and KC2-520 Datasets

JM1-8850 KC2-520

Methods Type I Type II Type I Type II

CBR 30.70% 30.88% 21 .50% 20.75%

TD 30.78% 29. 16% 18.60% 16.04%

LR 34.23% 33.97% 20.77% 21 .70%

LOC 34.85% 34.08% 20.53% 19.81%

GP 34.71% 32.66% 18.36% 16.98%

ANN 38.06% 30.35% 21 .26% 21 .70%

LBOOST 34.72% 32.72% 22.22% 20.75%

RBM 33.71% 33.08% 17.39% 16.04%

BAG 30.59% 30.76% 21 .50% 20.75%

RSET 31 .62% 30.94% 16. 18% 14. 15%

MCOST 33.67% 33.61% 23.43% 21 .70%

ABOOST 33.41% 33.79% 28.26% 29.25%

DTABLE 34.29% 34.32% 18.84% 18.87%

ADT 33.83% 33.61% 19.81% 19.81%

SMO 34.09% 33.97% 20.77% 20.75%

IB1 34.73% 34. 74% 23.67% 24.53%

IBK 32.70% 32.48% 20.53% 19.81%

PART 33. 16% 33. 14% 20.77% 19.81%

ONER 34.50% 34.38% 20.05% 19.81%

JRIP 33. 18% 33.08% 19.81% 19.81%

RDR 33.94% 34.02% 18.84% 19.81%

J48 32.56% 32.42% 19.57% 19.81%

NBAYES 34. 12% 33.97% 21 .26% 21 .70%

HPIPES 37.97% 38.29% 23.91% 23.58%

LWLS 33.59% 33.61% 20.05% 19.81%

Average 33.75% 33. 12% 20.71% 20.30%

Std. Dev 1 .80% 1 .80% 2.41% 2.93%

Median 33.83% 33.61% 20.53% 19.81%

Min 30.59% 29. 16% 16. 18% 14. 15%

Max 38.06% 38.29% 28.26% 29.25%

75

4.3 Classification Results

The performance of all the classification techniques on the datasets with

different levels of noise is presented in terms of the Type I and Type II errors for

both the software systems, in the following subsections.

4.3.1 Misclassification Summary for the JMl System

Presented in this subsection are the classification performance (both the

quality-of-fit and the predictive performance) results in terms of Type I and Type

II errors for the datasets of the JMl system, with different levels of noise.

Table 4.3 displays the misclassification rates for all the classifiers on the JMl-

4425 datasets (Fit and Test) . JMl-4425-Fit dataset was used to build the models,

and the selected model for each classification technique was applied to the JMl-4425-

Test dataset for evaluation. The JMl-4425-Fit and JMl-4425-Test datasets are the

datasets generated by impartially splitting the original JMl-8850 dataset without

any noise removal. The fact that these are not noise-free datasets is reflected in the

higher values of misclassification error rates.

In the Tables 4.4, 4 .5 , 4 .6 , and 4.7, classification performance of all the classi

fication techniques is displayed for datasets with all the four different levels of noise

filtering (23C, 20C, 17C, and 13C) for the JMl system. It is evident from these re-

suits that as more and more noise is removed from the dataset, there is improvement

in both the quality of fit and the predictive performance of all the classifiers.

76

Table 4.3: Classification Accuracy Results for JMl-4425 Datasets

Fit Set Test Set

Methods Type I Type II Type I Type II

CBR 33.01% 32.23% 32.52% 31 .91%

TD 31 .50% 30.21% 31 .85% 36.54%

LR 33.96% 34.12% 35.34% 33.10%

LOC 34.54% 33.89% 35.15% 34.28%

GP 34.35% 32.46% 35.26% 32.62%

ANN 38.82% 29.86% 37.74% 29.77%

LBOOST 35.80% 33.77% 35.29% 32. 15%

RBM 32.62% 32 .94% 33.92% 36.30%

BAG 34.13% 31 .75% 33.47% 29.54%

RSET 32.73% 31 .28% 33.98% 34.28%

MCOST 36.92% 34.00% 41 .09% 22.89%

ABOOST 34.82% 34. 72% 37.47% 31 .32%
DTABLE 34. 15% 34. 12% 34.42% 36.30%

ADT 34.60% 34.36% 26.69% 41 .76%

SMO 33.65% 33.77% 34.28% 34.52%

IB1 37.84% 37.68% 38.55% 33.69%

IBK 33.54% 33.65% 33.56% 31 .91%

PART 34.79% 34.72% 49.78% 22.78%

ONER 34.93% 35.07% 37.55% 35.94%

JRIP 34.04% 34.24% 38.92% 30.25%

RDR 34.74% 34.60% 42.66% 26.45%

J48 33.98% 34.00% 26.47% 43. 18%

NBAYES 33.20% 33.53% 34.06% 34.28%

HPIPES 38.59% 39. 10% 36.91% 37.01%

LWLS 34.35% 34.60% 34.31% 30.37%

Average 34.62% 33.79% 35.65% 32.93%

Std. Dev 1 .78% 1 .96% 4.67% 4.74%

Median 34.35% 34.00% 35. 15% 33. 10%

Min 31 .50% 29.86% 26.47% 22.78%

Max 38.82% 39. 10% 49.78% 43. 18%

77

Table 4.4: Classification Accuracy Results for JM1-23C Datasets

Fit Set Test Set
Methods Type I Type II Type I Type II
CBR 23.80% 23.11% 22.62% 23. 14%
TD 23. 13% 18. 19% 25. 17% 26.60%
LR 24.98% 24.97% 24.94% 25.80%
LOC 25.99% 25.23% 25.52% 26.99%
GP 24. 75% 23. 11% 24.21% 27.79%
ANN 25.36% 23.90% 25. 14% 26.60%
LBOOST 25.93% 24.83% 29.62% 24.07%
RBM 25.04% 23.51% 25.58% 26.73%
BAG 23.35% 21 .91% 21 .99% 20.61%
RSET 22. 14% 21 .38% 23.74% 28.46%
MCOST 24.69% 25 .76% 23.45% 26.20%
ABOOST 26. 19% 25.90% 23.93% 23.54%
DTABLE 27.08% 26.29% 25.42% 28. 19%
ADT 25. 17% 25.23% 26.66% 25.66%
SMO 24.59% 24.70% 24.72% 27.39%
IB1 26.22% 25.23% 27.04% 24.73%
IBK 24.94% 24.97% 24.09% 26.86%
PART 23.96% 23.24% 21 .64% 27.66%
ONER 25.04% 25.90% 29. 18% 23.40%
JRIP 24.98% 24.44% 26.41% 25.93%
RDR 25. 14% 25.23% 24.63% 27.53%
J48 24.72% 24.70% 24.75% 20.88%
NBAYES 25.01% 25. 10% 25.99% 27.26%
HPIPES 28.92% 28.82% 26.73% 27.66%
LWLS 24.69% 24.70% 24.47% 25.40%
Average 25.03% 24.41% 25. 10% 25.80%
Std. Dev 1 .32% 1 .97% 1 .89% 2 . 14%
Median 24.98% 24.83% 24.94% 26.60%
Min 22. 14% 18. 19% 21 .64% 20.61%
Max 28.92% 28 .82% 29.62% 28.46%

78

Table 4.5: Classification Accuracy Results for JM1-20C Datasets

Fit Set Test Set

Methods Type I Type II Type I Type II

CBR 18.03% 18 .25% 17.23% 18.53%

TD 15.55% 12.36% 17.02% 18.97%

LR 18.41% 18 .25% 19. 12% 18.53%

LOC 20. 16% 19.25% 20.31% 18.25%

GP 17.30% 18.25% 18.04% 20.69%

ANN 16.35% 19.83% 16.67% 19.97%

LBOOST 19.60% 18.25% 18.42% 18.39%

RBM 17.44% 16.38% 18.59% 20.55%

BAG 16.98% 16.38% 16.64% 14.94%

RSET 14.88% 15 .66% 19 .12% 19.54%

MCOST 18.80% 17.39% 20.03% 15.52%

ABOOST 16 .70% 15.95% 16.46% 16.67%

DTABLE 18.48% 18.53% 23.66% 15.09%

ADT 1 7.99% 18. 10% 16.22% 20.55%

SMO 18.59% 18.39% 18.70% 19.25%

IB1 19.01% 18.82% 18.63% 19.25%

IBK 1 7.09% 17 . 10% 16.53% 18 .97%

PART 16.91% 16.95% 16.04% 18.53%

ONER 19.74% 19.54% 22.44% 16.67%

JRIP 17.68% 17.67% 14.47% 21.84%

RDR 1 7.65% 18.53% 20. 10% 16.95%

J48 17. 12% 17 . 10% 16.71% 19.83%

NBAYES 19.43% 19.54% 19.47% 20.26%

HPIPES 21 .52% 20.26% 21 .01% 20.83%

LWLS 19.32% 16.38% 19.61% 16.95%

Average 18.03% 17.72% 18.45% 18.62%

Std. Dev 1 . 50% 1 .67% 2. 13% 1 .87%

Median 1 7.99% 18.25% 18.59% 18.97%

Min 14.88% 12 .36% 14.47% 14.94%

Max 21 .52% 20.26% 23.66% 21.84%

79

Table 4.6: Classification Accuracy Results for JM1-17C Datasets

Fit Set Test Set
Methods Type I Type II Type I Type II
CBR 13.67% 13.00% 13.67% 10.53%
TD 1 1 .31% 8.51% 13.82% 13.31%
LR 12.62% 12 .54% 13.07% 13 .78%
LOC 14.42% 13. 16% 15.32% 14.09%
GP 12.02% 12.07% 12.02% 14.09%
ANN 13.03% 11 .92% 13.22% 14.09%
LBOOST 14.04% 13.47% 14.04% 13.47%
RBM 13.07% 1 1 .76% 13.45% 14.09%
BAG 12.43% 11 .30% 12.21% 8.20%
RSET 10.37% 10.22% 13.71% 13.47%
MCOST 1 1 .80% 12.85% 13.60% 12.38%
ABOOST 12.47% 12 .07% 11 .65% 9.60%
DTABLE 13.37% 13.00% 14.27% 10.53%
ADT 10.90% 10.84% 12 .62% 1 1 . 15%
SMO 12.81% 12.69% 13.07% 14.24%
IB1 13.48% 13.62% 15 .24% 10.84%
IBK 11 .42% 1 1 .30% 12. 13% 10.99%
PART 1 1 .84% 1 1 .92% 11 .54% 10.06%
ONER 13.00% 12 .69% 15.06% 13.93%
JRIP 12.36% 12 .23% 13.71% 10.22%
RDR 12.32% 1 1 .92% 10.67% 14.24%
J48 12 .47% 12 .38% 13.41% 1 1 .30%
NBAYES 13.97% 13.78% 13.60% 14.71%
HPIPES 14.61% 15 .02% 22.55% 13.93%
LWLS 1 1 .65% 1 1 .76% 13.30% 1 1 . 15%
Average 12.62% 12.24% 13.64% 12.33%
Std. Dev 1.08% 1 .27% 2 .17% 1 .88%
Median 12.47% 12 .23% 13.45% 13.31%
Min 10.37% 8.51% 10.67% 8.20%
Max 14.61% 15 .02% 22.55% 14.71%

80

Table 4. 7: Classification Accuracy Results for JM1-13C Datasets

Fit Set Test Set

Methods Type I Type II Type I Type II

CBR 8.02% 7.29% 6.23% 10.07%

TD 5.02% 4 .17% 4.94% 6.42%

LR 5.43% 5 .73% 4.36% 6.94%

LOC 6.75% 7. 12% 5 .72% 8. 16%

GP 5.72% 5.90% 5.43% 7.29%

ANN 6.38% 6.08% 4.94% 7.29%

LBOOST 5.88% 6.08% 5.84% 6.08%

RBM 5.88% 5.21% 6.63% 7.29%

BAG 5. 18% 5.21% 4 .90% 5.03%

RSET 4.44% 4 .17% 7.41% 6.08%

MCOST 5.96% 5.38% 4.81% 5.38%

ABOOST 3.95% 5.90% 3.58% 5.21%

DTABLE 6.21% 6.25% 7.41% 6.60%

ADT 4.73% 5.03% 5. 10% 3.47%

SMO 6.21% 6.08% 5.93% 7.29%

IB1 6.33% 6.25% 6.54% 7.99%

IBK 5.02% 5.38% 4.73% 6.60%

PART 5.31% 5.03% 5.60% 5.73%

ONER 6.42% 6.25% 8.27% 6.94%

JRIP 5.72% 5 .73% 7.00% 4.51%

RDR 6.42% 6 .77% 8 .15% 5.03%

J48 5 .02% 5.21% 4.81% 5.56%

NBAYES 7.53% 7.29% 6.91% 7.99%

HPIPES 8.64% 8 . 16% 6.58% 13.72%

LWLS 5. 10% 5 .03% 5.64% 5.90%

Average 5 .89% 5 .87% 5.90% 6 .74%

Std. Dev 1 .08% 0.96% 1 .20% 2.00%

Median 5 .88% 5.90% 5 .72% 6.60%

Min 3.95% 4. 17% 3.58% 3.47%

Max 8.64% 8. 16% 8.27% 13.72%

81

4.3.2 Misclassification Summary for the KC2 System

Presented in this subsection are the classification performance (both the

quality-of-fit and the predictive performance) results in terms of Type I and Type

II errors for the datasets of the KC2 system, with different levels of noise.

Table 4.8 displays the misclassification rates for all the classifiers on the KC2-

260 datasets (Fit and Test) . The KC2-260-Fit dataset was used to build the models,

and the selected model for each classification technique was applied to the KC2-260-

Test dataset for evaluation. The KC2-260-Fit and KC2-260-Test datasets are the

datasets generated by impartially splitting the original KC2-560 dataset without

any noise removal. Again, the fact that these are not noise-free datasets is reflected

in the higher values of misclassification error rates .

In the Tables 4.9, 4 .10 , and 4. 1 1 , classification performance of all the classi

fication techniques is displayed for datasets with all the three different levels (23C,

17C, and 13C) of noise filtering for the KC2 system. It is evident from these results

that as more and more noise is removed from the dataset, there is improvement in

both the quality of fit and the predictive performance of all the classifiers.

4.4 ECM Results

As explained in the Section 3.4.3, comparing as many as twenty five different

classification methods based on the two types of misclassification rates can very

well turn out to be a difficult and complex task, especially in the presence of many

82

Table 4.8: Classification Accuracy Results for KC2-260 Datasets

Fit Set Test Set
Methods Type I Type II Type I Type II
CBR 19.81% 20.75% 22.71% 16.98%
TD 19.81% 20.75% 20.77% 24.53%
LR 21 .74% 20. 75% 20.29% 16.98%
LOC 21 .26% 18.87% 20.29% 18.87%
GP 16.91% 9.43% 20.77% 26.42%
ANN 23.67% 15 .09% 27.05% 18.87%
LBOOST 24.64% 24.53% 28.50% 20.75%
RBM 18.84% 18.87% 20.77% 20.75%
BAG 25.60% 24.53% 22.71% 13.21%
RSET 18.84% 18.87% 17.87% 24.53%
MCOST 26.57% 26.42% 20.29% 24.53%
ABOOST 20.77% 24.53% 28.50% 26.42%
DTABLE 21 .74% 18 .87% 21 .26% 20.75%
ADT 20.77% 22.64% 17.39% 32.08%
SMO 19.81% 20.75% 21 .74% 22.64%
IB1 21 .26% 20.75% 25.12% 37.74%
IBK 21 .74% 18.87% 22.22% 20.75%
PART 23.67% 22.64% 22.22% 28.30%
ONER 20.77% 20.75% 20.77% 20.75%
JRIP 23. 19% 22.64% 25.60% 16.98%
RDR 20.29% 22.64% 28.02% 15 .09%
J48 23.67% 22.64% 31 .40% 18.87%
NBAYES 21 .74% 20.75% 20.77% 20.'75%
HPIPES 21 .74% 22.64% 25. 12% 18.87%
LWLS 20.29% 20.75% 21 .26% 26.42%
Average 21 .57% 20.83% 22.94% 22. 1 1%
Std. Dev 2 .22% 3.38% 3.55% 5.46%
Median 21 .26% 20.75% 21 .74% 20.75%
Min 16.91% 9.43% 17.39% 13.21%
Max 26.57% 26.42% 31 .40% 37.74%

83

Table 4.9: Classification Accuracy Results for KC2-23C Datasets

Fit Set Test Set
Methods Type I Type II Type I Type II
CBR 12 . 15% 12.50% 9.89% 10.64%
TD 12.71% 8.33% 13.74% 6.38%
LR 8.84% 10.42% 5.49% 14.89%
LOC 1 1 .60% 10.42% 7. 14% 10.64%
GP 4.42% 10.42% 4.40% 17.02%
ANN 9.94% 10.42% 7.69% 17.02%
LBOOST 10.50% 12.50% 6.04% 17.02%
RBM 8.84% 6.25% 10.44% 12 .77%
BAG 10.50% 10.42% 6.59% 17.02%
RSET 10.50% 10.42% 6.59% 8.51%
MCOST 12 . 15% 14.58% 1 1 .54% 8.51%
ABOOST 13.81% 10.42% 7. 14% 10.64%
DTABLE 10.50% 10.42% 5.49% 17.02%
ADT 9.39% 8.33% 6.04% 8.51%
SMO 10.50% 10.42% 8.24% 12 .77%
IB1 15 .47% 6.25% 14.84% 12.77%
IBK 9.39% 10.42% 5.49% 12.77%
PART 1 1 .60% 10.42% 13.74% 21 .28%
ONER 10.50% 10.42% 7. 14% 14.89%
JRIP 1 1 .05% 8.33% 7. 14% 14.89%
RDR 1 i .05% 8 .33% 6.59% 17.02%
J48 1 1 .60% 10.42% 13.74% 21 .28%
NBAYES 1 1 .60% 8.33% 8.24% 17.02%
HPIPES 10.50% 10.42% 9.34% 12.77%
LWLS 1 1 .05% 10 .42% 4.95% 17.02%
Average 10.81% 10.00% 8.31% 14.04%
Std. Dev 1.99% 1 .80% 3.06% 3.93%
Median 10.50% 10.42% 7.14% 14.89%
Min 4.42% 6.25% 4.40% 6.38%
Max 15.47% 14.58% 14.84% 21 .28%

84

Table 4.10: Classification Accuracy Results for KC2- 17C Datasets

Fit Set Test Set

Methods Type I Type II Type I Type II

CBR 5.20% 4.55% 7.56% 2.27%

TD 3.47% 6.82% 2.91% 4.55%

LR 2.89% 2.27% 3.49% 2 .27%

LOC 4.05% 4.55% 2.33% 6.82%

GP 0.58% 0.00% 1 . 74% 6.82%

ANN 12 . 14% 2.27% 12.21% 4.55%

LBOOST 4.62% 6.82% 5.23% 2 .27%

RBM 4.62% 0.00% 5.81% 2.27%

BAG 6.36% 6.82% 5.23% 0.00%

RSET 4.05% 4.55% 2.33% 6.82%

MCOST 5 .78% 6.82% 4.65% 6.82%

ABOOST 4.05% 6.82% 4.65% 4.55%

DTABLE 6 .36% 4.55% 4 .65% 4.55%

ADT 4.05% 4.55% 1 .74% 4.55%

SMO 5 .20% 6.82% 4.07% 4.55%

IB1 7.51% 9.09% 9.30% 6.82%

IBK 5.78% 6.82% 5.81% 4.55%

PART 5.20% 6.82% 3.49% 1 1 .36%

ONER 4.05% 4 .55% 2.91% 0.00%

JRIP 7.51% 6.82% 5.81% 4.55%

RDR 5.78% 6.82% 5.23% 0.00%

J48 5 .78% 6.82% 6.40% 9.09%

NBAYES 6.36% 6.82% 5.23% 4.55%

HPIPES 3.47% 4.55% 3.49% 6.82%

LWLS 6.36% 6.82% 6.98% 0.00%

Average 5.25% 5.36% 4.93% 4.45%

Std. Dev 2 . 10% 2.26% 2.39% 2 .90%

Median 5 .20% 6.82% 4.65% 4 .55%

Min 0.58% 0.00% 1 . 74% 0.00%

Max 12 . 14% 9.09% 12.21% 1 1 .36%

85

Table 4.11: Classification Accuracy Results for KC2-13C Datasets

Fit Set Test Set

Methods Type I Type II Type I Type II

CBR 1 .81% 2 .33% 5 .42% 6 .98%

TD 0.60% 0.00% 1 .81% 2.33%

LR 5.42% 2.33% 7.83% 9.30%

LOC 3.61% 2 .33% 2.41% 2 .33%

GP 0.00% 0.00% 0.00% 6.98%

ANN 4.22% 0.00% 4.22% 6.98%

LBOOST 0.60% 0.00% 0.00% 4.65%

RBM 0.00% 0.00% 1 .20% 4.65%

BAG 0.60% 0.00% 0.00% 4.65%

RSET 4.82% 4 .65% 5.42% 2.33%

MCOST 0.60% 0.00% 0.00% 4.65%

ABOOST 0.60% 0.00% 0.00% 4.65%

DTABLE 0.60% 0.00% 0.00% 4.65%

ADT 0.60% 0.00% 0.00% 4.65%

SMO 2 .41% 2.33% 3.01% 6.98%

IB1 3.61% 0.00% 4.82% 6.98%

IBK 3.61% 0.00% 6.63% 6.98%

PART 0.00% 0.00% 0.00% 4 .65%

ONER 0.60% 0.00% 0.00% 4.65%

JRIP 0.60% 0.00% 0.00% 4.65%

RDR 0.60% 0.00% 0.00% 4.65%

J48 0 .00% 0.00% 0.00% 4.65%

NBAYES 4.82% 2.33% 3.61% 2.33%

HPIPES 4.22% 2.33% 1 .81% 4.65%

LWLS 0.00% 0.00% 0.00% 9.30%

Average 1 .78% 0.74% 1 .93% 5.21%

Std. Dev 1 .87% 1 .29% 2 .48% 1 .93%

Median 0.60% 0.00% 0.00% 4.65%

Min 0.00% 0.00% 0.00% 2.33%

Max 5.42% 4.65% 7.83% 9.30%

86

datasets (datasets with different level of noise) . To make the task easier, we decided

to evaluate the performance of classifiers in terms of the Normalized Expected Cost

of Misclassification. NECM was computed from the misclassification error statistics

at four different cost ratios: 10, 20, 30, and 50 for the reasons explained in the

Section 3.4.3 .

Presented in the following subsections are the classification performance re

sults for all the classification techniques in terms of NECM computed for the training

and evaluation datasets at different levels of noise for both the software systems.

4.4.1 ECM Results for the JM1 System

Tables 4. 12, 4. 13, 4. 14, and 4 .15 display the classification performance results

of all the classification techniques on the datasets with different levels of noise, for

the JM1 system. It is evident from these results that the value of expected cost of

misclassification improves (goes down) as the level of noise elimination goes from

the most conservative (23C) to the least conservative (13C) .

87

Table 4.12: NECM Results for JMl Dataset, c=lO

JM1-13C JM1-17C JM1-20C JM1-23C
Methods Fit Test Fit Test Fit Test Fit Test
CBR 0.2045 0.2433 0 .3633 0.3151 0 .5020 0.5013 0 .6386 0.6293
TD 0. 1204 0 .1630 0 .2569 0 .3706 0.3668 0.5080 0.5382 0.7166
LR 0. 1536 0. 1683 0 .3459 0.3736 0.5051 0.5164 0.6840 0.6994
LOC 0.1909 0 .2026 0 .3724 0 .3978 0.5388 0.5204 0 .6974 0 .7271
GP 0. 1593 0. 1836 0 .3320 0.3712 0.4961 0.5499 0.6463 0 .7320
ANN 0. 1679 0 .1796 0 .3372 0.3809 0.5194 0.5249 0.6666 0.7163
LBOOST 0.1640 0 .1637 0.3755 0.3755 0.5146 0.5080 0.6892 0.7037
RBM 0. 1473 0 .1933 0 .3344 0 .3827 0.4607 0.5516 0.6563 0.7225
BAG 0 .1417 0. 1361 0 .3203 0 .2581 0.4570 0.4262 0.6119 0.5754
RSET 0.1 157 0 . 1763 0 .2826 0.3727 0.4261 0.5361 0.5919 0.7409
MCOST 0.1513 0 . 1420 0 .3453 0.3507 0.4913 0.4647 0.6971 0 .6950
ABOOST 0. 1450 0. 1287 0 .3356 0.2808 0.4463 0.4585 0.7118 0 .6475
DTABLE 0. 1699 0 .1863 0.3610 0.3200 0.5112 0.4855 0.7266 0.7494
ADT 0. 1347 0. 1078 0 .2989 0 .3188 0.4989 0.5325 0.6907 0.7107
SMO 0.1666 0 .1876 0.3504 0.3827 0.5093 0.5271 0.6758 0 .7284
IB1 0 .1709 0 .2059 0 .3739 0.3338 0.5211 0.5266 0.6992 0 .6958
IBK 0. 1437 0. 1647 0.3121 0.3118 0.4719 0.5041 0.6838 0.7130
PART 0. 1393 0 .1550 0 .3275 0 .2889 0 .4677 0.4917 0.6425 0.7086
ONER 0. 1716 0 .1999 0.3519 0.3926 0.5410 0.5066 0.7025 0 .6873
JRIP 0. 1560 0. 1430 0 .3378 0.3094 0.4879 0.5437 0.6738 0.7137
RDR 0.1816 0 . 1623 0.3314 0 .3634 0.5045 0.4934 0.6905 0.7302
J48 0. 1403 0 . 1454 0.3417 0.3281 0.4722 0.5224 0.6768 0 .6028
NBAYES 0.2005 0.2089 0 .3809 0 .3960 0.5385 0.5530 0.6869 0 .7361
HPIPES 0.2261 0 .3160 0.4101 0 .4530 0 .5694 0.5766 0 .7903 0.7497
LWLS 0. 1377 0 . 1587 0 .3230 0.3242 0.4758 0.4895 0.6766 0 .6878
Average 0. 1600 0 . 1769 0 .3401 0 .3501 0.4917 0.5127 0.6738 0.7008
Std. Dev 0.0262 0 .0414 0.0323 0.0444 0.0418 0.0331 0.0474 0 .0438
Median 0. 1560 0 . 1683 0.3378 0.3634 0.4989 0.5164 0.6838 0.7130
Min 0.1 157 0 . 1078 0 .2569 0 .2581 0.3668 0.4262 0.5382 0.5754
Max 0.2261 0 .3160 0.4101 0 .4530 0 .5694 0.5766 0.7903 0.7497

88

Table 4.12: NECM Results for JMl Dataset, c=lO, contd . . .

JM1-8850 JM1-4425
Methods Fit Fit Test
CBR 0.8372 0.8818 0.8712
TD 0.8051 0 .8312 0.9539
LR 0.9245 0 .9256 0.9166
LOC 0.9318 0 .9259 0.9376
GP 0.9035 0 .8972 0.9069
ANN 0.8866 0 .8836 0.8728
LBOOST 0.9047 0 .9338 0.8981
RBM 0.9034 0 .8922 0.9661
BAG 0.8340 0 .8818 0.8337
RSET 0.8458 0 .8615 0.9281
MCOST 0.9132 0 .9473 0.7688
ABOOST 0.9145 0 .9440 0.8999
DTABLE 0.9318 0.9272 0.9702
ADT 0.9145 0.9354 1 .0115
SMO 0 .9234 0 .9164 0.9351
IB1 0.9433 1 .0249 0.9539
IBK 0.8838 0 .9132 0 .8795
PART 0.9000 0.9437 0.8368
ONER 0 .9346 0 .9516 0 .9887
JRIP 0.8991 0.9286 0.8913
RDR 0.9233 0 .9410 0.8493
J48 0.8816 0 .9236 1 .0368
NBAYES 0.9236 0.9082 0.9288
HPIPES 1 .0373 1 .0581 1 .0038
LWLS 0.9125 0 .9379 0.8563
Average 0.9045 0 .9246 0.9158
Std. Dev 0.0445 0 .0460 0.0630
Median 0.9125 0.9259 0.9166
Min 0.8051 0.8312 0.7688
Max 1 .0373 1 .0581 1 .0368

89

Table 4.13: NECM Results for JMl Dataset, c=20

JM1-13C JM1-17C JM1-20C JM1-23C
Methods Fit Test Fit Test Fit Test Fit Test
CBR 0.3442 0.4362 0.6166 0 .5202 0 .8589 0 .8639 1 .0852 1 .0760
TD 0.2002 0.2861 0.4228 0.6300 0.6085 0.8791 0.8899 1 .2300
LR 0.2634 0.3014 0.5902 0.6420 0.8620 0.8791 1 . 1666 1 . 1974
LOC 0 .3272 0.3589 0.6288 0 .6722 0 .9154 0.8774 1 . 1851 1 .2483
GP 0.2724 0.3234 0.5672 0.6457 0 .8530 0.9547 1 .0929 1 .2685
ANN 0.2843 0.3194 0.5694 0.6553 0 .9073 0.9157 1 . 1286 1 .2298
LBOOST 0.2803 0.2801 0.6378 0.6378 0.8716 0 .8679 1 . 1691 1 . 1684
RBM 0.2471 0.3330 0.5636 0 .6571 0 .7811 0 .9536 1 . 1 106 1 .2385
BAG 0.2414 0.2325 0.5404 0 .4180 0 .7774 0.7186 1 .0354 0.9733
RSET 0. 1955 0.2927 0.4816 0 .6351 0.7324 0.9185 1 .0051 1 .2904
MCOST 0.2544 0.2452 0.5956 0 .5920 0.8314 0.7683 1 . 1951 1 .2008
ABOOST 0.2581 0.2285 0.5709 0 .4677 0 .7583 0. 7846 1 .2123 1 . 1019
DTABLE 0.2897 0.3127 0.6143 0 .5250 0.8738 0.7807 1 .2349 1 .2937
ADT 0.2311 0 . 1743 0.5100 0 .5359 0.8530 0.9345 1 . 1784 1 .2062
SMO 0.2830 0.3273 0.5977 0.6601 0 .8690 0.9039 1 . 1532 1 .2573
IB1 0 .2907 0 .3589 0 .6393 0 .5449 0.8893 0.9033 1 . 1869 1 . 1733
IBK 0.2468 0.2911 0.5323 0 .5259 0.8064 0.8752 1 . 1663 1 .2316
PART 0.2358 0.2648 0 .5597 0 .4849 0 .7993 0 .8544 1 .0916 1 .2426
ONER 0.2913 0.3330 0.5992 0.6641 0 .9233 0 .8327 1 .2030 1 . 1392
JRIP 0.2657 0 .2295 0 .5760 0 .5084 0.8336 0.9710 1 . 1460 1 .2144
RDR 0.3113 0.2588 0.5636 0 .6408 0.8671 0.8251 1 . 1781 1 .2616
J48 0.2401 0.2518 0.5829 0.5483 0 .8066 0 .9103 1 . 1543 1 .0059
NBAYES 0.3402 0.3619 0.6493 0.6824 0.9207 0 .9494 1 . 1720 1 .2624
HPIPES 0.3824 0 .5788 0.7027 0 .7244 0 .9657 0 .9843 1 .3473 1 .2837
LWLS 0.2341 0.2718 0.5522 0 .5413 0 .7962 0.8212 1 . 1540 1 . 1 782
Average 0 .2724 0.3061 0.5786 0.5904 0 .8384 0 .8771 1 . 1457 1 . 1989
Std. Dev 0.0444 0.0792 0.0569 0 .0794 0.0741 0 .0676 0.0853 0.0837
Median 0.2657 0.2927 0.5760 0.6300 0.8530 0 .8791 1 . 1663 1 .2298
Min 0 . 1955 0 .1743 0.4228 0 .4180 0 .6085 0 .7186 0.8899 0.9733
Max 0.3824 0.5788 0 .7027 0 .7244 0.9657 0 .9843 1 .3473 1 .2937

90

Table 4.13: NECM Results for JMl Dataset , c=20, contd . . .

JM1-8850 JM1-4425
Methods Fit Fit Test
CBR 1 .4259 1 .4965 1 .4791
TD 1 .3610 1 .4075 1 .6499
LR 1 .5720 1 .5765 1 .5471
LOC 1 .5815 1 .5722 1 .5907
GP 1 .5261 1 .5164 1 .5284
ANN 1 .4651 1 .4531 1 .4400
LBOOST 1 .5285 1 .5779 1 .5105
RBM 1 .5339 1 .5205 1 .6576
BAG 1.4205 1 .4875 1 .3964
RSET 1 .4356 1 .4581 1 .5812
MCOST 1 .5539 1 .5959 1 .2050
ABOOST 1 .5585 1 .6061 1 .4965
DTABLE 1 .5860 1 .5781 1 .6617
ADT 1 .5551 1 .5907 1 .8070
SMO 1 .5708 1 .5605 1 .5928
IB1 1 .6054 1 .7435 1 .5957
IBK 1 .5031 1 .5550 1 .4875
PART 1 .5316 1 .6059 1 .2707
ONER 1 .5899 1 .6206 1 .6734
JRIP 1 .5296 1 .5817 1 .4676
RDR 1 .5719 1 .6009 1 .3532
J48 1 .4997 1 .5722 1 .8594
NBAYES 1 .5711 1 .5478 1 .5819
HPIPES 1 . 7672 1 .8038 1 .7089
LWLS 1 .5532 1 .5977 1 .4348
Average 1 .5359 1 .5691 1 .5431
Std. Dev 0.0780 0.0827 0 .1511
Median 1 .5532 1 .5765 1 .5471
Min 1 .3610 1 .4075 1 .2050
Max 1 .7672 1 .8038 1 .8594

91

Table 4.14: NECM Results for JMl Dataset, c=30

JM1-13C JM1-17C JM1-20C JM1-23C
Methods Fit Test Fit Test Fit Test Fit Test
CBR 0.4839 0.6291 0.8698 0.7252 1 .2158 1 .2266 1 .5318 1 .5227
TD 0.2800 0.4092 0 .5887 0.8893 0.8502 1 .2502 1 .2415 1 .7435
LR 0.3731 0.4345 0 .8344 0.9104 1 .2189 1 .2418 1 .6491 1 .6955
LOC 0.4636 0.5153 0.8851 0 .9466 1 .2920 1 .2345 1 .6727 1 .7694
GP 0.3854 0.4631 0.8025 0.9201 1 .2099 1 .3596 1 .5395 1 .8051
ANN 0.4007 0.4591 0.8016 0.9297 1 .2951 1 .3064 1 .5906 1 .7433
LBOOST 0.3967 0.3965 0.9002 0.9002 1 .2285 1 .2277 1 .6491 1 .6331
RBM 0.3469 0.4727 0.7928 0.9315 1 . 1015 1 .3556 1 .5649 1 .7546
BAG 0.3412 0 .3290 0.7606 0 .5778 1 .0978 1 .0110 1 .4589 1 .3712
RSET 0.2754 0.4092 0 .6806 0.8975 1 .0388 1 .3008 1 .4184 1 .8398
MCOST 0.3575 0 .3483 0.8459 0.8332 1 . 1 714 1.0720 1 .6930 1 .7065
ABOOST 0.3711 0 .3283 0.8061 0.6547 1 .0703 1 . 1 108 1 . 7128 1 .5564
DTABLE 0.4094 0.4391 0.8676 0.7301 1 . 2364 1 .0759 1 . 7431 1 .8380
ADT 0.3276 0.2409 0.7210 0 .7530 1 . 2071 1 .3365 1 .6661 1 .7017
SMO 0.3994 0.4671 0.8450 0.9376 1 .2288 1 .2806 1 .6306 1 .7861
IB1 0.4104 0.5120 0.9047 0.7560 1 .2574 1 .2800 1 .6745 1 .6508
IBK 0.3499 0.4175 0.7524 0.7400 1 . 1408 1 .2463 1 .6489 1 .7502
PART 0.3322 0.3746 0 .7919 0.6809 1 . 1310 1 .2170 1 .5408 1 .7766
ONER 0.41 10 0.4661 0.8465 0.9355 1 .3055 1 . 1588 1 . 7035 1 .5910
JRIP 0.3755 0.3160 0.8142 0.7075 1 . 1793 1 .3984 1 .6183 1 .7150
RDR 0.4410 0.3553 0.7958 0.9183 1 .2296 1 . 1569 1 .6658 1 .7931
J48 0.3399 0.3583 0.8242 0.7684 1 . 141 1 1 .2983 1 .6317 1 .4090
NBAYES 0.4799 0.5150 0.9177 0.9689 1 .3030 1 .3458 1 .6571 1 .7887
HPIPES 0.5387 0 .8417 0.9952 0.9958 1 .3620 1 .3919 1 .9043 1 .8177
LWLS 0.3306 0.3849 0 .7814 0.7584 1 . 1 166 1 . 1529 1 .6314 1 .6685
Average 0.3848 0.4353 0.8170 0.8307 1 . 1852 1 .2414 1 .6175 1 .6971
Std. Dev 0.0626 0 .1 173 0.0817 0 . 1 154 0. 1067 0. 1036 0 . 1234 0 .1245
Median 0.3755 0.4175 0.8142 0.8893 1 . 2099 1 .2463 1 .6489 1 .7433
Min 0.2754 0.2409 0.5887 0 .5778 0 .8502 1 .0110 1 .2415 1 .3712
Max 0.5387 0.8417 0.9952 0.9958 1 .3620 1 .3984 1 .9043 1 .8398

92

Table 4. 14: NECM Results for JMl Dataset, c=30, contd . . .

JM1-8850 JM1-4425
Methods Fit Fit Test I
CBR 2.0146 2 . 1 112 2 .0870
TD 1 .9169 1 .9837 2.3460
LR 2.2194 2.2273 2 . 1776
LOC 2.2312 2.2185 2.2438
GP 2. 1487 2 .1356 2 . 1498
ANN 2.0436 2.0226 2 .0072
LBOOST 2. 1522 2 .2219 2 . 1229
RBM 2. 1644 2 . 1487 2.3492
BAG 2.0069 2.0931 1 .9591
RSET 2.0254 2.0547 2 .2344
MCOST 2. 1946 2.2445 1 .641 1
ABOOST 2.2026 2.2683 2.0931
DTABLE 2.2402 2.2289 2.3532
ADT 2. 1958 2.2461 2.6025
SMO 2.2183 2 .2045 2.2504
IB1 2.2676 2 .4621 2 .2375
IBK 2. 1223 2.1968 2.0954
PART 2. 1633 2.2680 1 .7046
ONER 2.2453 2.2895 2.3582
JRIP 2. 1601 2 .2348 2.0438
RDR 2.2205 2.2608 1 .8572
J48 2 .1 177 2.2208 2 .6820
NBAYES 2.2185 2 .1873 2.2350
HPIPES 2.4972 2.5496 2.4140
LWLS 2. 1939 2.2576 2.0133
Average 2. 1672 2.2135 2 . 1703
Std. Dev 0. 1 120 0 .1 198 0.2409
Median 2. 1939 2 .2219 2 . 1776
Min 1 .9169 1 .9837 1 .6411
Max 2.4972 2.5496 2.6820

93

Table 4.15: NECM Results for JMl Dataset , c=50

JM1-13C JM1-17C JM1-20C JM1-23C
Methods Fit Test Fit Test Fit Test Fit Test
CBR 0.7632 1 .0150 1 .3764 1 . 1354 1 .9297 1 .9519 2 .4251 2.4162
TD 0.4396 0.6554 0.9204 1 .4080 1 .3336 1 .9924 1 .9448 2.7705
LR 0.5926 0.7006 1 .3230 1 .4472 1 .9328 1 .9671 2 .6142 2 .6917
LOC 0.7363 0.8280 1 .3978 1 .4955 2.0453 1 .9486 2.6481 2 .81 18
GP 0.61 16 0 .7425 1 . 2729 1 .4689 1 .9238 2. 1692 2 .4328 2 .8783
ANN 0.6335 0.7385 1 .2660 1 .4786 2 .0708 2.0880 2.5146 2 .7702
LBOOST 0.6295 0 .6294 1 .4249 1 .4249 1 .9424 1 .9474 2.6091 2 .5625
RBM 0.5464 0.7522 1 .2512 1 .4804 1 .7423 2 . 1597 2 .4736 2 .7866
BAG 0.5407 0.5220 1 .2008 0.8975 1 .7386 1 . 5957 2 .3060 2 . 1671
RSET 0.4350 0.6420 1 .0787 1 .4222 1 .6515 2.0655 2.2449 2 .9386
MCOST 0.5637 0.5546 1 .3465 1 .3157 1 .8516 1 .6792 2.6889 2 .7181
ABOOST 0.5973 0.5279 1 .2765 1 .0286 1 .6942 1 . 7630 2 .7138 2 .4652
DTABLE 0.6488 0.6919 1 .3742 1 . 1402 1 .9615 1 .6663 2.7595 2 .9266
ADT 0.5205 0.3739 1 . 1432 1 . 1873 1 .9154 2 . 1406 2 .6414 2 .6927
SMO 0.6322 0 .7465 1 .3396 1 .4925 1 .9483 2 .0340 2.5855 2 .8439
IB1 0.6498 0.8180 1 .4355 1 . 1782 1 .9938 2.0335 2.6499 2.6059
IBK 0 .5560 0 .6703 1 . 1927 1 . 1683 1 .8097 1 .9885 2.6140 2 .7874
PART 0.5251 0 .5941 1 .2563 1 .0730 1 .7943 1 .9424 2.4392 2.8447
ONER 0 .6505 0 .7322 1 .341 1 1 .4783 2 .0700 1 . 81 1 1 2 .7046 2 .4947
JRIP 0.5949 0.4890 1 .2907 1 . 1055 1 .8707 2 .2530 2.5629 2 .7163
RDR 0 .7004 0 .5482 1 .2603 1 .4732 1 .9547 1 . 8204 2.6412 2.8560
J48 0.5394 0.5712 1 .3067 1 .2087 1 .8100 2 .0742 2 .5865 2.2151
NBAYES 0 .7592 0.8210 1 .4545 1 .5419 2.0675 2 . 1386 2.6273 2 .8413
HPIPES 0 .8513 1 .3673 1 .5802 1 . 5386 2 .1546 2 .2072 3.0182 2.8858
LWLS 0 .5234 0 .6 1 1 1 1 .2397 1 . 1927 1 .7574 1 .8164 2.5862 2 .6493
Average 0.6096 0.6937 1 .2940 1 .3113 1 .8786 1 .9702 2.5613 2.6935
Std. Dev 0.0992 0 . 1938 0.1312 0 . 1881 0 .1720 0 . 1762 0 . 1995 0.2066
Median 0.5973 0.6703 1 .2907 1 .4080 1 .9238 1 .9885 2.6091 2.7702
Min 0 .4350 0.3739 0.9204 0.8975 1 .3336 1 .5957 1 .9448 2 . 1671
Max 0.8513 1 .3673 1 .5802 1 . 5419 2 . 1546 2.2530 3.0182 2.9386

94

Table 4.15: NECM Results for JMl Dataset, c=50, contd . . .

JM1-8850 JM1-4425
Methods Fit Fit Test
CBR 3. 1920 3.3406 3 .3028
TD 3.0288 3 . 1363 3.7381
LR 3.5144 3.5290 3.4386
LOC 3.5306 3.5112 3.5501
GP 3.3939 3 .3740 3.3928
ANN 3.2007 3 . 1616 3. 1417
LBOOST 3.3997 3.5101 3.3478
RBM 3.4254 3 .4052 3.7322
BAG 3 .1798 3 .3045 3.0845
RSET 3.2051 3.2479 3.5406
MCOST 3.4759 3.5417 2.5134
ABOOST 3.4907 3.5926 3.2863
DTABLE 3.5487 3 .5306 3.7363
ADT 3.4772 3.5568 4.1934
SMO 3.5132 3 .4927 3.5656
IB1 3 .5919 3 .8994 3.5211
IBK 3.3607 3 .4805 3.31 12
PART 3.4266 3.5923 2.5724
ONER 3.5560 3 .6273 3.7277
JRIP 3.4211 3 .5410 3.1964
RDR 3.5176 3.5806 2.8651
J48 3.3539 3.5180 4.3272
NBAYES 3.5134 3.4664 3.5412
HPIPES 3.9571 4.0411 3.8242
LWLS 3.4753 3 .5774 3 .1704
Average 3.4300 3.5023 3.4248
Std. Dev 0.1802 0 .1945 0.4211
Median 3.4753 3.5180 3.4386
Min 3.0288 3 . 1363 2.5134
Max 3.9571 4.0411 4.3272

95

4.4.2 ECM Results for the KC2 System

Tables 4.16 , 4 . 17, 4 . 18 , and 4.19 display the classification performance results

of all the classification techniques on the datasets with different levels of noise, for

the KC2 system. Again, it is evident from these results that the value of expected

cost of misclassification improves (goes down) as the level of noise elimination goes

from the most conservative (23C) to the least conservative (13C) .

4.5 ANOVA Results

As mentioned in the Section 3.4.4, Two Way: Randomized Complete Block

Design approach was employed to investigate whether or not the twenty five clas

sification techniques and the datasets with different levels of noise filtering yield

significantly different NECM values with respect to one another respectively. The

NECM computed for the fit and test data sets , was used as the response variable

for the ANOVA models. The results are presented in the Tables 4.20, 4.2 1 , 4 .22,

and 4.23.

The notations used in these tables are as follows: DF - degrees of freedom,

SS - sums of squares, MS - mean squares, and F - the F statistic.

With p-values less than 0.0001 displayed as 0.0000, Table 4.20 indicates that

for the JM1 system, quality-of-fit wise, the classification methods we used performed

significantly differently from one another (o: = 1%) , and the datasets with different

levels of noise filtering are also significantly different (o: = 1%) from one another

96

Table 4.16: NECM Results for KC2 Dataset, c=lO

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260
Methods Fit Test Fit Test Fit Test Fit Fit Test
CBR 0.0622 0.1866 0. 1336 0 . 1065 0.3581 0.2969 0.5942 0 .5808 0.5269
TD 0.0048 0.0622 0 .1659 0. 1 157 0.2751 0.2402 0.4750 0 .5808 0.6654
LR 0.0909 0.2536 0.0691 0.0741 0.2882 0 .3493 0.6077 0.5962 0.5077
LOC 0.0766 0.0670 0 .1244 0. 1574 0.3100 0.2751 0.5673 0 .5538 0.5462
GP 0.0000 0 .1435 0 .0046 0 .1528 0 .2533 0.3843 0.4923 0.3269 0 .7038
ANN 0.0335 0 .1770 0 . 1429 0. 1898 0.2969 0.4105 0.61 15 0.4962 0.6000
LBOOST 0.0048 0.0957 0 . 1751 0.0880 0.3450 0.3974 0.6000 0.6962 0.6500
RBM 0.0000 0. 1053 0.0369 0.0926 0.2009 0.3450 0.4654 0 .5346 0.5885
BAG 0.0048 0.0957 0 .1889 0.0417 0 .3013 0 .4017 0.5942 0 .7038 0 .4500
RSET 0. 1340 0.0909 0 .1244 0. 1574 0.3013 0.2271 0.4173 0.5346 0.6423
MCOST 0.0048 0.0957 0 .1843 0 .1759 0.4017 0.2664 0.6288 0 .7500 0.6615
ABOOST 0.0048 0.0957 0 . 1705 0. 1296 0.3275 0.2751 0.8212 0.6654 0.7654
DTABLE 0.0048 0.0957 0 . 1429 0. 1296 0 .3013 0.3930 0.5346 0.5577 0.5923
ADT 0.0048 0.0957 0 .1244 0. 1065 0.2489 0.2227 0.5615 0.6269 0.7923
SMO 0.0670 0 . 1675 0 . 1797 0. 1250 0.3013 0.3275 0.5885 0 .5808 0.6346
IB1 0.0287 0 .1818 0.2442 0.2130 0.2533 0.3799 0.6885 0.5923 0.9692
IBK 0.0287 0. 1962 0 .1843 0. 1389 0.2926 0.3057 0.5673 0 .5577 0.6000
PART 0.0000 0 .0957 0 . 1797 0.2593 0.3100 0.5459 0.5692 0.6500 0.7538
ONER 0.0048 0 .0957 0. 1244 0.0231 0.3013 0.3624 0.5635 0 .5885 0.5885
JRIP 0.0048 0.0957 0. 1982 0. 1389 0.2620 0.3624 0.5615 0.6462 0 .5500
RDR 0.0048 0.0957 0 .1843 0.0417 0.2620 0.4017 0.5538 0 .6231 0 .5308
J48 0 .0000 0.0957 0 .1843 0.2361 0.3100 0.5459 . 0.5596 0 .6500 0 .6346
NBAYES 0.0861 0.0766 0. 1889 0. 1343 0.2664 0.4148 0.6115 0.5962 0.5885
HPIPES 0.0813 0 .1 100 0 .1 198 0. 1667 0.3013 0.3362 0.6712 0.6346 0 .5846
LWLS 0.0000 0.1914 0 .1889 0.0556 0.3057 0.3886 0.5635 0 .5846 0 .7077
Average 0 .0295 0 .1225 0 .1506 0.1300 0.2950 0.3542 0 .5788 0 .5963 0.6334
Std. Dev 0.0386 0.0494 0.0532 0.0593 0.0397 0.0828 0.0784 0.0809 0 .1082
Median 0.0048 0.0957 0 . 1705 0 .1296 0.3013 0.3624 0.5673 0 .5923 0.6000
Min 0.0000 0.0622 0.0046 0.0231 0.2009 0.2227 0.4173 0.3269 0.4500
Max 0.1340 0.2536 0.2442 0 .2593 0 .4017 0.5459 0.8212 0 .7500 0.9692

97

Table 4.17: NECM Results for KC2 Dataset , c=20

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260
Methods Fit Test Fit Test Fit Test Fit Fit Test
CBR 0 .1100 0.3301 0.2258 0. 1528 0 .6201 0.5153 1 .0173 1 .0038 0 .8731
TD 0.0048 0 .1 100 0.3041 0.2083 0.4498 0.3712 0.8019 1 .0038 1 . 1654
LR 0. 1388 0.4450 0 . 1 152 0 .1204 0 .5066 0.6550 1 .0500 1 .0192 0.8538
LOC 0. 1244 0 .1 148 0.2166 0.2963 0 .5284 0.4934 0.9712 0.9385 0.9308
GP 0.0000 0.2871 0.0046 0.2917 0.4716 0.7336 0 .8385 0.5192 1 .2423
ANN 0.0335 0.3206 0 .1889 0.2824 0 .5153 0.7598 1 .0538 0.8038 0.9846
LBOOST 0.0048 0. 1914 0.3134 0 .1343 0 .6070 0.7467 1 .0231 1 . 1962 1 .0731
RBM 0.0000 0.2010 0.0369 0.1389 0.3319 0.6070 0 .7923 0.9192 1 .0115
BAG 0.0048 0. 1914 0.3272 0.0417 0.5197 0.7511 1 .0173 1 .2038 0 .7192
RSET 0.2297 0.1388 0 .2166 0.2963 0.5197 0.4017 0.7058 0.9192 1 . 1423
MCOST 0.0048 0 .1914 0 .3226 0.3148 0.7074 0.4410 1 .0712 1 .2885 1 . 1615
ABOOST 0.0048 0 . 1914 0.3088 0.2222 0 .5459 0.4934 1 .4173 1 . 1654 1 .3038
DTABLE 0.0048 0 . 1914 0 .2350 0.2222 0 .5197 0.7424 0.9192 0 .9423 1 .0154
ADT 0.0048 0 .1914 0 .2166 0. 1991 0 .4236 0.3974 0.9654 1 .0885 1 .4462
SMO 0.1148 0.3110 0.3180 0.2176 0 .5197 0.5895 1 .0115 1 .0038 1 .0962
IB1 0.0287 0.3254 0.4286 0 .3519 0 .3843 0.6419 1 . 1885 1 .0154 1 .7385
IBK 0.0287 0.3397 0.3226 0.2315 0 .5109 0.5677 0.9712 0.9423 1 .0231
PART 0.0000 0. 1914 0.3180 0.4907 0 .5284 0.9825 0.9731 1 . 1 1 15 1 .3308
ONER 0.0048 0 . 1914 0.2166 0.0231 0.5197 0.6681 0.9673 1 .0115 1 .0115
JRIP 0.0048 0. 1914 0.3364 0 .2315 0 .4367 0.6681 0.9654 1 . 1077 0.8962
RDR 0.0048 0. 1914 0 .3226 0.0417 0.4367 0.7511 0 .9577 1 .0846 0.8385
J48 0.0000 0. 1914 0.3226 0.4213 0 .5284 0.9825 0.9635 1 . 1 1 15 1 .0192
NBAYES 0. 1340 0 .1244 0.3272 0 .2269 0 .4410 0.7642 1 .0538 1 .0192 1 .0115
HPIPES 0. 1292 0.2057 0.2120 0.3056 0 .5197 0.5983 1 . 1519 1 .0962 0.9692
LWLS 0.0000 0 .3828 0.3272 0.0556 0 .5240 0.7380 0.9673 1 .0077 1 .2462
Average 0.0448 0.2297 0.2594 0.2207 0 .5046 0.6424 0.9926 1 .0209 1 .0842
Std. Dev 0.0646 0.0875 0.0979 0. 1 167 0 .0760 0. 1617 0. 1381 0. 1493 0.2177
Median 0.0048 0 . 1914 0.3088 0.2222 0 .5197 0 .6550 0.9712 1 .0154 1 .0192
Min 0.0000 0 .1 100 0.0046 0.0231 0.3319 0.3712 0 .7058 0.5192 0 .7192
Max 0.2297 0.4450 0 .4286 0.4907 0 .7074 0.9825 1 .4173 1 .2885 1 . 7385

98

Table 4.18: NECM Results for KC2 Dataset , c=30

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260
Methods Fit Test Fit Test Fit Test Fit Fit Test
CBR 0. 1579 0 .4737 0 .3180 0. 1991 0.8821 0.7336 1 .4404 1 .4269 1 .2192
TD 0.0048 0 . 1579 0.4424 0.3009 0.6245 0.5022 1 . 1288 1 .4269 1.6654
LR 0. 1866 0 .6364 0 . 1613 0. 1667 0.7249 0.9607 1 .4923 1 .4423 1 .2000
LOC 0 .1722 0 . 1627 0 .3088 0.4352 0.7467 0.71 18 1 .3750 1 .3231 1 .3154
GP 0.0000 0 .4306 0 .0046 0 .4306 0 .6900 1 .0830 1 .1846 0.71 15 1 .7808
ANN 0.0335 0.4641 0 .2350 0.3750 0.7336 1 . 1092 1 .4962 1 . 1 1 15 1 .3692
LBOOST 0.0048 0 .2871 0.4516 0. 1806 0.8690 1 .0961 1 .4462 1 .6962 1 .4962
RBM 0.0000 0 .2967 0 .0369 0. 1852 0.4629 0.8690 1 . 1 192 1 .3038 1 .4346
BAG 0.0048 0 .2871 0 .4654 0.0417 0.7380 1 . 1004 1 .4404 1 .7038 0.9885
RSET 0.3254 0 . 1866 0 .3088 0.4352 0.7380 0.5764 0.9942 1 .3038 1 .6423
MCOST 0.0048 0 .2871 0.4608 0.4537 1 .0131 0.6157 1 .5135 1 .8269 1 .6615
ABOOST 0.0048 0 .2871 0 .4470 0.3148 0.7642 0.7118 2.0135 1 .6654 1 .8423
DTABLE 0.0048 0 .2871 0.3272 0.3148 0.7380 1 .0917 1 .3038 1 .3269 1 .4385
ADT 0.0048 0 .2871 0.3088 0.2917 0.5983 0.5721 1 .3692 1 . 5500 2.1000
SMO 0. 1627 0.4545 0.4562 0.3102 0.7380 0.8515 1 .4346 1 .4269 1 .5577
IB1 0 .0287 0 .4689 0.6129 0.4907 0.5153 0.9039 1 .6885 1 .4385 2.5077
IBK 0.0287 0.4833 0.4608 0.3241 0.7293 0.8297 1 .3750 1 .3269 1 .4462
PART 0.0000 0.2871 0 .4562 0.7222 0 .7467 1 .4192 1 .3769 1 .5731 1.9077
ONER 0.0048 0 .2871 0.3088 0 .0231 0.7380 0.9738 1 .3712 1 .4346 1 .4346
JRIP 0.0048 0.2871 0.4747 0.3241 0.6114 0.9738 1 .3692 1 .5692 1 .2423
RDR 0.0048 0 .2871 0.4608 0.0417 0 .6114 1 . 1004 1 .3615 1 . 5462 1 . 1462
J48 0.0000 0 .2871 0.4608 0.6065 0.7467 1 .4192 1 .3673 1 .5731 1 .4038
NBAYES 0. 1818 0 . 1722 0.4654 0.3194 0.6157 1 . 1 135 1 .4962 1 .4423 1 .4346
HPIPES 0 . 1770 0.3014 0.3041 0.4444 0.7380 0.8603 1 .6327 1 .5577 1 .3538
LWLS 0.0000 0.5742 0 .4654 0.0556 0.7424 1 .0873 1 .3712 1 .4308 1 .7846
Average 0.0601 0.3368 0 .3681 0.3115 0.7142 0 .9307 1 .4065 1 .4455 1 .5349
Std. Dev 0.0910 0 . 1266 0 . 1433 0 . 1752 0 . 1132 0.2418 0 .1979 0 .2179 0.3284
Median 0.0048 0.2871 0.4470 0.3148 0.7380 0 .9607 1 .3750 1 .4385 1 .4385
Min 0.0000 0 . 1579 0 .0046 0.0231 0.4629 0.5022 0.9942 0.71 15 0.9885
Max 0.3254 0.6364 0.6129 0.7222 1 .0131 1 .4192 2.0135 1 .8269 2.5077

99

Table 4.19: NECM Results for KC2 Dataset , c=50

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260
Methods Fit Test Fit Test Fit Test Fit Fit Test
CBR 0.2536 0 .7608 0.5023 0.2917 1 .4061 1 . 1 703 2.2865 2 .2731 1 .9115
TD 0.0048 0.2536 0.7189 0.4861 0.9738 0.7642 1 .7827 2 .2731 2.6654
LR 0.2823 1 .0191 0.2535 0.2593 1 . 1616 1 . 5721 2.3769 2.2885 1 .8923
LOC 0.2679 0.2584 0.4931 0.7130 1 . 1834 1 . 1485 2. 1827 2 .0923 2.0846
GP 0.0000 0.7177 0.0046 0.7083 1 . 1266 1 .7817 1 .8769 1 .0962 2.8577
ANN 0.0335 0.7512 0.3272 0.5602 1 . 1703 1 .8079 2 .3808 1 . 7269 2 . 1385
LBOOST 0.0048 0.4785 0.7281 0.2731 1 .3930 1 . 7948 2.2923 2 .6962 2.3423
RBM 0.0000 0 .4880 0 .0369 0.2778 0 .7249 1 .3930 1 .7731 2.0731 2.2808
BAG 0.0048 0 .4785 0.7419 0.0417 1 . 1747 1 . 7991 2 .2865 2 .7038 1 .5269
RSET 0.5167 0 .2823 0 .4931 0.7130 1 . 1747 0 .9258 1 .5712 2 .0731 2.6423
MCOST 0.0048 0.4785 0.7373 0.7315 1 .6245 0.9651 2.3981 2.9038 2.6615
ABOOST 0.0048 0.4785 0 .7235 0.5000 1 .2009 1 . 1485 3.2058 2 .6654 2.9192
DTABLE 0.0048 0 .4785 0.5115 0.5000 1 . 1747 1 .7904 2 .0731 2 .0962 2 .2846
ADT 0.0048 0.4785 0.4931 0.4769 0.9476 0.9214 2 . 1769 2 .4731 3.4077
SMO 0.2584 0.7416 0.7327 0.4954 1 . 1747 1 .3755 2 .2808 2 .2731 2 .4808
IB1 0.0287 0 .7560 0.9816 0.7685 0 .7773 1 .4279 2.6885 2 .2846 4.0462
IBK 0.0287 0.7703 0.7373 0.5093 1 . 1659 1 .3537 2 .1827 2 .0962 2 .2923
PART 0.0000 0 .4785 0.7327 1 . 1852 1 . 1834 2 .2926 2 .1846 2.4962 3.0615
ONER 0.0048 0.4785 0.4931 0.0231 1 . 1747 1 . 5852 2 . 1788 2 .2808 2.2808
JRIP 0.0048 0.4785 0.7512 0.5093 0.9607 1 . 5852 2 . 1769 2 .4923 1 .9346
RDR 0.0048 0 .4785 0.7373 0.0417 0.9607 1 . 7991 2. 1692 2.4692 1 .7615
J48 0.0000 0.4785 0.7373 0.9769 1 . 1834 2 .2926 2 . 1750 2 .4962 2 . 1731
NBAYES 0.2775 0.2679 0.7419 0.5046 0 .9651 1 .8122 2.3808 2 .2885 2 .2808
HPIPES 0.2727 0 .4928 0.4885 0.7222 1 . 1747 1 .3843 2.5942 2 .4808 2 . 1231
LWLS 0.0000 0.9569 0.7419 0.0556 1 . 1790 1 .7860 2 . 1788 2 .2769 2.8615
Average 0.0907 0.5512 0.5856 0.4930 1 . 1334 1 . 5071 2.2342 2.2948 2 .4365
Std. Dev 0. 1441 0.2055 0.2347 0.2927 0 .1884 0.4028 0.3175 0.3555 0 .5506
Median 0.0048 0 .4785 0.7235 0.5000 1 . 1747 1 .5721 2. 1827 2.2846 2.2846
Min 0.0000 0.2536 0.0046 0.0231 0.7249 0.7642 1 .5712 1 .0962 1 .5269
Max 0.5167 1 .0191 0.9816 1 . 1852 1 .6245 2 .2926 3.2058 2.9038 4.0462

100

Table 4.20: Two-Way ANOVA Models for JM1 Fit Datasets

I %;- I Source I DF I ss 1 F I p-value I
Method 24 0. 1428 0.0059 12 .56 0.0000
Dataset 4 8 .7528 2. 1882 4621 .05 0.0000

10 Error 96 0.0455 0.0005
Total 124 8.941 1
Method 24 0.4438 0.0185 1 1 .69 0.0000
Dataset 4 25. 1779 6.2945 3978.83 0.0000

20 Error 96 0 . 1519 0.0016
Total 124 25.7736
Method 24 0.9124 0.0380 1 1 .24 0.0000
Dataset 4 50.0842 12.5210 3700.81 0.0000

30 Error 96 0 .3248 0.0034
Total 124 51 .3214
Method 24 2 .3523 0.0980 10.81 0.0000
Dataset 4 125.3404 31 .3350 3456.85 0.0000

50 Error 96 0 .8702 0.0091
Total 124 128.5628

suggesting that significant amount of noise is removed at the different levels of noise

filtering. We can observe similar pattern in the Table 4.21 for the fit datasets of

KC2 systems as in the Table 4.20 for the JM1 system.

However, we are more interested in the results based on the predictive perfor-

mance of classifiers than those based on the quality of fit . Examining the ANOVA

results based on the predictive performance of the classifiers for both the software

systems (Tables 4 .22 and 4 .23) reveals that for all the cost ratios, the NECM values

across the datasets (with different noise filtering levels) are significantly different

(a:: = 1%) , indicated by p-values less than or equal to 0 .0001 , i .e. 0 .01%, similar to

the quality-of-fit results. But it is a different story when it comes to the classification

101

Table 4.21: Two-Way ANOVA Models for KC2 Fit Datasets

I ¥f- I Source I DF I
[

ss 1 F I p-value I
Method 24 0 . 1254 0.0052 2 . 17 0.0062
Dataset 3 4.4798 1 .4933 620.39 0.0000

10 Error 72 0 .1733 0.0024
Total 99 4.7786
Method 24 0.4074 0.0170 2 .05 0.0104
Dataset 3 13.2316 4.4105 532 .78 0.0000

20 Error 72 0.5960 0.0083
Total 99 14.2350
Method 24 0.8566 0.0357 2.00 0.0127
Dataset 3 26.6105 8.8702 497.83 0.0000

30 Error 72 1 .2829 0.0178
Total 99 28.7500
Method 24 2.2566 0.0940 1 .96 0.0150
Dataset 3 67.2502 22.4167 467.98 0.0000

50 Error 72 3.4488 0.0479
Total 99 72.9556

techniques. While all the classification techniques perform significantly differently

on the test datasets for the JM1 system, indicated by very low (in some cases lower

than 0.0001) p-values, for the KC2 system, the p-values are much higher for the

Classification Method factor, indicating that classification techniques are not signif-

icantly different at significance level a = 5% for all the four cost-ratios examined.

However, if the significance level were raised to 10%, the classification techniques

would be significantly different in terms of their predictive performance only for

the cost ratio of 10, as the corresponding p-value of 8 . 7% would be lower than the

specified significance level (a = 10%) .

In summary, the surprising finding is that at significance level a 5%,

102

Table 4.22: Two-Way ANOVA Models for JMl Test Datasets

I %f I Source I DF I ss 1 MS I F I p-value I
Method 24 0. 1376 0.0057 4.65 0.0000
Dataset 4 8 .3841 2 .0960 1698.48 0.0000

10 Error 96 0 .1 185 0.0012
Total 124 8.6402
Method 24 0.4834 0 .0201 3 .00 0.0000
Dataset 4 23.7994 5 .9499 886.33 0.0000

20 Error 96 0.6444 0 .0067
Total 124 24.9272
Method 24 1 .0532 0 .0439 2.60 0 .0005
Dataset 4 ' 47.0862 1 1 .7715 698 .28 0 .0000

30 Error 96 1 .6184 0 .0169
Total 124 49.7578
Method 24 2.8653 0 . 1 194 2 .33 0.0020
Dataset 4 117.2742 29.3185 573.23 0.0000

50 Error 96 4.9100 0 .0511
Total 124 125 .0495

Table 4.23: Two-Way ANOVA Models for KC2 Test Datasets

I %;- I Source I DF I ss 1 MS I F I p-value I
Method 24 0 . 1984 0 .0083 1 .53 0.0870
Dataset 3 4.3524 1 .4508 267.93 0.0000

10 Error 72 0.3899 0 .0054
Total 99 4.9406
Method 24 0.6924 0 .0289 1 .31 0 .1884
Dataset 3 12.6190 4 .2063 191.31 0 .0000

20 Error 72 1 .5831 0 .0220
Total 99 14.8945
Method 24 1 .5009 0 .0625 1 .25 0.2343
Dataset 3 25.2124 8 .4041 167.51 0 .0000

30 Error 72 3.6122 0 .0502
Total 99 30.3255
Method 24 4.0610 0. 1692 1 .20 0 .2743
Dataset 3 63.3793 2 1 . 1264 149.44 0 .0000

50 Error 72 10. 1784 0 . 1414
Total 99 77.6186

103

predictive performance of all the classification techniques is significantly different

on the datasets for the JM1 system, but not for the KC2 system.

The other finding that there was significant difference (a = 1%) between the

datasets with different levels of noise filtering statistically confirmed our intuitive

assumption that the classification performance would improve as more and more

noise is eliminated. This was also apparent as the NECM values went down when

we went from the most conservative level (23C) to the least conservative level (13C)

of noise filtering.

4.6 Multiple Pairwise Comparison Results

From ANOVA Tables for the JM1 system, it was found that the classification

methods we used performed significantly differently (a: = 0.01) from one another in

terms of quality-of-fit and predictive quality. On the contrary, ANOVA Tables for

the KC2 system revealed that the classification methods were significantly different

(a: = 0.01) in terms of their performance on only the fit dataset, and not the test

dataset . It was surprising to observe that for the KC2 system, the classification

methods used were not significantly different (a = 0.05) in terms of their predictive

quality.

From ANOVA tables, we only get to know whether or not there is a significant

difference among the given factors (classification techniques in our case) . But to get

an insight into which factor is different from which other factor(s) , if at all, it is

104

necessary to perform multiple pairwise comparison. In the results presented in

the following subsections, the classification techniques that were not significantly

different from each other at a given significance level have been clustered in one

group, indicated by an identical block letter assigned next to each such technique.

Different block letters indicate different clusters of classification methods. It is

noteworthy here that a classification technique can, in fact, belong to more than

one clusters . It should also be noted that in all these tables, the classification

methods being compared have been sorted in the descending order of the respective

mean value of NECM at the given cost ratio.

4.6.1 Multiple Pairwise Comparison Results for JMl System

Tables 4.24, 4.25, 4.26, and 4.27 show the results of multiple pairwise com

parisons in terms of quality-of-fit of the different classifiers, for significance level of

1%, 5%, and 10%, at the cost ratios of 10, 20, 30, and 50 respectively.

Let's understand these tables with the help of some examples. Take Ta

ble 4.24 for instance. In Table 4 .24, for significance level of 1%, we can say that

Hyperpipes and IB1 do not perform significantly differently from each other, and

belong to the same cluster (cluster A) of classifiers. If we were to compare the per

formance of Hyperpipes with that of LOC, we could say that they do not belong

to the same cluster, implying that they are significantly different in terms of their

performance at significance level of 1%. IB1 belongs to cluster A and LOC belongs

105

Table 4.24: Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=lO

Thkey Grouping
Q = 0 . 10 0: = 0.05 0: = 0.01 Mean N Methods

A A A 0.6108 5 HPIPES
B B B A 0.5580 5 IB1

c B c B B c 0.5451 5 LOC
c B c B B c 0.5437 5 ONER
c B c B B c 0.5430 5 NBAYES
c B c B B c D 0.5392 5 DTABLE
c B c B B c D 0.5354 5 LBOOST
c B D c B D B c D 0.5298 5 RDR
c B D c B D B c D 0.5265 5 MCOST
c B D c B D B c D 0.5237 5 SMO
c B D c B D B c D 0.5229 5 LR
c B D c B D B c D 0.5180 5 CBR
c B D c B D B c D 0.5168 5 JRIP
c B D c B D B c D 0.5165 5 ABOOST
c B D c B D B c D 0.5149 5 ANN
c B D c B D B E c D 0.5117 5 ADT
c B D c B D B E c D 0.5109 5 J48
c B D c B D B E c D 0.5102 5 LWLS
c D c E B D B E c D 0.5062 5 GP
c D c E D B E c D 0.5049 5 IBK
c D c E D B E c D 0.5041 5 PART
c E D c E D E c D 0.4982 5 RBM

E D E D E D 0.4825 5 BAG
F E E F E F 0.4556 5 RSET
F F F 0.4227 5 TD

to cluster C . This does not mean that they both are significantly different , because

there is another cluster (cluster B) , which both of them belong to. Hence, we can

say that IB1 and LOC are not significantly different in terms of their performance

at significance level of 1%. On the same line of argument, we can draw many com-

parisons between various classification techniques to see whether or not they are

significantly different from each other.

106

Table 4.25: Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=20

Thkey Grouping
0: = 0.10 0: = 0.05 0: = 0.01 Mean N Methods

A A A 1 .0404 5 HPIPES
B B A B A 0.9499 5 IB1

c B B c B 0.9275 5 ONER
c B B c B 0.9260 5 NBAYES
c B B c B 0.9257 5 LOC
c B B c B c 0.9181 5 DTABLE
c B B c D B c 0.9073 5 LBOOST
c B D B c D B c 0.9042 5 RDR
c B D B c D B c 0.8945 5 MCOST
c B D B c D B c 0.8927 5 SMO
c B D B c D B c 0.8917 5 LR
c B D B c D B c D 0.8811 5 ABOOST
c B D B c D B c D 0.8806 5 JRIP
c B D B c D B c D 0.8803 5 CBR
c B D B c D B c D 0.8726 5 ADT
c B D B c D B c D 0.8712 5 J48
c B D B E c D B c D 0.8685 5 ANN
c B D B E c D B c D 0.8669 5 LWLS
c E D B E c D B c D 0.8614 5 IBK
c E D B E c D B c D 0.8604 5 GP
c E D B E c D B c D 0.8585 5 PART
c E D E c D B c D 0.8446 5 RBM

E D E D c D 0.8164 5 BAG
F E E F E D 0.7746 5 RSET
F F E 0.7058 5 TD

It is evident from Tables 4.24, 4.25, 4.26, and 4 .27 that for the JM1 system,

Hyperpipes and IB1 perform consistently poorly across a range of cost-ratios, while

Treedisc and Roughsets exhibit very good quality-of-fit characteristics .

While quality-of-fit may give a practitioner certain degree of confidence in

the classification models built , it is the predictive quality of a classifier that really

matters. Tables 4 .28, 4.29, 4.30, and 4.31 show how the classification techniques

107

Table 4.26: Multiple Pairwise Comparison Results for JMl-Fit Datasets, c=30

Tukey Grouping
a = 0 .10 a = 0.05 a = 0.01 Mean N Methods

A A A 1 .4700 5 HPIPES
B A B A B A 1 .3418 5 IB1
B c B c B 1 .3112 5 ONER
B c B c B 1 .3090 5 NBAYES
B c B c B c 1 .3064 5 LOC
B c B c B c 1 .2971 5 DTABLE
B c D B c D B c 1 .2793 5 LBOOST
B c D B c D B c 1 .2786 5 RDR
B c D B c D B c 1 .2625 5 MCOST
B c D B c D B c 1 .2617 5 SMO
B c D B c D B c 1 .2606 5 LR
B c D B c D B c D 1 .2457 5 ABOOST
B c D B c D B c D 1 .2444 5 JRIP
B c D B c D B c D 1 .2425 5 CBR
B c D B c D B c D 1 .2336 5 ADT
B c D B E c D B c D 1 .2315 5 J48
B c D B E c D B c D 1 .2235 5 LWLS
B E c D B E c D B c D 1 .2221 5 ANN
B E c D B E c D B c D 1 .2178 5 IBK
B E c D B E c D B c D 1 .2146 5 GP
B E c D B E c D B c D 1 .2128 5 PART

E c D E c D B c D 1 . 1910 5 RBM
E D E D c D 1 . 1503 5 BAG
E F E F E D 1 .0936 5 RSET

F F E 0.9888 5 TD

compare with each other in terms of predictive quality. It is evident from these tables

that Hyperpipes consistently performs very poorly as compared to other classifiers,

whereas Bagging, Adaboost , and MetaCost are among the classifiers that perform

consistently well on the test data across a range of cost-ratios.

108

Table 4.27: Multiple Pairwise Comparison Results for JMl-Fit Datasets, c=50

Tukey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 2.3291 5 HPIPES
B A B A B A 2. 1257 5 IB1
B c B c B A 2 .0787 5 ONER
B c B c B A c 2.0750 5 NBAYES
B c B c B c 2.0677 5 LOC
B c B c B c 2.0549 5 DTABLE
B c D B c D B c 2.0274 5 RDR
B c D B c D B c 2 .0232 5 LBOOST
B c D B c D B c 1 .9996 5 SMO
B c D B c D B c 1 .9985 5 MCOST
B c D B c D B c 1 .9983 5 LR
B c D B c D B D c 1 .9749 5 ABOOST
B c D B c D B D c 1 .9721 5 JRIP
B c D B c D B D c 1 .9670 5 CBR
B c D B E c D B D c 1 .9555 5 ADT
B c D B E c D B D c 1 .9521 5 J48
B E c D B E c D B D c 1 .9369 5 LWLS
B E c D B E c D B D c 1 .9306 5 IBK
B E c D B E c D B D c 1 .9293 5 ANN
B E c D B E c D B D c 1 .9230 5 GP
B E c D B E c D B D c 1 .9214 5 PART

E c D E c D B D c 1 .8837 5 RBM
E D E D D c 1 .8181 5 BAG
E F E F E D 1 . 7316 5 RSET

F F E 1 .5550 5 TD

4.6.2 Multiple Pairwise Comparison Results for KC2 System

Multiple pairwise comparison results for KC2 system, presented in Tables 4.32,

4.33, 4 .34, and 4.35 reveal a rather different trend from the one exhibited by the re-

suits for the JMl system. MetaCost, LogitBoost, and Bagging perform consistently

poorly in terms of quality-of-fit, with MetaCost being the worst . GP appears to

consistently outperform all the classifiers as far as the quality-of-fit goes.

109

Table 4.28: Multiple Pairwise Comparison Results for JM1-Test Datasets, c=lO

Tukey Grouping
a = 0 . 10 a = 0.05 a = 0.01 Mean N Methods

A A A 0.6198 5 HPIPES
B A B A B A 0.5646 5 NBAYES
B A B A B A 0.5632 5 RBM
B A c B A B A 0.5571 5 LOC
B A c B A B A 0.5550 5 ONER
B A c B A B A 0.5522 5 SMO
B A c B A B A 0.5509 5 RSET
B A c B A B A 0.5487 5 GP
B A c B A B A 0.5432 5 IB1
B A c B A B A 0.5424 5 TD
B A c B A B A 0.5423 5 DTABLE
B c B A B A c 0.5362 5 ADT
B c B B A c 0.5349 5 ANN
B c B B A c 0.5349 5 LR
B c B B A c 0.5298 5 LBOOST
B c B c B A c 0.5271 5 J48
B D c B c B c 0.5202 5 JRIP
B D c B c B c 0.5197 5 RDR
B D c B c B c 0.5146 5 IBK
B D c B c B c 0.5120 5 CBR
B D c B c B c 0.5033 5 LWLS
B D c B c B c 0.4962 5 PART

D c B c B c 0.4843 5 MCOST
D c B c B c 0.4831 5 ABOOST
D c c 0.4459 5 BAG

As far as the predictive quality is concerned for KC2, the classification tech-

niques perform differently only at significance level of 10%, at the cost ratio of 10

(Table 4.36) . For all other cost-ratios and significance levels, statistically speak-

ing, there is no significant difference 5 in the predictive performance of the different

5 That there is no significant difference in the performance of two classifiers does not imply that
the two classifiers are misclassifying identical instances.

110

Table 4.29: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=20

Tukey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 1 .0560 5 HPIPES
B A B A B A 0.9680 5 RBM
B A B A B A 0.9676 5 NBAYES
B A B A B A 0.9495 5 LOC
B A B A B A 0.9483 5 SMO
B A B A B A 0.9441 5 GP
B A B A B A 0.9436 5 RSET
B A B A c B A 0.9350 5 TD
B A B A c B A 0.9316 5 ADT
B A c B A c B A 0.9285 5 ONER
B A c B A c B A 0.9152 5 IB1
B A c B A c B A 0.9152 5 J48
B A c B A c B A 0.9148 5 DTABLE
B A c B A c B A 0 .9134 5 LR
B A c B A c B A 0.9120 5 ANN
B A c B A c B A 0.8929 5 LBOOST
B A c B A c B A 0.8823 5 IBK
B A c B A c B A 0.8782 5 JRIP
B A c B A c B A 0.8751 5 CBR
B c B A c B A 0.8679 5 RDR
B c B c B A 0.8495 5 LWLS
B c B c B 0 .8235 5 PART
B c B c B 0.8159 5 ABOOST
B c B c B 0.8023 5 MCOST

c c B 0 .7478 5 BAG

classifiers for the KC2 system. It is evident from Tables 4.37, 4.38 , and 4 .39 that

all the classification techniques belong to the same cluster, indicating that there

is no significant difference in their performance at the given significance level and

cost-ratio.

1 1 1

Table 4.30: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=30

Thkey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 1 .4922 5 HPIPES
B A B A B A 1 .3727 5 RBM
B A B A B A 1 .3707 5 NBAYES
B A B A c B A 1 .3444 5 SMO
B A B A c B A 1 .3419 5 LOC
B A B A c B A 1 .3395 5 GP
B A c B A c B A 1 .3363 5 RSET
B A c B A c B A 1 .3276 5 TD
B A c B A c B A 1 .3269 5 ADT
B A c B A c B A 1 .3032 5 J48
B A c B A c B A 1 .3019 5 ONER
B A c B A c B A 1 .2920 5 LR
B A c B A c B A 1 .2892 5 ANN
B A c B A c B A 1 .2873 5 IB1
B A c B A c B A 1 .2873 5 DTABLE
B A c B A c B A 1 .2561 5 LBOOST
B A c B A c B A 1 .2499 5 IBK
B A c B A c B A 1 .2381 5 CBR
B A c B A c B A 1 .2362 5 JRIP
B A c B A c B A 1 .2161 5 RDR
B c B A c B A 1 . 1956 5 LWLS
B c B c B A 1 . 1508 5 PART
B c B c B A 1 . 1487 5 ABOOST
B c B c B 1 . 1202 5 MCOST

c c B 1 .0496 5 BAG

4.6.3 Discussion

From the results presented here, it can be observed that there is a lot of

overlap between different clusters, and that classification methods performing well

on a particular dataset may not necessarily perform as well on some other dataset (s) ,

even if the datasets are from the same domain.

And hence, in our opinion, basing the noise elimination procedure on a few

112

Table 4.31: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=50

Tukey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 2.3646 5 HPIPES
B A B A B A 2 .1822 5 RBM
B A B A B A 2 .1768 5 NBAYES
B A c B A B A 2. 1365 5 SMO
B A c B A B A 2.1304 5 GP
B A c B A B A 2 .1268 5 LOC
B A c B A B A 2 .1218 5 RSET
B A c B A B A 2 .1 176 5 ADT
B A c B A B A 2 .1 129 5 TD
B A c B A B A 2.0793 5 J48
B A c B A B A 2.0490 5 LR
B A c B A B A 2.0488 5 ONER
B A c B A B A 2.0434 5 ANN
B A c B A B A 2.0323 5 DTABLE
B A c B A B A 2.0313 5 IB1
B A c B A B A 1 .9851 5 IBK
B A c B A B A 1 .9824 5 LBOOST
B A c B A B A 1 .9643 5 CBR
B A c B A B A 1 .9521 5 JRIP
B A c B A B A 1 .9126 5 RDR
B A c B A B A 1 .8880 5 LWLS
B c B B A 1 .8142 5 ABOOST
B c B B A 1 .8053 5 PART
B c B B A 1 . 7562 5 MCOST

c B B 1 .6534 5 BAG

selected (base-level) classification techniques (as in [9 , 10]) may not be the most

appropriate strategy, for the few selected classification techniques may or may not

be the most appropriate ones for the data at hand because of possible limitations

of the associated representation language. This problem is analogous to situations

in which removing outliers does little to improve the quality of fit with a first-order

linear regression model if the correct model of the data is quadratic.

113

Table 4.32: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=lO

Tukey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 0.3352 4 MCOST
B A B A A 0.3053 4 LBOOST
B A B A A 0.2997 4 BAG
B A B A B A 0.2921 4 ABOOST
B A B A B A 0 .2861 4 J48
B A B A B A 0.2849 4 PART
B A B A B A 0.2844 4 NBAYES
B A B A B A 0 .2843 4 HPIPES
B A B A B A 0 .2837 4 CBR
B A B A B A 0.2822 4 SMO
B A B A B A 0 .2796 4 IB1
B A B A c B A 0.2778 4 JRIP
B A B A c B A 0.2736 4 RSET
B A B A c B A 0 .2698 4 LWLS
B A c B A c B A 0.2686 4 RDR
B A c B A c B A 0 .2662 4 LOC
B A c B A c B A 0 .2658 4 IBK
B A c B A c B A 0 .2611 4 LR
B A c B A c B A 0 .2566 4 TD
B A c B A c B A 0 .2548 4 ONER
B A c B A c B A 0.2517 4 DTABLE
B A c B A c B A 0 .2513 4 ADT
B A c B A c B A 0.2424 4 ANN
B c B c B A 0. 1931 4 RBM

c c B 0 . 1462 4 GP

Secondly, there may not be much to choose between different classifiers in

terms of their performance, evinced by the big overlaps of clusters of classifiers

for JMl and (in most cases) no significant difference in predictive performance of

classifiers for KC2. Trying to explore new classification techniques that may (not

necessarily) marginally improve the classification accuracy may not be worth the

effort jf the training data are noisy to begin with. In our opinion, instead of trying

1 14

Table 4.33: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=20

Tukey Grouping
a: = 0.10 a: = 0.05 a: = 0.01 Mean N Methods

A A A 0.5808 4 MCOST
B A B A A 0.5303 4 LBOOST
B A B A B A 0.5139 4 BAG
B A B A B A 0.5062 4 ABOOST
B A B A c B A 0.4906 4 J48
B A B A c B A 0.4900 4 CBR
B A B A c B A 0.4895 4 PART
B A B A c B A 0.4892 4 HPIPES
B A B A c B A 0.4891 4 SMO
B A B A c B A 0.4804 4 NBAYES
B A c B A c B A 0.4714 4 JRIP
B A c B A c B A 0.4713 4 RSET
B A c B A c B A 0.4647 4 LWLS
B A c B A c B A 0.4642 4 IB1
B A c B A c B A 0.4622 4 RDR
B A c B A c B A 0.4520 4 LOC
B A c B A c B A 0.4511 4 IBK
B A c B A c B A 0.4449 4 LR
B A c B A c B A 0 .4406 4 TD
B A c B A c B A 0.4381 4 ONER
B A c B A c B A 0.4334 4 ADT
B A c B A c B A 0.4254 4 DTABLE
B A c B A c B A 0.3854 4 ANN
B c B c B A 0.3220 4 RBM

c c B 0.2489 4 GP

to explore the use of state-of-the-art classification technique(s) , which may (if at all)

improve the classification accuracy by a small margin, one should strive to ensure

that the training data is noise-free using appropriate noise-handling techniques.

The improvement in classification accuracy after noise elimination is much more

significant than (possible) marginal improvement in accuracy with the use of a

state-of-the-art technique.

115

Table 4.34: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=30

Thkey Grouping
0: = 0.10 0: = 0.05 0: = 0.01 Mean N Methods

A A A 0.8264 4 MCOST
B A B A B A 0.7554 4 LBOOST
B A B A B A 0.7280 4 BAG
B A B A B A 0.7203 4 ABOOST
B A B A c B A 0.6962 4 CBR
B A B A c B A 0.6960 4 SMO
B A B A c B A 0.6952 4 J48
B A B A c B A 0.6942 4 HPIPES
B A B A c B A 0.6940 4 PART
B A c B A c B A 0.6763 4 NBAYES
B A c B A c B A 0.6690 4 RSET
B A c B A c B A 0.6650 4 JRIP
B A c B A c B A 0.6596 4 LWLS
B A c B A c B A 0.6558 4 RDR
B A c B A c B A 0.6488 4 IB1
B A c B A c B A 0.6377 4 LOC
B A c B A c B A 0.6364 4 IBK
B A c B A c B A 0.6288 4 LR
B A c B A c B A 0.6246 4 TD
B A c B A c B A 0.6215 4 ONER
B A c B A c B A 0.6155 4 ADT
B A c B A c B A 0.5992 4 DTABLE
B A c B A c B A 0.5284 4 ANN
B c B c B A 0.4509 4 RBM

c c B 0.3515 4 GP

4. 7 Z-Test Comparison Results of Two Proportions

As mentioned in Section 3.5 , Z-test was carried out to compare two differ-

ent proportions. The two proportions being compared are the proportions of the

instances identified as noisy by two different noise filtering approaches.

First , we compared the proportion of the instances identified as noisy (and

116

Table 4.35: Multiple Pairwise Comparison Results for KC2-Fit Datasets , c=50

Tukey Grouping
a = 0.10 a = 0.05 a = 0.01 Mean N Methods

A A A 1 .3176 4 MCOST
B A B A B A 1 .2055 4 LBOOST
B A B A B A 1 . 1563 4 BAG
B A B A B A 1 . 1486 4 ABOOST
B A B A c B A 1 . 1097 4 SMO
B A B A c B A 1 . 1088 4 CBR
B A c B A c B A 1 . 1042 4 J48
B A c B A c B A 1 . 1042 4 HPIPES
B A c B A c B A 1 . 1031 4 PART
B A c B A c B A 1 .0682 4 NBAYES
B A c B A c B A 1 .0644 4 RSET
B A c B A c B A 1 .0522 4 JRIP
B A c B A c B A 1 .0495 4 LWLS
B A c B A c B A 1 .0430 4 RDR
B A c B A c B A 1 .0180 4 IB1
B A c B A c B A 1 .0092 4 LOC
B A c B A c B A 1 .0070 4 IBK
B A c B A c B A 0.9964 4 LR
B A c B A c B A 0.9926 4 TD
B A c B A c B A 0.9883 4 ONER
B A c B A c B A 0.9796 4 ADT
B A c B A c B A 0.9468 4 DTABLE
B A c B A c B A 0.8145 4 ANN
B c B c B A 0.7087 4 RBM

c c B 0.5568 4 GP

hence eliminated) by our consensus filter (an ensemble-classifier filter with consen-

sus of 25 classification techniques) to the proportion of the instances identified as

noisy by Brodley and Utgoff's [10] consensus filter (an ensemble-classifier filter with

consensus of 5 classification techniques : J48, IBk, SMO, JRIP, and LWLStump) .

For the JMl software system, our consensus filter removed only 321 out of the 8850

instances, as compared to 1425 out of 8850 instances removed using Brodley and

1 1 7

Table 4.36: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=10

Tukey Grouping
a = 0.10 Mean N Methods

A 0.4360 4 IB1
B A 0.4137 4 PART
B A 0.3781 4 J48
B A 0.3461 4 GP
B A 0.3443 4 ANN
B A 0.3358 4 LWLS
B A 0.3165 4 ABOOST
B A 0.3137 4 SMO
B A 0.3102 4 IBK
B A 0.3078 4 LBOOST
B A 0.3043 4 ADT
B A 0.3035 4 NBAYES
B A 0.3027 4 DTABLE
B A 0.2999 4 MCOST
B A 0.2994 4 HPIPES
B A 0.2962 4 LR
B A 0.2868 4 JRIP
B A 0.2828 4 RBM
B A 0.2794 4 RSET
B A 0.2792 4 CBR
B A 0.2709 4 TD
B A 0.2675 4 RDR
B A 0.2674 4 ONER
B A 0.2614 4 LOC
B 0.2473 4 BAG

Utgoff's filter. When these two proportions were compared using Z-test [115] , the

computed z-value came out to be of a very high magnitude (as high as 27.82) , indi-

eating that the two proportions are statistically different at significance level of 1%.

This leads us to conclude that our consensus filtering approach (with twenty five

classification techniques) is, statistically speaking, much more conservative than the

consensus filtering approach with only five classification techniques (as in [10]) .

1 18

Table 4.37: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=20

Thkey Grouping
a: = 0 . 10 Mean N Methods

A 0 .7644 4 IB1
A 0.7489 4 PART
A 0.6536 4 J48
A 0.6387 4 GP
A 0.6056 4 LWLS
A 0.5869 4 ANN
A 0.5585 4 ADT
A 0.5536 4 SMO
A 0.5527 4 ABOOST
A 0.5428 4 DTABLE
A 0.5405 4 IBK
A 0.5364 4 LBOOST
A 0.5317 4 NBAYES
A 0.5272 4 MCOST
A 0.5197 4 HPIPES
A 0.5186 4 LR
A 0.4968 4 JRIP
A 0.4948 4 RSET
A 0.4896 4 RBM
A 0.4735 4 ONER
A 0.4678 4 CBR
A 0.4637 4 TD
A 0.4588 4 LOC
A 0.4557 4 RDR
A . 0 .4258 4 BAG

Similarly, we also compared the proportions of the instances identified as

noisy by the ensemble-classifier filter with consensus of five [10] and three [9] (J48,

IBk, SMO) classification techniques. For the JM1 software system, consensus filter

with three classification techniques removed 1696 out of 8850 instances, as compared

to 1425 out of 8850 instances removed by consensus filter with five classification tech-

niques. The Z-test for comparing these two proportions also resulted in a relatively

119

Table 4.38: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=30

Tukey Grouping
(); = 0.10 Mean N Methods

A 1 .0928 4 IB1
A 1.0841 4 PART
A 0.9312 4 GP
A 0.9292 4 J48
A 0.8754 4 LWLS
A 0.8294 4 ANN
A 0.8127 4 ADT
A 0.7935 4 SMO
A 0.7890 4 ABOOST
A 0.7830 4 DTABLE
A 0.7708 4 IBK
A 0.7650 4 LBOOST
A 0.7600 4 NBAYES
A 0.7545 4 MCOST
A 0.7409 4 LR
A 0.7400 4 HPIPES
A 0.7101 4 RSET
A 0.7068 4 JRIP
A 0.6964 4 RBM
A 0.6797 4 ONER
A 0.6566 4 TD
A 0.6564 4 CBR
A 0.6563 4 LOC
A 0.6438 4 RDR
A 0.6044 4 BAG

higher value of z (5.3449 to be precise) , suggesting that these two proportions are

statistically different at significance level of 1%.

From the two comparisons described here above , it is clear that as the number

of classifiers for an ensemble-classifier consensus filter increases , the filter becomes

more conservative at eliminating noise. A relatively more conservative approach to

noise elimination may be of interest especially when the training data are scarce.

120

Table 4.39: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=50

Tukey Grouping
a = 0 . 10 Mean N Methods·

A 1 .7544 4 PART
A 1 . 7497 4 IB1
A 1 .5163 4 GP
A 1 .4802 4 J48
A 1 .415 4 LWLS
A 1 .321 1 4 ADT
A 1 .3144 4 ANN
A 1 .2733 4 SMO
A 1 .2634 4 DTABLE
A 1 .2615 4 ABOOST
A 1 .2314 4 IBK
A 1 .2222 4 LBOOST
A 1 .2164 4 NBAYES
A 1 .2091 4 MCOST
A 1 . 1857 4 LR
A 1 . 1806 4 HPIPES
A 1 . 1408 4 RSET
A 1 . 1269 4 JRIP
A 1 . 1099 4 RBM
A 1 .0919 4 ONER
A 1 .05 1 1 4 LOC
A 1 .0423 4 TD
A 1 .0336 4 CBR
A 1 .0202 4 RDR
A 0.9615 4 BAG

In such cases, an ensemble-classifier consensus filter with relatively higher number

of classifiers could be the answer. Besides this, using ensemble-classifier filter with

relatively large number of (base-level) classifiers can also facilitate in achieving the

desired level of conservativeness. Also, intuitively, the level of confidence in the noise

removal process increases when the process is based on relatively large number of

classifiers, as the possibility of results getting influenced by a few classifiers with

121

certain bias towards the training data is slimmer.

4.8 Predictive Performance Results

This section presents the predictive performance results of different classifica

tion techniques when the models built from the JMl training datasets were applied

to the KC2 datasets and vice versa (Tables 4.40 to 4.94) . Results for one of the

classification techniques (ANN) were not available, and hence are not presented

herein.

4.8.1 Predictive Performance of JMl Models on KC2 Datasets

This subsection provides the results of predictive quality of the classification

models built on the JMl-Fit datasets and evaluated on the KC2 datasets. Predictive

performance of classifiers is presented in terms of the two misclassification error rates

(Type I and Type II) in Tables 4.40 to 4.45. For each noise filtering level, KC2-Fit

and KC2-Test were combined to create one evaluation set each.

122

Table 4.40: Predictive Quality of JM1-8850 models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2-13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II

CBR 22.95% 31 . 13% 16.25% 25.26% 14.49% 21 .59% 12.65% 19.77%

TD 27.78% 20.75% 23.42% 10.53% 31 .88% 5.68% 30.42% 6.98%

LR 18.36% 27.36% 7. 16% 18 .95% 3.48% 12.50% 2. 1 1% 10.47%

LOC 23.19% 18.87% 12 .40% 9.47% 7.83% 3.41% 5.42% 2.33%

GP 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 6.63% 2.33%

LBOOST 20.29% 23.58% 9.64% 15.79% 5.22% 10.23% 4.82% 9.30%

RBM 22.46% 24.53% 12 .40% 16.84% 8.41% 10.23% 6.33% 10.47%

BAG 18. 12% 26.42% 1 1 .29% 16.84% 7.54% 13.64% 6.33% 12.79%

RSET 20.05% 29.25% 10. 19% 22. 1 1% 6.67% 15.91% 4.22% 13.95%

MCOST 17.87% 34.91% 10.74% 29.47% 8.41% 25.00% 7.53% 24.42%

ABOOST 27.29% 37.74% 23.42% 34. 74% 22.61% 31 .82% 20.48% 30.23%

DTABLE 23.91% 25.47% 13.50% 17.89% 9.86% 1 1 .36% 8. 13% 10.47%

ADT 24.64% 21 .70% 14.88% 13 .68% 11 .30% 7.95% 9.94% 6.98%

SMO 18.60% 24.53% 7.16% 15.79% 2.90% 9.09% 2 . 11% 8. 14%

IB1 28.26% 49.06% 24.52% 44.21% 22.90% 43.18% 22.29% 44. 19%

IBK 18.84% 28.30% 9.64% 22. 1 1% 6.67% 15.91% 5.42% 15.12%

PART 20.29% 33.96% 13.77% 26.32% 1 1 .30% 22.73% 10.24% 22.09%

ONER 22.95% 25.47% 13.50% 17.89% 9.86% 1 1 .36% 7.83% 11 .63%

JRIP 22.46% 24.53% 12.95% 17.89% 9.28% 1 1 .36% 8.43% 10.47%

RDR 31 . 16% 19.81% 22.59% 13.68% 20.00% 9.09% 18.67% 8. 14%

J48 17.63% 31 . 13% 1 1 .85% 25.26% 9.57% 20.45% 8. 13% 19.77%

NBAYES 18.84% 19.81% 7.44% 10.53% 2.90% 4.55% 2.41% 2.33%

HPIPES 66. 18% 24.53% 64.46% 24.21% 65.51% 18. 18% 67.77% 17.44%

LWLS 21 .01% 29.25% 13.22% 23. 16% 10.43% 18. 18% 9.34% 18.60%

123

Table 4.41: Predictive Quality of JMl-4425 models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2-13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II

CBR 22.71% 32.08% 15.70% 27.37% 14.20% 25.00% 12.95% 23.26%

TD 24. 15% 19.81% 22.31% 10.53% 26.67% 5 .68% 26.51% 5.81%

LR 20.77% 21 .70% 9.64% 12 .63% 5.51% 5.68% 3.31% 4.65%

LOC 23. 19% 18.87% 12.40% 9.47% 7.83% 3.41% 5.42% 2.33%

GP 20.77% 18.87% 9.64% 10.53% 5.80% 4.55% 4.22% 4.65%

LBOOST 23.43% 19.81% 13.22% 11 .58% 8.99% 5.68% 7.23% 4.65%

RBM 20.29% 19.81% 9.09% 10.53% 4.64% 4.55% 2.71% 4.65%

BAG 23.43% 21 .70% 13.77% 14.74% 10. 14% 1 1 .36% 8. 13% 10.47%

RSET 19.32% 23.58% 8.54% 15.79% 5.22% 9.09% 3.61% 6.98%

MCOST 28.74% 17.92% 19.56% 10.53% 15.94% 5.68% 14.16% 5.81%

ABOOST 29.71% 32.08% 24.79% 27.37% 23.77% 23.86% 22.89% 22.09%

DTABLE 22.95% 23.58% 12 .95% 14.74% 8.70% 9.09% 6.63% 8. 14%

ADT 19.81% 24.53% 8.82% 16.84% 4.64% 1 1 .36% 4.22% 10.47%

SMO 18.36% 26.42% 7.16% 17.89% 2.90% 1 1 .36% 2.41% 9.30% .

IB1 25.85% 36. 79% 21 .49% 32.63% 20.29% 30.68% 19.58% 30.23%

IBK 20.05% 27.36% 9.64% 18.95% 5 .22% 12.50% 3.61% 1 1 .63%

PART 29.71% 21 .70% 23. 14% 14.74% 20.00% 12.50% 18.07% 11 .63%

ONER 23.91% 23.58% 13.77% 14.74% 10.43% 9.09% 8 . 13% 8 .14%

JRIP 24.64% 18.87% 14.33% 11 .58% 10. 14% 5.68% 8.43% 5.81%

RDR 31 .88% 20.75% 22.31% 14.74% 18.55% 9.09% 17. 17% 8. 14%

J48 17.87% 25.47% 6.89% 16.84% 2.61% 1 1 .36% 2 . 1 1% 10.47%

NBAYES 18.60% 21 .70% 7.16% 12 .63% 2.61% 6.82% 1 .81% 4.65%

HPIPES 56.04% 30. 19% 52.07% 26.32% 51 .59% 20.45% 52.41% 19.77%

LWLS 21 .26% 24.53% 1 1 .29% 17.89% 7.54% 1 1 .36% 6.02% 10.47%

124

Table 4.42: Predictive Quality of JM1-23C models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2-13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II I

CBR 18 .12% 32.08% 10.47% 26.32% 8.70% 22.73% 7.23% 20.93%

TD 22.22% 25.47% 16.80% 8.42% 25.22% 3.41% 24. 10% 2.33%

LR 21 .98% 18.87% 1 1 .02% 9.47% 6.38% 3.41% 3.92% 3.49%

LOC 23. 19% 18.87% 12 .40% 9.47% 7.83% 3.41% 5.42% 2.33%

GP 24.40% 20.75% 14.05% 1 1 .58% 9.57% 5.68% 6.63% 4.65%

LBOOST 26.81% 18.87% 16.80% 9.47% 12.46% 3.41% 9.34% 3.49%

RBM 22.22% 22.64% 1 1 .29% 14.74% 7.25% 9.09% 6.02% 9.30%

BAG 23. 19% 25.47% 13.50% 17.89% 9.86% 12.50% 7.23% 10.47%

RSET 20.05% 25.47% 10.47% 16.84% 6.67% 1 1 .36% 5.42% 10.47%

MCOST 22.22% 29.25% 13.50% 22. 1 1% 10.72% 15 .91% 9.04% 13.95%

ABOOST 19.57% 32.08% 1 1 .29% 25.26% 9.28% 20.45% 7.53% 18.60%

DTABLE 19.57% 23.58% 10. 19% 14.74% 6.67% 9.09% 4.82% 6.98%

ADT 26.33% 21 .70% 16.25% 12 .63% 11 .88% 6.82% 8.73% 6.98%

SMO 17.63% 23.58% 6.34% 14.74% 2.32% 7.95% 2 . 1 1% 5.81%

IB1 21 .50% 33.96% 14.88% 28.42% 11 .88% 23.86% 10.24% 23.26%

IBK 18.60% 23.58% 7.44% 14.74% 2.90% 7.95% 1 .20% 6.98%

PART 20.77% 27.36% 1 1 .29% 20.00% 8.12% 14.77% 7.23% 12.79%

ONER 22.95% 18.87% 12. 12% 10 .53% 7.54% 4.55% 5 . 12% 3.49%

JRIP 25.12% 27.36% 15.98% 20.00% 13.04% 14.77% 11 .45% 15.12%

RDR 20.05% 22.64% 9.09% 13.68% 4.64% 6.82% 3.01% 6.98%

J48 25. 12% 23.58% 15 .70% 16.84% 12.75% 12.50% 11 .45% 11 .63%

NBAYES 20.77% 19.81% 9.64% 10.53% 5.22% 4.55% 3.01% 2.33%

HPIPES 19.81% 24.53% 8.54% 15 .79% 3.77% 10.23% 2.71% 8. 14%

LWLS 22.95% 22.64% 13.50% 14.74% 9.86% 9.09% 7.53% 8. 14%

125

Table 4.43: Predictive Quality of JM1-20C models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2- 13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II

CBR 18.60% 28.30% 10.19% 22. 1 1% 8.41% 18. 18% 6.63% 17.44%

TD 14.01% 33.96% 1 1 .02% 15.79% 12.46% 6.82% 10.54% 6.98%

LR 22.95% 18.87% 12 .40% 9.47% 7.83% 3.41% 5 .12% 3.49%

LOC 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 7.23% 2.33%

GP 22.95% 17.92% 12. 12% 9.47% 7.54% 3.41% 5.42% 3.49%

LBOOST 21 .50% 25.47% 1 1 .29% 16.84% 7.54% 10.23% 5 .72% 10.47%

RBM 20.05% 22.64% 8.82% 13.68% 4.64% 7.95% 3.31% 6.98%

BAG 21 .98% 27.36% 1 1 .85% 20.00% 7.83% 13.64% 6.33% 1 1 .63%

RSET 18.84% 22.64% 7.44% 13.68% 3. 19% 7.95% 1 .20% 6.98%

MCOST 21 .74% 29.25% 11 . 85% 22. 1 1% 8.41% 15.91% 6.93% 15. 12%

ABOOST 18 .12% 25.47% 8.82% 18.95% 6.09% 12.50% 4.82% 10.47%

DTABLE 21 .01% 20.75% 1 1 .02% 12 .63% 6.96% 7.95% 5. 12% 6.98%

ADT 20.53% 24.53% 10.47% 16.84% 6.67% 10.23% 4.52% 9.30%

SMO 20.05% 22.64% 9.09% 13.68% 4.64% 6.82% 2.41% 5.81%

IB1 18.36% 27.36% 9.64% 21 .05% 7.25% 15.91% 5.42% 15. 12%

IBK 20.77% 23.58% 9.92% 15.79% 6.38% 9.09% 3.92% 8. 14%

PART 16.67% 32.08% . 7.44% 25.26% 4.93% 19.32% 3.92% 18.60%

ONER 24.64% 18.87% 14.05% 9.47% 9.57% 3.41% 6.93% 3.49%

JRIP 18.36% 28.30% 8.26% 21 .05% 4.35% 14.77% 3.01% 12 .79%

RDR 24.40% 18.87% 14.05% 11 .58% 9.57% 5 .68% 8.43% 4.65%

J48 19.32% 29.25% 9.92% 22. 1 1% 6.09% 17.05% 5. 12% 15. 12%

NBAYES 20.05% 21 . 70% 8.82% 12 .63% 4.35% 6.82% 2.71% 4.65%

HPIPES 17.63% 27.36% 7.99% 18 .95% 4.35% 12.50% 3.31% 1 1 .63%

LWLS 21 .26% 22.64% 1 1 .85% 15.79% 8.70% 10.23% 6.93% 8.14%

126

Table 4.44: Predictive Quality of JM1-17C models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2-13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II

CBR 19.32% 30. 19% 10.74% 22. 1 1% 8.41% 1 7.05% 6.33% 15. 12%

TD 14.25% 33.96% 1 1 .29% 15 .79% 7.83% 4.55% 8.73% 1 . 16%

LR 23.43% 19.81% 12.67% 10.53% 8 .12% 3.41% 5 . 12% 3.49%

LOC 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 7.23% 2.33%

GP 21 .98% 19.81% 1 1 .02% 10.53% 6.38% 4.55% 4.22% 3.49%

LBOOST 24. 15% 18.87% 13.77% 9.47% 9.57% 3.41% 7.23% 3.49%

RBM 19.08% 25.47% 8.82% 13.68% 3.48% 10.23% 1.81% 8.14%

BAG 22.46% 19.81% 1 1 .85% 1 1 .58% 7.25% 4.55% 5. 12% 3.49%

RSET 21 .74% 20. 75% 1 1 .02% 13.68% 6.67% 7.95% 5 .72% 6.98%

MCOST 22.95% 23.58% 12.95% 15.79% 8 .70% 9 .09% 6.63% 8. 14%

ABOOST 21 .01% 25.47% 10.47% 17.89% 6.96% 1 1 .36% 5. 12% 10.47%

DTABLE 23. 19% 25.47% 13.22% 16.84% 9.57% 10.23% 7.23% 9.30%

ADT 21 .26% 20. 75% 10.74% 1 1 .58% 6.67% 4.55% 4.82% 3.49%

SMO 21 .26% 22.64% 10.47% 13.68% 6.09% 6.82% 4.22% 5.81%

IB1 21 .98% 26.42% 12.40% 20.00% 8.70% 13.64% 7.23% 12.79%

IBK 22.95% 22.64% 12.40% 13.68% 8.41% 6.82% 6.63% 5.81%

PART 21 .98% 26.42% 1 1 .57% 18.95% 7.83% 12.50% 6.93% 1 1 .63%

ONER 26.33% 18.87% 15.98% 9.47% 1 1 .59% 3.41% 8.73% 3.49%

JRIP 21 .74% 19.81% 10.74% 10.53% 6.38% 4.55% 4.52% 4.65%

RDR 20.05% 20. 75% 9.64% 12.63% 5.51% · 5.68% 3.31% 5.81%

J48 21 .26% 21 .70% 1 1 .29% 13.68% 8.41% 7.95% 6.33% 6.98%

NBAYES 21 .01% 19.81% 9.92% 10.53% 5.51% 4.55% 3.31% 3.49%

HPIPES 28.02% 18.87% 17.91% 11 .58% 13.62% 5 .68% 12.65% 4.65%

LWLS 22.22% 23.58% 1 1 .85% 14.74% 7.83% 7.95% 6.33% 8. 14%

127

Table 4.45: Predictive Quality of JM1-13C models on KC2 datasets

KC2-520 KC2-23C KC2-17C KC2-13C

Methods Type I Type II Type I Type II Type I Type II Type I Type II

CBR 19.32% 31 . 13% 9.64% 23. 16% 6.67% 17.05% 5 . 12% 16.28%

TD 14.49% 31 . 13% 8.82% 17.89% 8.12% 5.68% 6.33% 4.65%

LR 21 .50% 19.81% 10.47% 10.53% 5.80% 4.55% 3.31% 3.49%

LOC 21 .50% 18.87% 10.47% 9 .47% 5.80% 3.41% 3.61% 2 .33%

GP 23.43% 18.87% 12.67% 9 .47% 8.12% 3.41% 5 .72% 3.49%

LBOOST 21 .74% 19.81% 10.74% 10.53% 6.09% 3.41% 3.61% 2.33%

RBM 20.77% 20.75% 9.64% 11 .58% 4.93% 5.68% 3.31% 5.81%

BAG 23.43% 19.81% 12 .67% 1 1 .58% 8.12% 5.68% 6.02% 4.65%

RSET 23.67% 22.64% 13.22% 13.68% 8.99% 7.95% 6.33% 6.98%

MCOST 20.29% 21 .70% 9.09% 12.63% 4.35% 6.82% 3.31% 5.81%

ABOOST 21 .74% 20.75% 1 1 .02% 12.63% 6.67% 6.82% 5.12% 5.81%

DTABLE 24.40% 17.92% 13.77% 8.42% 9.28% 2.27% 6.33% 2.33%

ADT 21 .50% 20.75% 10.47% 12 .63% 6.09% 5.68% 3.92% 4.65%

SMO 19.08% 23.58% 7.99% 14.74% 3.48% 7.95% 2 . 1 1% 6.98%

IB1 19.32% 22.64% 8.54% 14.74% 4.35% 9.09% 2 .71% 8. 14%

IBK 18.60% 24.53% 7.71% 15.79% 3.48% 9.09% 2.41% 8. 14%

PART 23.67% 19.81% 12.95% 11 .58% 8.41% 5.68% 7.53% 4.65%

ONER 26.33% 18.87% 15.98% 9.47% 11 .59% 3.41% 8 .73% 3.49%

JRIP 24. 15% 19.81% 13.50% 10.53% 8.99% 4.55% 6.33% 3.49%

RDR 24.40% 17.92% 13.77% 9.47% 9.28% 3.41% 7.83% 2.33%

J48 23.91% 19.81% 13.22% 10.53% 8.70% 4.55% 6.33% 3.49%

NBAYES 20.29% 19.81% 9.09% 10.53% 4.64% 4.55% 2.71% 3.49%

HPIPES 18.84% 25.47% 7.71% 16.84% 3.19% 1 1 .36% 2.71% 10.47%

LWLS 20.05% 23.58% 9.09% 15 .79% 4.93% 9.09% 2 .71% 8.14%

128

Table 4.46: Predictive Quality of KC2-520 models on JMl datasets

JM1-8850 JM1-23C JM1-20C

Methods Type I Type II Type I Type II Type I Type II

CBR 51 .78% 23.59% 45.63% 17. 14% 40.64% 13.00%

TD 30.70% 44.81% 29.03% 34.29% 27.90% 28.81%

LR 40.29% 30.82% 31 .99% 22.99% 25.69% 18.03%

LOC 30.67% 37.29% 21 .03% 29.70% 13.49% 24.07%

GP 30.29% 39.06% 20.73% 31.69% 13.79% 26.29%

LBOOST 45. 19% 28.81% 38.24% 22. 13% 32.81% 17.74%

RBM 38.34% 32.84% 30.02% 25.51% 24. 17% 20.47%

BAG 39.24% 32.90% 30.86% 26.51% 24.50% 21 .34%

RSET 39.08% 37.52% 31 .82% 32.03% 27.29% 27.37%

MCOST 49.53% 26.73% 42.60% 21 .06% 37.83% 17.24%

ABOOST 37. 14% 40.66% 30.27% 35.75% 26.68% 31.97%

DTABLE 39. 13% 31 . 12% 30. 70% 23.72% 24.41% 18.25%

ADT 35.56% 34.50% 26.79% 27.57% 20.74% 22.41%

SMO 42.06% 30.82% 34. 16% 22.99% 27.96% 17.96%

IB1 46.47% 32.31% 43.54% 26.98% 39.09% 25.07%

IBK 41 . 16% 32.25% 34.60% 22.06% 26.75% 18.68%

PART 36.42% 37.70% 28.30% 31.96% 22.66% 27.01%

ONER 34.85% 34.08% 25. 76% 26. 11% 18.54% 20.26%

JRIP 35.36% 34.68% 26.57% 27. 71% 20.50% 22.49%

RDR 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

J48 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

NBAYES 36. 17% 32.54% 27.28% 24.58% 20.27% 18.82%

HPIPES 24.86% 47.36% 16. 12% 41 .20% 1 1 . 13% 36.64%

LWLS 39.55% 34.62% 31 .16% 28.04% 25.90% 22.49%

4.8.2 Predictive Performance of KC2 Models on JMl Datasets

This subsection provides the results of predictive quality of the classification

models built on the KC2-Fit datasets and evaluated on the JMl datasets. Predictive

performance of classifiers is presented in terms of the two misclassification error rates

(Type I and Type II) in Tables 4.46 to 4 .50. For each noise filtering level, JMl-Fit

and JMl-Test were combined to create one evaluation set each.

129

Table 4.46: Predictive Quality of KC2-520 models on JMl datasets, contd . . .

JM1-17C JM1-13C

Methods Type I Type II Type I Type II

CBR 36.85% 10.22% 32.30% 6.68%

TD 26.03% 25.00% 26.48% 17.62%

LR 21 . 16% 13.47% 16.21% 7.47%

LOC 8.30% 18.42% 3.58% 10.24%

GP 9. 12% 21 .05% 5.04% 13.54%

LBOOST 29. 18% 14.47% 24.85% 10.76%

RBM 19.93% 16.10% 15 .57% 9.81%

BAG 20.06% 17.03% 16. 1 1% 10.07%

RSET 24.59% 23.68% 21 .27% 17.80%

MCOST 34.29% 13.70% 30.69% 9.03%

ABOOST 24.76% 29. 18% 22.49% 25.69%

DTABLE 19.64% 14.01% 14.94% 7.47%

ADT 16.46% 17.80% 12.36% 1 1 .46%

SMO 23.45% 13 .39% 18.29% 7.55%

IB1 35. 1 1% 25.77% 34.91% 17.88%

IBK 19.53% 14.94% 17.32% 7.90%

PART 18.48% 22.37% 14.77% 15.89%

ONER 13.22% 14.86% 7.51% 7.20%

JRIP 16.20% 17.88% 12.08% 1 1 .46%

RDR 16.20% 17.88% 12.08% 1 1 .46%

J48 16.20% 17.88% 12 .08% 1 1 .46%

NBAYES 15 . 17% 13.78% 9.94% 6.34%

HPIPES 8.45% 32.66% 6.27% 26.22%

LWLS 20.96% 18.27% 18.12% 1 1 .81%

130

Table 4.47: Predictive Quality of KC2-260 models on JM1 datasets

JM1-8850 JM1-23C JM1-20C

Methods Type I Type II Type I Type II Type I Type II

CBR 55.37% 22. 1 1% 49.81% 16.35% 45.31% 12 .21%

TD 26.37% 44. 16% 23. 1 1% 30.63% 20.69% 21 .91%

LR 41 .83% 29.05% 33.82% 21 .86% 27.94% 17.03%

LOC 32.30% 36.10% 22.88% 28.37% 15.50% 22 .63%

GP 44.86% 30.82% 37.77% 25.45% 32.83% 20.98%

LBOOST 56. 15% 25.31% 51 .46% 20.73% 48.33% 18. 18%

RBM 43.86% 29.40% 36.54% 22.26% 31 .50% 17.82%

BAG 47.26% 28.63% 40.03% 23.26% 34.47% 18.75%

RSET 34.50% 35.74% 25.44% 28.31% 18.66% 22.92%

MCOST 43.36% 31 .30% 36.00% 25.51% 30.89% 21 .05%

ABOOST 44.84% 38.00% 39.80% 34.22% 36.47% 30.96%

DTABLE 42.58% 31 .59% 35.59% 24.39% 30. 11% 19.83%

ADT 38.57% 37.52% 30.93% 32.89% 26.07% 28.23%

SMO 40.57% 34.68% 33.49% 27.57% 28.06% 23.06%

IB1 44.62% 36.28% 40.95% 29.57% 35.75% 27.59%

IBK 41 .78% 31 .65% 38.94% 20. 13% 28.29% 16.95%

PART 45.55% 32.31% 39.82% 28.04% 36.78% 24.78%

ONER 41 .38% 38.53% 34.70% 34.55% 31 .29% 31 .32%

JRIP 45.64% 29.34% 38.55% 22. 79% 33.69% 18.82%

RDR 48.95% 24.24% 41 .85% 17.08% 36.34% 12 .72%

J48 54. 10% 33.67% 51 .26% 30.63% 49.64% 29.24%

NBAYES 37.61% 32.90% 28.92% 24.92% 22.09% 19.04%

HPIPES 47.31% 25.31% 39.96% 17.54% 34.21% 12 .57%

LWLS 38.28% 44.87% 34.93% 40.80% 32.08% 38.72%

131

Table 4.47: Predictive Quality of KC2-260 models on JMl datasets, contd . . .

JM1-17C JM1-13C

Methods Type I Type II Type I Type II

CBR 41 .85% 9 .75% 37.63% 6.60%

TD 19.25% 15 .33% 17.34% 6.68%

LR 23. 75% 12.93% 19. 15% 7.38%

LOC 10. 15% 17. 18% 5. 14% 9 .11%

GP 29.36% 17.65% 26. 19% 12.50%

LBOOST 46.22% 16 .18% 42.85% 14.32%

RBM 27.98% 14.40% 23.95% 10.24%

BAG 30.69% 14.78% 27.46% 9.03%

RSET 14. 18% 18.42% 10. 16% 1 1 .37%

MCOST 27.53% 17.49% 23.93% 12.24%

ABOOST 34.44% 28.33% 31 .70% 25. 1 7%

DTABLE 25.97% 16.49% 21 .66% 1 1 .20%

ADT 23. 15% 24.38% 20.63% 18.84%

SMO 23.86% 19.20% 18 .84% 14.15%

IB1 34.01% 26.70% 31 .06% 20.92%

IBK 21 .97% 13.54% 19.79% 6.08%

PART 34.74% 22.76% 32.65% 19.79%

ONER 29.25% 28.79% 27.20% 23.87%

JRIP 30.09% 15 .33% 26.09% 1 1 .81%

RDR 32.30% 9. 13% 27.53% 5·.21%

J48 48.67% 28.02% 46.95% 28.04%

NBAYES 16.93% 13.85% 1 1 .46% 6.86%

HPIPES 29.81% 9. 13% 24.71% 4.34%

LWLS 30.81% 35.60% 28.72% 31 .42%

132

Table 4.48: Predictive Quality of KC2-23C models on JMl datasets

JM1-8850 JM1-23C I JM1-20C

Methods Type I Type II Type I Type II 1 Type I Type II

CBR 53.08% 23.89% 47. 18% 17.81% 42.46% 13.94%

TD 24.43% 47.84% 21 .30% 33.36% 18.50% 23.56%

LR 32.70% 37.76% 23.64% 30.90% 17.60% 25.72%

LOC 30.67% 37.29% 21 .03% 29.70% 13.49% 24.07%

GP 24.81% 45.29% 15 .05% 38.67% 8.98% 33.76%

LBOOST 35.78% 38. 17% 27. 12% 33.49% 21 .37% 28.74%

RBM 45.76% 29.76% 38.72% 23.59% 33.72% 19.61%

BAG 34.23% 36.87% 25. 17% 30. 10% 18.54% 24.78%

RSET 42.01% 29.46% 33.96% 21 .99% 27.70% 16.81%

MCOST 46.54% 26.50% 39.09% 19.20% 33.23% 14.22%

ABOOST 41 . 13% 33.85% 33.25% 27.84% 27.90% 22.99%

DTABLE 30.98% 38.00% 21 .51% 30.56% 14.57% 25.07%

ADT 38. 11% 34.85% 29.62% 28.50% 23.40% 23.28%

SMO 39.31% 30.94% 30.85% 22.72% 24. 1 1% 17. 10%

IB1 47.02% 33.31% 38.42% 27.84% 37.90% 25.57%

IBK 37.47% 33.55% 30.94% 22.66% 22.26% 18.61%

PART 39.76% 35.57% 32.74% 29.90% 28. 18% 26.08%

ONER 41.50% 30.59% 33.41% 23.26% 27.22% 17.89%

JRIP 41 .50% 30.59% 33.41% 23.26% 27.22% 17.89%

RDR 40.28% 31 .59% 32.02% 24. 12% 25.76% 18.82%

J48 39.76% 35.57% 32.74% 29.90% 28.18% 26.08%

NBAYES 36.49% 33.02% 27.68% 25. 18% 20.88% 19.32%

HPIPES 37.76% 31 .54% 29. 16% 23.79% 22.59% 18 . 18%

LWLS 35. 17% 36.34% 27.03% 29.63% 19.01% 23.85%

133

Table 4.48: Predictive Quality of KC2-23C models on JMl datasets, contd . . .

JM1-17C JM1-13C

Methods Type I Type II Type I Type II

CBR 38.86% 11 .07% 34.56% 7.21%

TD 17.08% 16.56% 14.91% 8.68%

LR 13.48% 20.74% 9.75% 13.89%

LOC 8.30% 18.42% 3.58% 10.24%

GP 5.62% 28.95% 3.00% 21.53%

LBOOST 18. 15% 23.99% 15.80% 16.49%

RBM 30.39% 15 .87% 26.35% 10.59%

BAG 14.42% 20.20% 10.92% 12.67%

RSET 22.90% 12.38% 17.98% 6. 16%

MCOST 28.73% 10.37% 23.78% 5.03%

ABOOST 24.46% 19.27% 21 . 13% 13.37%

DTABLE 9.94% 19.89% 5.76% 12.07%

ADT 19.23% 18 .65% 15 .59% 11 .72%

SMO 19. 14% 12.38% 13.60% 5.99%

IB1 33. 75% 25.62% 33.57% 18. 14%

IBK 13.90% 15.56% 11 .05% 6.77%

PART 25.22% 22.29% 22 .03% 17.01%

ONER 22.51% 13.62% 17.59% 7.47%

JRIP 22.51% 13.62% 17.59% 7.47%

RDR 20.96% 14.47% 16.09% 8.07%

J48 25.22% 22.29% 22.03% 17.01%

NBAYES 15.97% 14.16% 10.90% 6.60%

HPIPES 17.88% 13.54% 12.80% 7.03%

LWLS 15. 13% 19.97% 10.62% 1 1 .55%

134

Table 4.49: Predictive Quality of KC2-17C models on JMl datasets

JM1-8850 JM1-23C JM1-20C

Methods Type I Type II Type I Type II Type I Type II

CBR 50.47% 23.53% 43.57% 16. 15% 38.06% 1 1 .42%

TD 16.95% 55.90% 12.52% 40.33% 10. 15% 28. 16%

LR 35.38% 34.20% 26.50% 26.91% 19.99% 21 .41%

LOC 29.46% 38.47% 19.65% 31 .03% 12. 13% 25 .43%

GP 34. 1 1% 35.98% 25 .17% 29.04% 19.01% 23.85%

LBOOST 41 .74% 30. 17% 33.68% 22.86% 27.43% 17.60%

RBM 42.62% 28.69% 34.62% 21 .26% 28.45% 16.38%

BAG 41 . 13% 30.23% 32.91% 22.66% 26.45% 17. 10%

RSET 29.46% 38.47% 19.65% 31.03% 12.13% 25.43%

MCOST 39. 12% 31 .30% 30.67% 23.85% 24.15% 18.53%

ABOOST 39.61% 31 .00% 31.20% 23.72% 24.64% 18.53%

DTABLE 32.79% 35.51% 23.48% 28.50% 16.44% 23.42%

ADT 33.78% 34. 14% 24.55% 26.58% 17.39% 20.83%

SMO 41 .73% 30.29% 33.65% 22. 19% 27.45% 17. 10%

IB1 43.59% 28.87% 38.74% 19.67% 32.36% 14.22%

IBK 38.45% 33.43% 34.86% 22.06% 25.02% 18 .46%

PART 37.05% 33.79% 28.43% 26.51% 21 .96% 21 .26%

ONER 35.36% 34.68% 26.57% 27. 71% 20.50% 22.49%

JRIP 41 .60% 29.99% 33.47% 22.52% 27. 15% 17.39%

RDR 39.70% 29.99% 31.29% 22.46% 24.59% 16.81%

J48 39.86% 31.59% 31 .63% 24.72% 25.51% 19.61%

NBAYES 36.05% 32.96% 27.14% 24.98% 20. 1 1% 19. 18%

HPIPES 38.43% 31 .65% 29.84% 23.79% 23.26% 18 .25%

LWLS 47.24% 25. 13% 39.34% 18.07% 32.34% 13.36%

135

Table 4.49: Predictive Quality of KC2-17C models on JMl datasets, contd . . .

I JM1-17C JM1-13C

Methods Type I Type II Type I Type II

CBR 33.88% 7.97% 28.92% 3.56%

TD 8.30% 18.42% 5. 14% 9. 1 1%

LR 15.41% 16.49% 11 . 19% 9.64%

LOC 7.10% 19.81% 2.84% 1 1 .28%

GP 15.07% 19.66% 11 .34% 13.28%

LBOOST 22.72% 13.24% 17.79% 7.20%

RBM 23.80% 12.07% 18.93% 5.82%

BAG 21 .50% 12.31% 16.25% 5.73%

RSET 7.10% 19.81% 2.84% 1 1 .28%

MCOST 19.34% 13 .78% 14.48% 7.03%

ABOOST 19.81% 13.93% 14.69% 7.64%

DTABLE 1 1 .91% 18.50% 8. 13% 1 1 .37%

ADT 12.32% 15 .79% 7.74% 8.33%

SMO 22.90% 12.54% 17.73% 6.51%

IB1 25.66% 1 1 .69% 22.81% 5.38%

IBK 18.78% 15.48% 15.57% 6.77%

PART 17.51% 17.03% 13.23% 10.59%

ONER 16.20% 17.88% 12.08% 1 1 .46%

JRIP 22.42% 12.85% 17.53% 6.68%

RDR 19.46% 1 1 .92% 13.91% 5.30%

J48 21 .22% 15 .79% 16.93% 9.90%

NBAYES 14.96% 14.09% 9.44% 7.03%
HPIPES 18.39% 13.47% 13.29% 6.51%

LWLS 27.64% 9.37% 22.94% 4.25%

136

Table 4.50: Predictive Quality of KC2-13C models on JMl datasets

JM1-8850 JM1-23C JM1-20C

Methods Type I Type II Type I Type II Type I Type II

CBR 48.28% 25.67% 41 .28% 18.54% 35.68% 13.87%

TD 17.58% 56.31% 12 .93% 43.59% 1 1 .01% 33. 12%

LR 50.83% 24.90% 44.45% 18.47% 39.96% 15 .09%

LOC 32.30% 36. 10% 22.88% 28.37% 15.50% 22.63%

GP 31 .96% 37.46% 22.69% 30.37% 16.29% 25.00%

LBOOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

RBM 40.33% 31.65% 32.20% 24.39% 26.44% 19.40%

BAG 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

RSET 32.85% 36.04% 23.56% 28.37% 16.65% 22 .77%

MCOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

ABOOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

DTABLE 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

ADT 34.82% 35.51% 25.95% 28.44% 19.81% 23 . 13%

SMO 41 .25% 30.35% 33.09% 22.26% 26.75% 17. 10%

IB1 36.76% 33.79% 29.70% 25.51% 22.94% 21 . 19%

IBK 38.53% 34. 14% 37.61% 21 .99% 25.60% 19.68%

PART 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

ONER 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

JRIP 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

RDR 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

J48 35.36% 34.68% 26.57% 27.71% 20.50% 22.49%

NBAYES 42. 18% 29.10% 34. 19% 21 .00% 27.99% 15.66%

HPIPES 38. 70% 30.59% 30.16% 22.72% 23.45% 16.95%

LWLS 34.58% 35.21% 25.31% 28.37% 19.27% 23.06%

137

Table 4.50: Predictive Quality of KC2-13C models on JMl datasets, contd . . .

JM1-17C JM1-13C

Methods Type I Type II Type I Type II

CBR 31 .57% 10.45% 26.81% 5.47%

TD 8.90% 26. 16% 7.39% 15.97%

LR 36.82% 12.07% 32.75% 8.25%

LOC 10. 15% 17. 18% 5. 14% 9. 1 1%

GP 1 1 .76% 19.74% 7.78% 12.50%

LBOOST 16.20% 17.88% 12.08% 1 1 .46%

RBM 22.30% 15. 17% 17.86% 9.38%

BAG 16.20% 17.88% 12.08% 1 1 .46%

RSET 1 1 .99% 17.65% 7.45% 9.81%

MCOST 16.20% 17.88% 12 .08% 1 1 .46%

ABOOST 16.20% 17.88% 12.08% 1 1 .46%

DTABLE 16.20% 17.88% 12.08% 1 1 .46%

ADT 15 .47% 18 .42% 1 1 .31% 1 1 .81%

SMO 22.06% 12.62% 16.83% 6.51%

IB1 17 . 13% 17.88% 13.35% 10.07%

IBK 19.03% 17.49% 16 .48% 8.33%

PART 16.20% 17.88% 12.08% 1 1 .46%

ONER 16.20% 17.88% 12.08% 1 1 .46%

JRIP 16.20% 17.88% 12.08% 1 1 .46%

RDR 16.20% 17.88% 12.08% 1 1 .46%

J48 16.20% 17.88% 12.08% 1 1 .46%

NBAYES 23.28% 10.91% 17.61% 5 .47%

HPIPES 18.41% 12.00% 13. 12% 5 .30%

LWLS 14.61% 18.27% 10.76% 1 1 .63%

138

Table 4.51: ECM Results for JM1-8850 Models Applied to KC2 datasets, c=10

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.8173 0.6489 0.5543 0.5072
TD 0.6442 0.4026 0.3695 0.3852
LR 0.7038 0.4467 0.2818 0.2321
LOC 0.5692 0 .2934 0. 1316 0.0909
GP 0.5635 0.2870 0.1247 0. 1005
LBOOST 0.6423 0 .4014 0.2494 0.2297
RBM 0.6788 0.4450 0.2748 0.2656
BAG 0.6827 0.4362 0.3372 0.3134
RSET 0.7558 0.5358 0.3764 0 .3206
MCOST 0.8538 0.6917 0.5751 0.5622
ABOOST 0.9865 0.9007 0.8268 0.7847
DTABLE 0.7096 0.4754 0.3095 0.2799
ADT 0.6385 0.3997 0.2517 0.2225
SMO 0.6481 0 .3817 0.2079 0.1842
IB1 1 .2250 1 . 1043 1 .0600 1 .0861
IBK 0.7269 0.5314 0.3764 0.3541
PART 0.8538 0.6508 0.5520 0.5359
ONER 0.7019 0.4754 0.3095 0.3014
JRIP 0.6788 0 .4710 0.3048 0 .2823
RDR 0.6519 0.4610 0.3441 0.3158
J48 0.7750 0.6139 0.4919 0.4713
NBAYES 0.5538 0 .2756 0 .1 155 0.0670
HPIPES 1 .0269 1 .0101 0.8915 0.8971
LWLS 0.7635 0 .5815 0.4527 0 .4569

4.8.3 NECM Results for JMl Models Applied to· the KC2 Datasets,

c=lO

In this subsection, the predictive performance of the classification models

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented

in Tables 4 . 5 1 to 4.56 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=10.

139

Table 4.52: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=lO

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.8346 0 .6878 0.6212 0.5813
TD 0.5962 0.3938 0 .3279 0.3301
LR 0.6077 0.3365 0 . 1594 0 . 1220
LOC 0.5692 0.2934 0 . 1316 0 .0909
GP 0.5500 0.2932 0 . 1386 0 . 1292
LBOOST 0.5904 0.3433 0 . 1871 0 . 1531
RBM 0.5654 0.2888 0 . 1293 0 .1 172
BAG 0.6288 0.4126 0 .3118 0.2799
RSET 0.6346 0 .3927 0 .2263 0 . 1722
MCOST 0.5942 0 .3719 0 .2425 0.2321
ABOOST 0.8904 0.7600 0 .6744 0.6364
DTABLE 0.6635 0.4060 0 .2540 0.2201
ADT 0.6577 0.4165 0.2679 0.2488
SMO 0.6846 0 .4251 0 .2540 0 .2105
IB1 0.9558 0.8420 0 .7852 0.7775
IBK 0.7173 0.4664 0 .2956 0 .2679
PART 0.6788 0 .4870 0.4134 0.3828
ONER 0.6712 0.4126 0 .2679 0.2321
JRIP 0.5808 0 .3520 0 . 1963 0 .1866
RDR 0.6769 0.4804 0.3326 0.3038
J48 0.6615 0.4012 0 .2517 0.2321
NBAYES 0.5904 0 .3168 0 . 1594 0 . 1 100
HPIPES 1 .0615 0 .9550 0 .8268 0.8230
LWLS 0.6692 0.4579 0 .2910 0 .2632

140

Table 4.53: ECM Results for JM1-23C Models Applied to KC2 datasets, c=10

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.7981 0.6246 0.5312 0.4880
TD 0.6962 0.3067 0.2702 0.2392
LR 0.5596 0.2824 0. 1201 0.1029
LOC 0.5692 0.2934 0. 1316 0.0909
GP 0.6173 0.3498 0. 1917 0. 1483
LBOOST 0.5981 0.3284 0.1686 0. 1459
RBM 0.6385 0.3929 0.2425 0.2392
BAG 0.7038 0.4754 0.3326 0.2727
RSET 0.6788 0.4297 0.2841 0.2584
MCOST 0.7731 0.5620 0.4088 0.3589
ABOOST 0.8096 0.6095 0.4896 0.4426
DTABLE 0.6365 0.3842 0.2379 0. 1818
ADT 0.6519 0.3890 0.2333 0.2129
SMO 0.6212 0.3535 0. 1801 0.1364
IB1 0.8635 0.7029 0.5797 0.5598
IBK 0.6288 0.3623 0. 1848 0. 1531
PART 0.7231 0.5012 0.3649 0.3206
ONER 0.5673 0.3128 0. 1524 0. 1 124
JRIP 0.7577 0.5384 0.4042 0.4019
RDR 0.6212 0.3537 0 .1755 0.1675
J48 0.6808 0.4712 0.3557 0.3301
NBAYES 0.5692 0.2932 0. 1339 0.0718
HPIPES 0.6577 0.3927 0.2379 0. 1890
LWLS 0.6442 0.4104 0.2633 0.2273

141

Table 4.54: ECM Results for JM1-20C Models Applied to KC2 datasets, c=lO

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.7250 0.5358 0 .4365 0.4115
TD 0.8038 0.4124 0 .2379 0 .2273
LR 0.5673 0.2934 0 . 1316 0 . 1 124
LOC 0.5635 0.2870 0 . 1247 0 .1053
GP 0.5481 0.2912 0 . 1293 0 .1 148
LBOOST 0.6904 0.4362 0 .2679 0.2608
RBM 0.6212 0 .3516 0 . 1986 0.1699
BAG 0.7327 0.5056 0 .3395 0 .2895
RSET 0.6115 0 .3406 0. 1871 0. 1531
MCOST 0.7692 0.5489 0 .3903 0.3660
ABOOST 0.6635 0 .4598 0 .3025 0.2536
DTABLE 0.5904 0.3474 0.2171 0 .1842
ADT 0.6635 0.4297 0.2610 0.2273
SMO 0.6212 0 .3537 0 . 1755 0 .1388
IB1 0.7038 0.5097 0.3811 0.3541
IBK 0.6462 0.4036 0 .2356 0 .1986
PART 0.7865 0 .5788 0 .4319 0.4139
ONER 0.5808 0.3065 0 . 1455 0 .1268
JRIP 0.7231 0 .4988 0 .3349 0.2871
RDR 0.5788 0.3498 0 . 1917 0 .1627
J48 0.7500 0.5336 0.3949 0.3517
NBAYES 0.6019 0.3299 0 . 1732 0. 1 1 72
HPIPES 0.6981 0 .4533 0 .2887 0.2656
LWLS 0.6308 0 .4189 0.2771 0.2225

142

Table 4.55: ECM Results for JM1-17C Models Applied to KC2 datasets, c=lO

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.7692 0 .5401 0.4134 0.3612
TD 0.8058 0.4146 0. 1547 0.0933
LR 0.5904 0.3172 0 . 1339 0 .1 124
LOC 0.5635 0 .2870 0 .1247 0 .1053
GP 0.5788 0.3041 0. 1432 0 .1053
LBOOST 0.5769 0.3043 0 . 1455 0 .1292
RBM 0.6712 0.3516 0.2356 0. 1818
BAG 0.5827 0.3323 0 .1501 0 . 1 124
RSET 0.5962 0.3691 0 .2148 0.1890
MCOST 0.6635 0.4277 0.2540 0.2201
ABOOST 0.6865 0.4513 0.2864 0.2560
DTABLE 0.7038 0.4515 0.2841 0.2488
ADT 0.5923 0.3236 0. 1455 0 .1 100
SMO 0.6308 0 .3647 0. 1871 0 .1531
IB1 0 .7135 0 .5099 0.3464 0.3206
IBK 0.6442 0.3800 0.2055 0 .1722
PART 0.7135 0 .4817 0.3164 0.2943
ONER 0.5942 0.3218 0 .1617 0 .1411
JRIP 0.5769 0.3019 0. 1432 0. 1316
RDR 0.5827 0 .3365 0 .1594 0 .1459
J48 0 .6115 0.3713 0.2286 0. 1938
NBAYES 0.5712 0 .2953 0 .1363 0.0981
HPIPES 0.6077 0.3804 0.2240 0. 1962
LWLS 0.6577 0.3973 0.2240 0.2177

143

Table 4:56: ECM Results for JM1-13C Models Applied to KC2 datasets, c=lO

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 0.7885 0.5530 0.3995 0.3756
TD 0.7500 0.4382 0. 1801 0 .1459
LR 0.5750 0.2997 0. 1386 0.0981
LOC 0.5558 0.2781 0 . 1 155 0.0766
GP 0.5712 0.2956 0. 1339 0 .1 172
LBOOST 0.5769 0.3019 0 . 1 178 0.0766
RBM 0.5885 0 .3148 0. 1547 0 . 1459
BAG 0.5904 0.3389 0. 1801 0 . 1435
RSET 0.6500 0.3866 0.2333 0 .1938
MCOST 0.6038 0.3321 0 . 1732 0.1459
ABOOST 0.5962 0.3474 0.1917 0 . 1603
DTABLE 0.5596 0 .2827 0. 1201 0.0981
ADT 0.5942 0.3430 0.1640 0. 1268
SMO 0.6327 0.3667 0.1894 0 . 1603
IB1 0.6154 0.3710 0.2194 0 .1890
IBK 0.6481 0.3861 0.2125 0 .1866
PART 0.5923 0.3411 0. 1824 0 .1555
ONER 0.5942 0.3218 0.1617 0.1411
JRIP 0.5962 0 .3238 0.1640 0 . 1220
RDR 0.5596 0.3043 0. 1432 0 .1 100
J48 0.5942 0.3216 0.1617 0 .1220
NBAYES 0.5654 0.2888 0. 1293 0.0933
HPIPES 0.6692 0 .4078 0.2564 0.2368
LWLS 0.6404 0.3971 0.2240 0.1890

144

Table 4.57: ECM Results for JMl-8850 Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .4519 1 . 1686 0.9931 0.9139
TD 1 .0673 0.6191 0.4850 0.5287
LR 1 .2615 0 .8365 0.5358 0.4474
LOC 0.9538 0.4883 0.2009 0.1388
GP 0.9288 0 .4603 0 .1709 0. 1483
LBOOST 1 . 1231 0 .7263 0.4573 0.4211
RBM 1 . 1788 0 .7915 0.4827 0 .4809
BAG 1 .2212 0 .7827 0.6143 0.5766
RSET 1 .3519 0 .9906 0.6998 0 .6077
MCOST 1 .5654 1 . 2981 1 .0831 1 .0646
ABOOST 1 .7558 1 .6153 1 .4734 1 .4067
DTABLE 1 .2288 0 .8436 0.5404 0.4952
ADT 1 .0808 0 .6812 0.4134 0.3660
SMO 1 . 1481 0 .7066 0.3926 0.3517
IB1 2.2250 2 .0139 1 .9376 1 .9952
IBK 1 .3038 0.9862 0.6998 0 .6651
PART 1 .5462 1 . 1923 1 .0139 0.9904
ONER 1 .2212 0 .8436 0.5404 0 .5407
JRIP 1 . 1 788 0.8392 0.5358 0.4976
RDR 1 .0558 0 .7425 0.5289 0.4833
J48 1 .4096 1 . 1336 0.9076 0.8780
NBAYES 0.9577 0 .4922 0.2079 0 .1 148
HPIPES 1 .5269 1 . 5082 1 .2610 1 .2560
LWLS 1 .3596 1 .0579 0.8222 0.8397

4.8.4 NECM Results for JMl Models Applied to the KC2 Datasets,

c=20

In this subsection, the predictive performance of the classification models

built on the JMl datasets and evaluated on the on the KC2 datasets are presented

in Tables 4 .57 to 4 .62 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=20.

145

Table 4.58: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .4884 1 .2509 1 . 1293 1 .0598
TD 1 .0000 0.6104 0.4434 0.4498
LR 1 .0500 0.5963 0.2748 0.2177
LOC 0.9538 0.4883 0 .2009 0 . 1388
GP 0.9346 0.5097 0.2309 0.2249
LBOOST 0.9942 0.5815 0.3025 0.2488
RBM 0.9692 0.5053 0.2217 0.2129
BAG 1 .0712 0.7158 0.5427 0.4952
RSET 1 . 1 154 0.7175 0.4111 0.3158
MCOST 0.9596 0 .5885 0.3580 0.3517
ABOOST 1 .5442 1 .3231 1 . 1594 1 .0909
DTABLE 1 . 1442 0.7092 0.4388 0.3876
ADT 1 . 1577 0.7630 0.4988 0.4641
SMO 1 .2231 0.7932 0.4850 0.4019
IB1 1 .7058 1 .5134 1 .4088 1 .3995
IBK 1 .2750 0.8562 0.5497 0.5072
PART 1 . 1212 0.7902 0.6674 0.6220
ONER 1 . 1519 0 .7158 0.4527 0.3995
JRIP 0.9654 0.5902 . 0 .3118 0.3062
RDR 1 . 1000 0.7836 0.5173 {).4713
J48 1 . 1808 0.7477 0.4827 0.4474
NBAYES 1.0327 0.5767 0 .2979 0.2057
HPIPES 1 .6769 1 .4964 1 .2425 1 .2297
LWLS 1 .1692 0.8260 0.5219 0.4785

146

Table 4.59: ECM Results for JM1-23C Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .4519 1 . 1660 0.9931 0.9187
TD 1 .2154 0.4800 0.3395 0 .2871
LR 0.9442 0 .4773 0 . 1894 0 .1746
LOC 0.9538 0 .4883 0.2009 0 . 1388
GP 1 .0404 0.5880 0.3072 0.2440
LBOOST 0.9827 0.5233 0.2379 0.2177
RBM 1 . 1000 0.6961 0 .4273 0 .4306
BAG 1 .2231 0.8436 0 .5866 0 .4880
RSET 1 . 1981 0.7762 0.5150 0 .4737
MCOST 1 .3692 1 .0168 0 .7321 0 .6459
ABOOST 1 .4635 1 . 1292 0.9053 0.8254
DTABLE 1 . 1 173 0.6874 0 .4226 0.3254
ADT 1 .0942 0 .6489 0 .3718 0 .3565
SMO 1 . 1019 0 .6567 0 .3418 0 .2560
IB1 1 .5558 1 .2876 1 .0647 1 .0383
IBK 1 . 1096 0.6655 0.3464 0.2967
PART 1 .2808 0.9127 0.6651 0.5837
ONER 0.9519 0.5294 0 .2448 0. 1842
JRIP 1 .3154 0 .9499 0 .7044 0 .7129
RDR 1 .0827 0 .6353 0.3141 0.31 10
J48 1 . 1615 0.8177 0.6097 0.5694
NBAYES 0.9731 0.5097 0 .2263 0 .1 196
HPIPES 1 . 1577 0.7175 0.4457 0.3565
LWLS 1 . 1058 0 .7136 0.4480 0.3947

147

Table 4.60: ECM Results for JM1-20C Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .3019 0 .9905 0.8060 0.7703
TD 1 .4962 0.7372 0 .3764 0.3708
LR 0.9519 0 .4883 0 .2009 0 .1842
LOC 0.9288 0.4603 0 .1709 0. 1531
GP 0.9135 0.4861 0 . 1986 0.1866
LBOOST 1 .2096 0.7827 0.4758 0.4761
RBM 1 .0827 0 .6331 0.3603 0.3134
BAG 1 .2904 0.9171 0.6166 0.5287
RSET 1 .0731 0 .6222 0.3487 0.2967
MCOST 1 .3654 1 .0037 0 .7136 0 .6770
ABOOST 1 . 1827 0.8497 0.5566 0.4689
DTABLE 1 .0135 0 .6073 0 .3788 0.3278
ADT 1 . 1635 0.7762 0 .4688 0.4187
SMO 1 .0827 0.6353 0.3141 0.2584
IB1 1 .2615 0.9429 0.7044 0.6651
IBK 1 . 1269 0.7285 0.4203 0.3660
PART 1 .4404 1 .0986 0.8245 0.7967
ONER 0.9654 0.5014 0.2148 0.1986
JRIP 1 .3000 0 .9319 0.6351 0.5502
RDR 0.9635 0.5880 0.3072 0.2584
J48 1 .3462 0.9884 0 .7413 0.6627
NBAYES 1 .0442 0.5898 0.3118 0.2129
HPIPES 1 .2558 0.8431 0.5427 0.5048
LWLS 1 .0923 0.7438 0.4850 0.3900

148

Table 4.61 : ECM Results for JM1-17C Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .3846 0.9949 0 .7598 0.6722
TD 1 .4981 0.7394 0 .2471 0. 1 172
LR 0.9942 0.5338 0 .2032 0 . 1842
LOC 0.9288 0.4603 0 . 1709 0 .1531
GP 0.9827 0.5207 0.2356 0 . 1770
LBOOST 0.9615 0.4992 0.2148 0.2010
RBM 1 . 1904 0.6331 0.4434 0.3493
BAG 0.9865 0 .5705 0 .2425 0 .1842
RSET 1 .0192 0.6506 0.3764 0.3325
MCOST 1 . 1442 0 .7525 0.4388 0.3876
ABOOST 1 .2058 0.8195 0 .5173 0.4713
DTABLE 1 .2231 0.7981 0.4919 0 .4402
ADT 1 .0154 0.5618 0 .2379 0 .1818
SMO 1 .0923 0.6462 0.3256 0.2727
IB1 1 .2519 0.9214 0 .6236 0.5837
IBK 1 . 1058 0 .6615 0.3441 0.2919
PART 1 .2519 0.8716 0.5704 0.5335
ONER 0.9788 0.5167 0 .2309 0.2129
JRIP 0.9808 0.5185 0.2356 0.2273
RDR 1 .0058 0.5963 0 .2748 0.2656
J48 1 .0538 0.6528 0.3903 0.3373
NBAYES 0.9750 0.5119 0.2286 0. 1699
HPIPES 0.9923 0.6187 0.3395 0.2919
LWLS 1 . 1385 0.7005 0.3857 0.3852

149

Table 4.62: ECM Results for JM1-13C Models Applied to KC2 datasets, c=20

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .4231 1 .0295 0.7459 0.7105
TD 1 .3846 0.8064 0.2956 0.2416
LR 0.9788 0.5163 0.2309 0. 1699
LOC 0.9404 0 .4730 0. 1848 0 . 1244
GP 0.9558 0 .4905 0.2032 0 .1890
LBOOST 0.9808 0.5185 0. 1871 0 .1244
RBM 1 .0115 0.5530 0.2702 0 .2656
BAG 0.9942 0.5771 0.2956 0 .2392
RSET 1 . 1 1 15 0.6681 0.3949 0.3373
MCOST 1 .0462 0.5920 0.3118 0 .2656
ABOOST 1 .0192 0.6073 0.3303 0.2799
DTABLE 0.9250 0.4559 0. 1663 0 . 1459
ADT 1 .0173 0.6029 0.2794 0 .2225
SMO 1 . 1 135 0 .6698 0.3510 0 .3038
IB1 1 .0769 0 .6742 0.4042 0 .3565
IBK 1 . 1481 0.7110 0.3972 0.3541
PART 0.9962 0 .5793 0.2979 0.2512
ONER 0.9788 0.5167 0.2309 0.2129
JRIP 1.0000 0.5404 0.2564 0 .1938
RDR 0.9250 0.4992 0.2125 0 .1579
J48 0.9981 0.5382 0.2540 0 .1938
NBAYES 0.9692 0.5053 0.2217 0. 1651
HPIPES 1 . 1885 0.7543 0.4873 0.4522
LWLS 1 . 1212 0.7219 0.4088 0.3565

150

Table 4.63 : ECM Results for JM1-8850 Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 2.0865 1 .6884 1 .4319 1 .3206
TD 1 .4904 0.8357 0.6005 0 .6722
LR 1 .8192 1 . 2264 0.7898 0.6627
LOC 1 .3385 0.6832 0 .2702 0 . 1866
GP 1 .2942 0.6335 0.2171 0 .1962
LBOOST 1 .6038 1 .051 1 0 .6651 0.6124
RBM 1 .6788 1 . 1380 0.6905 0.6962
BAG 1 . 7596 1 .1292 0.8915 0 .8397
RSET 1 .9481 1 .4453 1 .0231 0.8947
MCOST 2.2769 1 .9045 1 .5912 1 .5670
ABOOST 2.5250 2.3300 2 . 1201 2.0287
DTABLE 1 .7481 1 .2 1 17 0 .7714 0 .7105
ADT 1 .5231 0 .9628 0.5751 0.5096
SMO 1 .6481 1 .0315 0 .5774 0.5191
IB1 3.2250 2.9235 2.8152 2.9043
IBK 1 .8808 1 .4410 1 .0231 0 .9761
PART 2.2385 1 . 7337 1 .4758 1 .4450
ONER 1 . 7404 1 .2117 0 .7714 0 .7799
JRIP 1 .6788 1 .2073 0 .7667 0 .7129
RDR 1 .4596 1 .0240 0 .7136 0.6507
J48 2.0442 1 .6534 1 .3233 1 .2847
NBAYES 1 .3615 0.7088 0.3002 0. 1627
HPIPES 2.0269 2.0063 1 .6305 1 .6148
LWLS 1 .9558 1 .5344 1 . 1917 1 .2225

4.8.5 NECM Results for JMl Models Applied to the KC2 Datasets,

c=30

In this subsection, the predictive performance of the classification models

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented

in Tables 4 .63 to 4.68 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=30.

151

Table 4.64: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 2. 1423 1 .8139 1 .6374 1 .5383
TD 1 .4038 0 .8269 0.5589 0.5694
LR 1 .4923 0 .8562 0.3903 0.3134
LOC 1 .3385 0.6832 0.2702 0. 1866
GP 1 .3192 0 .7263 0.3233 0.3206
LBOOST 1 .3981 0.8197 0.4180 0.3445
RBM 1 .3731 0 .7219 0.3141 0.3086
BAG 1 .5135 1 .0190 0.7737 0.7105
RSET 1 .5962 1 .0424 0.5958 0.4593
MCOST 1 .3250 0 .8051 0.4734 0.4713
ABOOST 2. 1981 1 .8862 1 .6443 1 .5455
DTABLE 1 .6250 1 .0124 0.6236 0.5550
ADT 1 .6577 1 . 1096 0.7298 0.6794
SMO 1 .7615 1 . 1614 0.7159 0.5933
IB1 2 .4558 2 . 1848 2.0323 2.0215
IBK 1 .8327 1 .2461 0.8037 0.7464
PART 1.5635 1 .0934 0.9215 0.8612
ONER 1 .6327 1 .0190 0.6374 0 .5670
JRIP 1 .3500 0 .8285 0.4273 0 .4258
RDR 1 .5231 1 .0868 0. 7021 0.6388
J48 1 .7000 1 .0942 0.7136 0.6627
NBAYES 1 .4750 0.8365 0.4365 0.3014
HPIPES 2.2923 2.0378 1 .6582 1 .6364
LWLS 1 .6692 1 . 1942 0.7529 0.6938

152

Table 4.65: ECM Results for JM1-23C Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 2. 1057 1 . 7074 1 .4550 1 .3493
TD 1 .7346 0.6532 0.4088 0 .3349
LR 1 .3288 0.6723 0.2587 0 .2464
LOC 1 .3385 0.6832 0.2702 0. 1866
GP 1 .4635 0.8263 0.4226 0.3397
LBOOST 1.3673 0 .7182 0.3072 0 .2895
RBM 1 .5615 0 .9993 0.6120 0 .6220
BAG 1 .7423 1 .2117 0.8406 0.7033
RSET 1 .7173 1 . 1227 0 .7460 0 .6890
MCOST 1 .9654 1 .4716 1 .0554 0.9330
ABOOST 2 .1 173 1 .6490 1 .3210 1 .2081
DTABLE 1 .5981 0.9906 0.6074 0 .4689
ADT 1 .5365 0 .9087 0.5104 0.5000
SMO 1 .5827 0 .9599 0.5035 0 .3756
IB1 2.2481 1 .8724 1 .5497 1 .5167
IBK 1 .5904 0.9687 0.5081 0.4402
PART 1 .8385 1 .3242 0.9654 0.8469
ONER 1 .3365 0.7460 0.3372 0.2560
JRIP 1 .8731 1 .3614 1 .0046 1 .0239
RDR 1 .5442 0 .9168 0.4527 ·0.4545
J48 1 .6423 1 . 1643 0.8637 0.8086
NBAYES 1 .3769 0 .7263 0.3187 0. 1675
HPIPES 1 .6577 1 .0424 0.6536 0 .5239
LWLS 1 .5673 1 .0168 0.6328 0 .5622

153

Table 4.66: ECM Results for JM1-20C Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 1 .8789 1 .4453 1 . 1755 1 . 1292
TD 2 . 1885 1 .0621 0.5150 0.5144
LR 1 .3365 0.6832 0.2702 0.2560
LOC 1 .2942 0.6335 0.2171 0.2010
GP 1 .2788 0 .6810 0.2679 0.2584
LBOOST 1 . 7288 1 . 1292 0.6836 0.6914
RBM 1 .5442 0.9146 0.5219 0.4569
BAG 1 .8481 1 .3285 0.8938 0.7679
RSET 1 .5346 0.9037 0.5104 0.4402
MCOST 1 .9615 1 .4585 1 .0370 0.9880
ABOOST 1 . 7019 1 .2395 0.8106 0.6842
DTABLE 1 .4365 0.8672 0.5404 0.4713
ADT 1 . 6635 1 . 1227 0.6767 0.6100
SMO 1 . 5442 0 .9168 0.4527 0.3780
IB1 1 . 8 192 1 .3760 1 .0277 0.9761
IBK 1 .6077 1 .0533 0.6051 0.5335
PART 2 .0942 1 .6184 1 .2171 1 . 1794
ONER 1 .3500 0.6963 0.2841 0.2703
JRIP 1 .8769 1 .3651 0.9353 0.8134
RDR 1 .3481 0.8263 0.4226 0.3541
J48 1 .9423 1 .4432 1 .0878 0.9737
NBAYES 1 .4865 0.8497 0.4503 0.3086
HPIPES 1 .8 135 1 .2329 0.7968 0.7440
LWLS 1 .5538 1 .0687 0.6928 0.5574

154

Table 4.67: ECM Results for JM1-17C Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 2.0000 1 .4497 1 . 1062 0.9832
TD 2.1904 1 .0643 0.3395 0.1411
LR 1 .3981 0.7504 0.2725 0.2560
LOC 1 .2942 0.6335 0.2171 0.2010
GP 1 .3865 0.7372 0.3279 0.2488
LBOOST 1 .3462 0.6941 0.2841 0.2727
RBM 1 .7096 0.9146 0.6513 0.5167
BAG 1 .3904 0.8088 0.3349 0.2560
RSET 1 .4423 0.9321 0.5381 0.4761
MCOST 1 .6250 1 .0774 0.6236 0.5550
ABOOST 1 . 7250 1 . 1877 0 .7483 0.6866
DTABLE 1 . 7423 1 . 1446 0.6998 0.6316
ADT 1 .4385 0.8000 0.3303 0 .2536
SMO 1 .5538 0.9278 0.4642 0.3923
IB1 1 .7904 1 .3329 0.9007 0.8469
IBK 1 .5673 0 .9431 0.4827 0.4115
PART 1 . 7904 1 .2614 0.8245 0.7727
ONER 1 .3635 0.7116 0.3002 0.2847
JRIP 1 .3846 0.7350 0.3279 0.3230
RDR 1 .4288 0.8562 0.3903 0.3852
J48 1 .4962 0.9343 0.5520 0.4809
NBAYES 1 .3788 0.7285 0.3210 0 .2416
HPIPES 1 .3769 0 .8569 0.4550 0.3876
LWLS 1 .6192 1 .0037 0.5473 0.5526

155

Table 4.68: ECM Results for JM1-13C Models Applied to KC2 datasets, c=30

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 2.0577 1 .5060 1 .0924 1 .0454
TD 2.0192 1 . 1 745 0.4111 0.3373
LR 1 .3827 0 .7329 0.3233 0 .2416
LOC 1 .3250 0.6679 0 .2540 0 .1722
GP 1 .3404 0.6854 0.2725 0.2608
LBOOST 1 .3846 0 .7350 0.2564 0 .1722
RBM 1.4346 0 .7913 0.3857 0.3852
BAG 1 .3981 0.8153 0.41 1 1 0.3349
RSET 1 .5731 0.9496 0.5566 0 .4809
MCOST 1 .4885 0.8519 0 .4503 0.3852
ABOOST 1.4423 0.8672 0 .4688 0.3995
DTABLE 1 .2904 0.6292 0.2125 0 . 1938
ADT 1 .4404 0 .8628 0.3949 0.3182
SMO 1 .5942 0 .9730 0.5127 0.4474
IB1 1 .5385 0 .9774 0.5889 0 .5239
IBK 1 .6481 1 .0358 0 .5820 0.5215
PART 1 .4000 0 .8175 0.4134 0.3469
ONER 1 .3635 0.7116 0.3002 0.2847
JRIP 1 .4038 0 .7569 0 .3487 0.2656
RDR 1 .2904 0.6941 0.2818 0.2057
J48 1 .4019 0 .7547 0.3464 0.2656
NBAYES 1 .3731 0 .7219 0.3141 0.2368
HPIPES 1 .7077 1 . 1008 0.7182 0.6675
LWLS 1 .6019 1 .0468 0.5935 0.5239

156

Table 4.69: ECM Results for JM1-8850 Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.3558 2.7279 2.3095 2 . 1339
TD 2.3365 1 .2688 0.8314 0.9593
LR 2.9346 2.0060 1 .2979 1 .0933
LOC 2. 1077 1 .0730 0.4088 0.2823
GP 2.0250 0.9801 0.3095 0.2919
LBOOST 2.5654 1 .7009 1 .0808 0.9952
RBM 2.6788 1 .8310 1 . 1062 1 . 1268
BAG 2.8365 1 .8223 1 .4457 1 .3660
RSET 3. 1404 2.3549 1 .6697 1 .4689
MCOST 3.7000 3 .1173 2.6074 2.5718
ABOOST 4.0635 3.7594 3.4134 3.2727
DTABLE 2.7865 1 .9481 1 .2333 1 . 1411
ADT 2.4077 1 .5259 0.8984 0 .7967
SMO 2.6481 1 .6812 0.9469 0 .8541
IB1 5.2250 4.7427 4.5704 4.7225
IBK 3.0346 2.3506 1 .6697 1 .5981
PART 3.6231 2.8165 2.3995 2 .3541
ONER 2.7788 1 .9481 1 .2333 1 .2584
JRIP 2.6788 1 .9437 1 .2286 1 . 1435
RDR 2.2673 1 .5871 1 .0831 0.9856
J48 3.3135 2.6929 2 .1547 2 .0981
NBAYES 2. 1692 1 . 1419 0.4850 0 .2584
HPIPES 3.0269 3.0026 2.3695 2.3325
LWLS 3.1481 2.4873 1 .9307 1 .9880

4.8.6 NECM Results for JMl Models Applied to the KC2 Datasets,

c=50

In this subsection, the predictive performance of the classification models

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented

in Tables 4 .69 to 4. 7 4 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=50.

157

Table 4. 70: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.4499 2 .9401 2.6536 2 .4952
TD 2.2 1 15 1 . 2601 0.7898 0 .8086
LR 2.3769 1 .3760 0.6212 0 .5048
LOC 2 .1077 1 .0730 0.4088 0.2823
GP 2.0885 1 . 1594 0.5081 0.5120
LBOOST 2.2058 1 . 2962 0.6490 0 .5359
RBM 2 .1808 1 . 1551 0.4988 0.5000
BAG 2.3981 1 .6254 1 .2356 1 . 1411
RSET 2.5577 1 .6921 0.9654 0 .7464
MCOST 2.0558 1 . 2382 0 .7044 0.7105
ABOOST 3.5058 3.0123 2.6143 2 .4545
DTABLE 2.5865 1 .6188 0.9931 0 .8900
ADT 2.6577 1 .8026 1 . 1917 1 . 1 100
SMO 2.8385 1 .8977 1 . 1778 0.9761
IB1 3.9558 3 .5275 3 .2794 3 .2656
IBK 2 .9481 2 .0257 1 .3118 1 .2249
PART 2.4481 1 .6998 1 .4296 1 .3397
ONER 2.5942 1 .6254 1 .0069 0.9019
JRIP 2 . 1 192 1 .3049 0.6582 0.6651
RDR 2.3692 1 .6932 1 .0716 0.9737
J48 2 .7385 1 . 7873 1 . 1755 1 .0933
NBAYES 2.3596 1 .3563 0 .7136 0.4928
HPIPES 3.5231 3 . 1207 2 .4896 2.4498
LWLS 2.6692 1 .9306 1 .2148 1 . 1244

158

Table 4. 71: ECM Results for JM1-23C Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.4134 2.7903 2 .3787 2 .2105
TD 2.7731 0.9998 0.5473 0.4306
LR 2.0981 1 .0621 0.3972 0.3900
LOC 2.1077 1.0730 0.4088 0 .2823
GP 2.3096 1 .3027 0.6536 0.5311
LBOOST 2. 1365 1 . 1080 0.4457 0 .4330
RBM 2.4846 1 .6057 0.9815 1 .0048
BAG 2.7808 1 .9481 1 .3487 1 . 1340
RSET 2.7558 1 .8157 1 .2079 1 . 1 196
MCOST 3. 1577 2.3812 1 . 7021 1 .5072
ABOOST 3.4250 2.6886 2 . 1524 1 .9737
DTABLE 2.5596 1.5969 0.9769 0.7560
ADT 2.4212 1 .4285 0.7875 0 .7871
SMO 2.5442 1 .5663 0.8268 0.6148
IB1 3.6327 3.0419 2.5196 2.4737
IBK 2.5519 1 .5751 0.8314 0 .7273
PART 2.9538 2. 1471 1 .5658 1 .3732
ONER 2. 1058 1 . 1791 0.5219 0 .3995
JRIP 2.9885 2.1843 1 .6051 1 .6459
RDR 2.4673 1 .4799 0.7298 0 .7416
J48 2.6038 1.8573 1 .3718 1 .2871
NBAYES 2 .1846 1 . 1594 0.5035 0 .2632
HPIPES 2.6577 1 .6921 1 .0693 0.8589
LWLS 2.4904 1 .6232 1 .0023 0 .8971

159

Table 4. 72: ECM Results for JM1-20C Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.0327 2.3549 1 .9146 1 .8469
TD 3.5731 1 .7118 0.7921 0.8014
LR 2.1058 1 .0730 0.4088 0.3995
LOC 2.0250 0.9801 0.3095 0.2967
GP 2.0096 1 .0708 0 .4065 0.4019
LBOOST 2.7673 1 .8223 1 .0993 1 . 1220
RBM 2.4673 1 .4777 0.8453 0.7440
BAG 2.9635 2. 1515 1 .4480 1 .2464
RSET 2 .4577 1 .4668 0.8337 0.7273
MCOST 3 .1538 2.3681 1 .6836 1 .6100
ABOOST 2.7404 2.0191 1 .3187 1 . 1 148
DTABLE 2.2827 1 .3869 0.8637 0.7584
ADT 2.6635 1 .8157 1 .0924 0.9928
SMO 2.4673 1 .4799 0.7298 0.6172
IB1 2.9346 2.2423 1 .6744 1 .5981
IBK 2.5692 1 .7030 0.9746 0.8684
PART 3.4019 2.6579 2.0023 1 .9450
ONER 2 . 1 192 1 .0862 0.4226 0.4139
JRIP 3.0308 2.2313 . 1 .5358 1.3397
RDR 2 . 1 173 1 .3027 0.6536 0.5455
J48 3. 1346 2 .3528 1 .7806 1 .5957
NBAYES 2.3712 1 .3694 0.7275 0.5000
HPIPES 2.9288 2.0126 1 .3048 1 .2225
LWLS 2.4769 1 .7184 1 . 1085 0.8923

160

Table 4. 73: ECM Results for JM1-17C Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.2308 2 .3593 1 .7990 1 .6052
TD 3.5750 1 . 7140 0.5242 0.1890
LR 2.2058 1 . 1835 0.411 1 0.3995
LOC 2.0250 0.9801 0.3095 0.2967
GP 2 . 1942 1 . 1704 0.5127 0.3923
LBOOST 2 . 1 154 1 .0840 0.4226 0.4163
RBM 2 .7481 1 .4777 1 .0670 0.8517
BAG 2. 1981 1 .2852 0.5196 0.3995
RSET 2 .2885 1 .4952 0.8614 0.7632
MCOST 2 .5865 1 . 7271 0.9931 0.8900
ABOOST 2 .7635 1 .9240 1 .2102 1 . 1 172
DTABLE 2 .7808 1 .8376 1 . 1 155 1 .0144
ADT 2.2846 1 .2765 0.5150 0.3971
SMO 2 .4769 1 .4909 0.7413 0.6316
IB1 2 .8673 2 . 1559 1 .4550 1 .3732
IBK 2.4904 1 .5062 0.7598 0.6507
PART 2.8673 2 .0410 1 .3326 1 .2512
ONER 2 . 1327 1 . 1015 0.4388 0.4282
JRIP 2 . 1923 1 . 1682 0.5127 0.5144
RDR 2.2750 1 .3760 0.6212 0.6244
J48 2 .3808 1 .4974 0.8753 0.7679
NBAYES 2. 1865 1 . 1616 0.5058 0.3852
HPIPES 2 . 1462 1 .3334 0.6859 0.5789
LWLS 2.5808 1 .6101 0.8707 0.8876

161

Table 4.74: ECM Results for JM1-13C Models Applied to KC2 datasets, c=50

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I
CBR 3.3269 2 .4589 1 . 7852 1 .7153
TD 3.2885 1 .9109 0.6420 0 .5287
LR 2.1904 1 . 1660 0 .5081 0.3852
LOC 2.0942 1 .0577 0.3926 0 .2679
GP 2. 1096 1 .0752 0.411 1 0.4043
LBOOST 2. 1923 1 . 1682 0 .3949 0.2679
RBM 2.2808 1 .2677 0.6166 0.6244
BAG 2.2058 1 .2918 0.6420 0.5263
RSET 2.4962 1 .5127 0 .8799 0.7679
MCOST 2.3731 1 .3716 0.7275 0.6244
ABOOST 2.2885 1 .3869 0 .7460 0 .6388
DTABLE 2.0212 0 .9757 0.3048 0.2895
ADT 2.2865 1 .3826 0.6259 0 .5096
SMO 2.5558 1 . 5794 0 .8360 0 .7344
IB1 2 .4615 1 .5838 0.9584 0 .8589
IBK 2.6481 1 .6855 0.9515 0.8565
PART 2.2077 1 . 2940 0.6443 0 .5383
ONER 2. 1327 1 . 1015 0 .4388 0 .4282
JRIP 2.2115 1 . 1901 0 .5335 0.4091
RDR 2.0212 1 .0840 0 .4203 0.3014
J48 2.2096 1 . 1879 0.5312 0.4091
NBAYES 2 .1808 1 . 1551 0.4988 0 .3804
HPIPES 2.7462 1 . 7938 1 . 1801 1 .0981
LWLS 2.5635 1 .6965 0.9630 0 .8589

162

Table 4. 75: ECM Results for KC2-520 Models Applied to JMl datasets, c=lO

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 0.8688 0.6993 0 .5813 0.495"8 0.3892
TD 1 . 1027 0.8965 0.7881 0.6966 0.5516
LR 0.9137 0.7022 0 .5594 0.4328 0.2741
LOC 0.9590 0.7434 0.5793 0.4257 0.2252
GP 0.9898 0.7795 0 .6253 0.4836 0.3002
ANN 1 .4840 1 .3721 1 .3259 1 .2670 1 . 1691
LBOOST 0.9149 0.7360 0.6111 0.5169 0.4071
RBM 0.9363 0.7351 0.5949 0 .4741 0 .3138
BAG 0.9447 0.7611 0.6145 0.4932 0.3231
RSET 1 .0315 0.8754 0 .7550 0.6594 0.5129
MCOST 0.9105 0.7506 0.6416 0.5430 0.4211
ABOOST 1 .0757 0.9348 0.8401 0.7678 0.6740
DTABLE 0.9099 0.7059 0.5533 0.4311 0.2638
ADT 0.9454 0.7488 0 .6053 0.4793 0 .3195
SMO 0.9280 0.7197 0.5762 0.4496 0.2925
IB1 0.9920 0.8724 0.8049 0 .7848 0 .6248
IBK 0.9478 0 .7053 0.5806 0.4483 0 .2914
PART 1 .0134 0.8457 0 .7108 0 .5846 0 .4237
ONER 0.9318 0.7122 0.5455 0 .3960 0 . 1987
JRIP 0.9472 0.7496 0.6048 0 .4787 0.3171
RDR 0.9472 0.7496 0.6048 0 .4787 0.3171
J48 0.9472 0.7496 0.6048 0.4787 0.3171
NBAYES 0.9131 0 .6950 0 .5313 0.3905 0.2017
HPIPES 1 . 1041 0.9258 0.8063 0.7043 0.5530
LWLS 0.9800 0.7931 0.6482 0.5246 0 .3727

4.8. 7 NECM Results for KC2 Models Applied to the JMl Datasets,

c=lO

In this subsection, the predictive performance of the classification models

built on the KC2 datasets and evaluated on the on the JMl datasets are presented

in Tables 4. 75 to 4. 79 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=lO.

163

Table 4. 76: ECM Results for KC2-260 Models Applied to JMl datasets, c=lO

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 0.8696 0 .7176 0.6034 0 .5270 0.4306
TD 1 .0553 0.7782 0 .5951 0 .4536 0 .2683
LR 0.8922 0.6952 0.5578 0 .4430 0 .2962
LOC 0.9496 0 .7326 0.5674 0 .4165 0 .2162
GP 0.9506 0 .7963 0.6745 0.5802 0.4512
ANN 1 .7985 1 . 7963 1 .8074 1 . 7883 1 . 7396
LBOOST 0.9369 0.8157 0.7443 0.6873 0 .6208
RBM 0.9155 0.7248 0.6020 0.5057 0 .3898
BAG 0.9282 0.7722 0 .6441 0 .5351 0 .3950
RSET 0.9606 0 .7520 0.5985 0.4730 0 .3000
MCOST 0.9476 0 .7833 0.6603 0.5624 0.4279
ABOOST 1 .0872 0.9822 0.8991 0.8292 0 .7386
DTABLE 0.9469 0.7582 0.6301 0.5303 0.3897
ADT 1 .0275 0 .8849 0.7621 0.6613 0 .5277
SMO 0.9894 0.8028 0 .6769 0.5660 0.4234
IB1 1 .0527 0 .9016 0.8273 0 .7940 0.6519
IBK 0.9416 0. 7031 0 .5592 0.4407 0.2764
PART 0.9845 0.8629 0.7807 0.7230 0.6431
ONER 1 .0694 0 .9474 0.8645 0.7964 0.6772
JRIP 0.9287 0 .7513 0.6392 0.5409 0 .4371
RDR 0.8583 0.6676 0.5411 0.4380 0 .3223
J48 1 .0797 1 .0053 0 .9713 0 .9377 0.9167
NBAYES 0.9315 0 .7147 0 .5501 0 .4062 0.2240
HPIPES 0.8654 0.6613 0.5212 0 .4180 0 .2829
LWLS 1 . 1652 1 .0700 1 .0156 0.9416 0.8342

164

Table 4.77: ECM Results for KC2-23C Models Applied to JMl datasets , c=lO

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 0.8850 0 .7247 0 .6142 0.5285 0.4174
TD 1 . 1096 0 .8162 0.6098 0.4602 0.2869
LR 0.9844 0 . 7876 0.6447 0.5127 0.3449
LOC 0.9590 0 .7434 0.5793 0.4257 0.2252
GP 1 .0641 0 .8684 0 .7328 0.6092 0 .4367
ANN 1 .8355 1 . 8462 1 .8623 1 .8471 1 .8044
LBOOST 1 .0173 0 .8657 0 .7341 0 .6135 0 .4437
RBM 0.9376 0 .7681 0.6550 0.5538 0.4159
BAG 0.9799 0 .7845 0.6340 0.5097 0.3311
RSET 0.9016 0 .6989 0.5517 0 .4257 0.2634
MCOST 0.8818 0 .6863 0 .5456 0.4334 0.2887
ABOOST 0.9781 0 .8061 0.6742 0.5724 0 .4269
DTABLE 0.9750 0 .7640 0.6077 0 .4676 0.2777
ADT 0.9729 0 .7896 0.6436 0.5182 0.3506
SMO 0.9080 0 .6878 0.5285 0 .3954 0.2247
IB1 1 .0156 0 .8478 0.8052 0.7708 0.6190
IBK 0.9428 0 .6873 0 .5431 0 .4150 0.2190
PART 0.9998 0 .8417 0 .7369 0 .6374 0.5041
ONER 0.9190 0 .7188 0 .5689 0.4466 0.2852
JRIP 0.9190 0 .7188 0.5689 0.4466 0.2852
RDR 0.9282 0.7243 0 .5754 0 .4507 0.2847
J48 0.9998 0 .8417 0 .7369 0 .6374 0.5041
NBAYES 0.9247 0 .7098 0 .5460 0.4046 0.2145
HPIPES 0.9068 0.6948 0 .5373 0 .4079 0.2382
LWLS 0.9773 0.7905 0.6195 0.5109 0.3070

165

Table 4. 78: ECM Results for KC2-17C Models Applied to JMl datasets , c=lO

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 0.8571 0.6635 0.5296 0 .4281 0 .3020
TD 1 .2027 0.8801 0.6326 0.4257 0.2162
LR 0.9383 0.7337 0.5796 0 .4453 0.2751
LOC 0.9718 0.7579 0.5951 0 .4432 0.2391
GP 0.9619 0.7640 0 .6195 0.5044 0.3461
ANN 1 .8177 1 .8281 1 .8426 1 .8260 1 .781 1
LBOOST 0.9130 0.7133 0.5650 0 .4407 0.2819
RBM 0.8919 0.6900 0.5493 0 .4269 0.2644
BAG 0.9092 0.7032 0.5473 0.4128 0.2411
RSET 0.9718 0.7579 0.5951 0.4432 0.2391
MCOST 0.9132 0.7083 0.5569 0.4242 0.2518
ABOOST 0.9115 0.7099 0.5608 0.4309 0.2651
DTABLE 0.9423 0.7401 0.5904 0 .4563 0.2836
ADT 0.9243 0.7115 0.5474 0.4068 0.2222
SMO 0.9151 0.7002 0.5553 0 .4287 0 .2681
IB1 0.9031 0.6925 0.5386 0 .4343 0 .2875
IBK 0.9485 0.7074 0.5625 0.4528 0.2556
PART 0.9440 0.7415 0.5927 0.4727 0.3098
ONER 0.9472 0.7496 0.6048 0 .4787 0.3171
JRIP 0.9085 0.7052 0.5585 0.4308 0.2697
RDR 0.8931 0 .6863 0.5266 0.3889 0.2139
J48 0.9249 0.7326 0.5889 0.4784 0.3265
NBAYES 0.9200 0.7016 0.5370 0 .3949 0 .2110
HPIPES 0.9145 0.7003 0.5441 0.4104 0.2322
LWLS 0.8615 0.6665 0.5216 0 .4050 0.2669

166

Table 4. 79: ECM Results for KC2-13C Models Applied to JMl datasets, c=lO

I Methods I JMl-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 0.8800 0.6912 0 .5583 0.4578 0 .3215
TD 1 .2157 0 .9463 0 .7365 0.5813 0.3657
LR 0.8860 0.7154 0.6166 0.5317 0 .4228
LOC 0.9496 0 .7326 0.5674 0.4165 0.2162
GP 0.9728 0 .7696 0.6201 0.4792 0 .3023
ANN 1 . 8433 1 . 8601 1 . 8777 1 .8637 1 .8227
LBOOST 0.9472 0 .7496 0.6048 0.4787 0.3171
RBM 0.9298 0 .7308 0 .5921 0.4751 0 .3240
BAG 0.9472 0 .7496 0.6048 0 .4787 0.3171
RSET 0.9529 0 .7382 0 .5795 0.4403 0.2481
MCOST 0.9472 0 .7496 0 .6048 0.4787 0.3171
ABOOST 0.9472 0 .7496 0.6048 0.4787 0.3171
DTABLE 0.9472 0.7496 0.6048 0 .4787 0.3171
ADT 0.9586 0 .7587 0.6119 0.4834 0.3176
SMO 0.9124 0.6970 0 .5497 0.4234 0.2608
IB1 0 .9416 0 .7325 0 .5992 0 .4863 0 .3008
IBK 0.9627 0 .7283 0.5910 0.4940 0.2929
PART 0.9472 0 .7496 0.6048 0.4787 0.3171
ONER 0.9472 0 .7496 0.6048 0.4787 0.3171
JRIP 0.9472 0 .7496 0.6048 0.4787 0.3171
RDR 0.9472 0 .7496 0.6048 0 .4787 0.3171
J48 0.9472 0 .7496 0.6048 0.4787 0.3171
NBAYES 0.8962 0 .6814 0 .5316 0.4000 0.2471
HPIPES 0.8963 0.6823 0 .5203 0.3819 0.2076
LWLS 0.9511 0 .7523 0.6062 0 .4735 0.3098

167

Table 4.80: ECM Results for KC2-520 Models Applied to JMl datasets, c=20

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .3185 1.0304 0.8357 0.6948 0 .5172
TD 1 .9569 1 .5588 1 .3517 1 . 1837 0.8892
LR 1 .5012 1 . 1463 0.9122 0 .6951 0.4171
LOC 1 .6697 1 .3172 1 .0502 0 .7845 0.4214
GP 1 .7345 1 .3917 1 . 1397 0.8937 0.5596
ANN 2.9032 2.7121 2.6344 2 .5231 2.3316
LBOOST 1 .4641 1 . 1634 0.9583 0 .7989 0.6133
RBM 1 .5623 1 .2280 0.9955 0 .7877 0.5017
BAG 1 .5719 1 .2733 1 .0319 0 .8249 0.5160
RSET 1 .7468 1 .4940 1 .2905 1 . 1208 0.8538
MCOST 1 .4201 1 . 1575 0.9789 0.8099 0.5940
ABOOST 1 .8508 1 .6253 1 .4655 1 .3362 1 . 1663
DTABLE 1 .5032 1 . 1642 0.9103 0 .7040 0 .4068
ADT 1 .6031 1 .2815 1 .0439 0.8261 0.5390
SMO 1 .5156 1 . 1638 0 .9276 0.7105 0 .4372
IB1 1 .6078 1.3935 1 .2954 1 . 2869 0.9674
IBK 1 .5625 1 . 1314 0.9460 0 .7393 0.4427
PART 1 .7321 1 .4631 1 .2392 1 .0204 0 .7281
ONER 1 .5815 1 .2167 0 .9418 0.6855 0.3368
JRIP 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367
RDR 1 .6082 1 .2848 1 .0447 0.8271 0.5367
J48 1 .6082 1 .2848 1 .0447 0.8271 0.5367
NBAYES 1 .5334 1 . 1699 0.8995 0.6589 0 .3231
HPIPES 2.0069 1 .7216 1 .5231 1 .3406 1 .0552
LWLS 1 .6399 1 .3347 1 .0881 0 .8804 0.5989

4.8.8 NECM Results for KC2 Models Applied to the JMl Datasets,

c=20

In this subsection, the predictive performance of the classification models

built on the KC2 datasets and evaluated on the on the JMl datasets are presented

in Tables 4 .80 to 4 .84 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=20.

168

Table 4.81 : ECM Results for KC2-260 Models Applied to JMl datasets, c=20

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .291 1 1 .0334 0.8423 0 .7170 0.5570
TD 1 . 8971 1 .3699 1 .0238 0 .7521 0.3963
LR 1 .4459 1 . 1 174 0.8909 0.6948 0 .4376
LOC 1 .6377 1 .2807 1 .0101 0 .7512 0 .3908
GP 1 .5382 1 .2879 1 .0849 0.9240 0 .6907
ANN 3.5906 3.5920 3 .6149 3 .5766 3 .4791
LBOOST 1 .4194 1 .2161 1 .0999 1 .0024 0.8952
RBM 1 .4759 1 . 1548 0 .9505 0 .7862 0.5861
BAG 1 .4740 1 .2214 1 .0110 0.8231 0.5679
RSET 1 .6419 1 .2988 1 .0468 0.8319 0.5179
MCOST 1 .5442 1 .2762 1 .0721 0.9032 0.6624
ABOOST 1 .8115 1 .6432 1 .5048 1 .3810 1 .2209
DTABLE 1 .5492 1 .2292 1 .0180 0.8515 0.6042
ADT 1 . 7427 1 .5202 1 .3144 1 . 1363 0.8886
SMO 1 .6504 1 .3355 1 . 1280 0.9400 0.6945
IB1 1 . 7442 1 .4727 1 .3670 1 .3142 1 .0527
IBK 1 .5450 1 .0920 0 .8909 0 .7046 0 .3928
PART 1 .6003 1 .4046 1 .2656 1 . 1663 1 .0223
ONER 1 . 8038 1 .6148 1 .4773 1 .3574 1 . 1345
JRIP 1 .4880 1 . 1915 1 .0074 0.8394 0.6632
RDR 1 .3205 0 .9974 0 .7899 0 .6160 0 .4221
J48 1 . 7215 1 .5970 1 .5434 1 .4836 1 .4538
NBAYES 1 .5586 1 . 1960 0 .9226 0.6761 0.3554
HPIPES 1 .3479 1 .0001 0 .7671 0.5959 0.3660
LWLS 2.0206 1 .8580 1 .7732 1 .6353 1 .4362

169

Table 4.82: ECM Results for KC2-23C Models Applied to JMl datasets, c=20

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .3404 1 .0687 0.8869 0 .7441 0.5555
TD 2.0215 1 .4605 1 .0708 0 .7829 0.4532
LR 1 . 7042 1 .3844 1 . 1479 0 .9168 0.61 10
LOC 1 .6697 1 .3172 1 .0502 0 .7845 0.4214
GP 1 .9273 1 .6155 1 .3934 1 . 1731 0.8492
ANN 3.6660 3.6920 3.7245 3.6942 3.6088
LBOOST 1 . 7450 1 .5126 1 .2963 1 .0810 0.7597
RBM 1 .5049 1 .2237 1 .0387 0.8629 0.6188
BAG 1 .6827 1 .3659 1 . 1 189 0.9032 0.5739
RSET 1 .4632 1 . 1237 0.8805 0.6669 0.3815
MCOST 1 .3869 1 .0572 0.8239 0.6354 0 .3852
ABOOST 1 .6233 1 .3439 1 . 1240 0.9478 0 .6830
DTABLE 1 .6993 1 .3544 1 .0982 0 .8551 0.5089
ADT 1 .6373 1 .3403 1 .0989 0 .8816 0.5751
SMO 1 .4979 1 . 1268 0.8630 0.6366 0 .3394
IB1 1 .6506 1 .3856 1 .3056 1 .2699 0.9666
IBK 1 .5824 1 . 1250 0.9071 0 .7180 0.3487
PART 1 .6777 1 .4193 1 .2471 1 .0716 0.8300
ONER 1 .5020 1 . 1680 0.9189 0.7120 0.4282
JRIP 1 .5020 1 . 1680 0.9189 0.7120 0.4282
RDR 1 .5305 1 . 1902 0.9436 0.7327 0 .4394
J48 1 .6777 1 .4193 1 .2471 1 .0716 0.8300
NBAYES 1 .5541 1 . 1963 0 .9241 0 .6805 0.3409
HPIPES 1 .5079 1 .1543 0.8929 0.6717 0.3729
LWLS 1 .6699 1 .3630 1 .0862 0 .8999 0 .5282

170

Table 4.83: ECM Results for KC2-17C Models Applied to JMl datasets, c=20

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .3057 0.9753 0 .7530 0 .5834 0 .3702
TD 2.2682 1 .6592 1 . 1836 0 .7845 0 .3908
LR 1 .5903 1 .2535 0.9985 0 .7664 0 .4597
LOC 1 .7051 1 .3573 1 .0926 0 .8292 0.4553
GP 1 .6478 1 .3249 1 .0862 0 .8874 0.6005
ANN 3.6313 3.6559 3 .6852 3.6520 3 .5623
LBOOST 1 .4881 1 . 1548 0 .9093 0.6986 0.4199
RBM 1 .4388 1 . 1008 0.8697 0 .6621 0.3759
BAG 1 .4854 1 . 1409 0.8818 0 .6526 0 .3509
RSET 1 . 7051 1 .3573 1 .0926 0 .8292 0 .4553
MCOST 1 .5098 1 . 1690 0.9195 0 .6926 0.3865
ABOOST 1 .5025 1 . 1681 0.9234 0 .7024 0.41 14
DTABLE 1 .6191 1 .2907 1 .0486 0.8166 0 .5014
ADT 1 .5751 1 .2249 0.9550 0 .7144 0.3818
SMO 1 .4925 1 . 1289 0 .8898 0 .6729 0.3928
IB1 1 .4533 1 .0724 0.8169 0 .6619 0.3907
IBK 1 .5858 1 . 1335 0.9237 0 .7544 0.3853
PART 1 .5880 1 .2536 1 .0087 0 .8044 0.5127
ONER 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367
JRIP 1 .4802 1 . 1403 0.8987 0.6811 0.3978
RDR 1 .4649 1 . 1201 0.8555 0 .6211 0.3153
J48 1 . 5271 1 .2101 0.9726 0 .7860 0.5160
NBAYES 1 .5482 1 . 1842 0.9123 0.6693 0.3458
HPIPES 1 .5179 1 . 1598 0.9011 0.6728 0 .3569
LWLS 1 .3406 1 .0157 0.7830 0.5875 0.3484

171

Table 4.84: ECM Results for KC2-13C Models Applied to JMl datasets, c=20

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .3693 1 .0493 0.8295 0 .6613 0.4263
TD 2 .2892 1 .7883 1 .3844 1 .0909 0.6717
LR 1 .3606 1.0723 0.9117 0.7669 0.5807
LOC 1 .6377 1 .2807 1 .0101 0.7512 0.3908
GP 1 .6869 1.3562 1 . 1092 0.8637 0 .5418
ANN 3.6840 3.7199 3.7554 3 .7274 3.6454
LBOOST 1 .6082 1 .2848 1 .0447 0 .8271 0.5367
RBM 1 .5332 1 .2019 0.9716 0 .7707 0.5036
BAG 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367
RSET 1 .6399 1 .2862 1.0250 0.7841 0.4361
MCOST 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367
ABOOST 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367
DTABLE 1 .6082 1.2848 1 .0447 0.8271 0.5367
ADT 1 .6355 1 .3080 1 .0645 0.8423 0.5438
SMO 1 .4910 1 . 1269 0.8842 0 .6692 0.3855
IB1 1 .5856 1 .2254 1 .0138 0 .8346 0 .4938
IBK 1 .6136 1 . 1531 0.9761 0.8347 0.4525
PART 1 .6082 1 .2848 1 .0447 0 .8271 0.5367
ONER 1 .6082 1 .2848 1 .0447 0 .8271 0.5367
JRIP 1 .6082 1 .2848 1 .0447 0 .8271 0.5367
RDR 1 .6082 1 .2848 1 .0447 0.8271 0.5367
J48 1 .6082 1 .2848 1 .0447 0 .8271 0.5367
NBAYES 1 .4510 1 .0870 0.8379 0 .6126 0.3519
HPIPES 1 .4793 1 . 1213 0.8520 0.6157 0 .3090
LWLS 1 .6223 1 .3003 1 .0573 0.8293 0 .5327

172

Table 4.85: ECM Results for KC2-520 Models Applied to JMl datasets, c=30

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .7682 1 .3616 1 .0901 0.8939 0.6453
TD 2.8112 2.2212 1 .9152 1 .6707 1 .2268
LR 2.0888 1 .5904 1 .2649 0 .9575 0.5601
LOC 2.3805 1 .8909 1 .5210 1 . 1434 0.6177
GP 2.4791 2.0040 1 .6541 1 .3038 0.8191
ANN 4.3224 4.0521 3.9429 3 .7791 3.4941
LBOOST 2.0132 1 .5908 1 .3054 1 .0808 0.8196
RBM 2. 1882 1 . 7208 1 .3961 1 . 1013 0.6897
BAG 2. 1990 1 . 7854 1 .4493 1 . 1567 0.7090
RSET 2.4620 2 .1 127 1 .8260 1 .5822 1 . 1947
MCOST 1 .9297 1 .5644 1 .3162 1 .0767 0.7670
ABOOST 2.6260 2.3159 2.0909 1 .9047 1 .6586
DTABLE 2.0964 1 .6224 1 .2673 0.9769 0.5498
ADT 2.2607 1 .8141 1 .4824 1 . 1 729 0 .7585
SMO 2. 1032 1 .6079 1 .2790 0.9714 0.5819
IB1 2.2236 1 .9146 1 .7859 1 . 7891 1 .3100
IBK 2 .1772 1 .5576 1 .3115 1 .0303 0 .5940
PART 2.4507 2.0805 1 .7677 1 .4561 1 .0324
ONER 2.2312 1 .7211 1 .3382 0.9750 0 .4748
JRIP 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
RDR 2.2693 1 .8200 1 .4846 1 . 1754 0 .7562
J48 2.2693 1 .8200 1 .4846 1 . 1754 0 .7562
NBAYES 2. 1538 1 .6448 1 .2677 0.9273 0 .4445
HPIPES 2.9097 2 .5174 2 .2399 1 .9769 1 . 5575
LWLS 2.2998 1 .8764 1 .5280 1 .2363 0 .8250

4.8.9 NECM Results for KC2 Models Applied to the JMl Datasets,

c=30

In this subsection, the predictive performance of the classification models

built on the KC2 datasets and evaluated on the on the JMl datasets are presented

in Tables 4.85 to 4 .89 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=30.

173

Table 4.86: ECM Results for KC2-260 Models Applied to JMl datasets, c=30

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 . 7125 1 .3491 1 .0813 0.9069 0.6833
TD 2.7389 1 .9616 1 .4524 1 .0507 0.5244
LR 1 .9995 1 .5397 1 .2240 0.9466 0.5789
LOC 2.3259 1 .8288 1 .4528 1 .0859 0.5654
GP 2. 1258 1 .7795 1 .4953 1 .2678 0.9302
ANN 5.3827 5.3876 5.4223 5.3649 5.2187
LBOOST 1 .9019 1 .6166 1 .4555 1 .3176 1 . 1696
RBM 2.0364 1 .5848 1 .2991 1 .0666 0 .7823
BAG 2.0198 1 .6706 1 .3778 1 . 1 1 1 1 0.7409
RSET 2.3233 1 .8456 1 .4952 1 . 1907 0.7357
MCOST 2. 1408 1 .7691 1 .4839 1 .2440 0.8969
ABOOST 2.5358 2.3042 2 . 1 106 1 .9329 1 .7031
DTABLE 2. 1514 1 .7003 1 .4059 1 . 1726 0.8187
ADT 2.4580 2 .1556 1 .8668 1 .6113 1 .2495
SMO 2.3114 1 .8682 1 .5792 1 .3139 0.9656
IB1 2.4357 2.0439 1 .9067 1 .8344 1 .4535
IBK 2. 1484 1 .4809 1 .2226 0.9685 0.5092
PART 2.2162 1 .9462 1 .7505 1 .6096 1 .4015
ONER 2.5383 2.2822 2.0901 1 .9183 1 .5919
JRIP 2.0473 1 .6318 1 .3757 1 . 1380 0.8894
RDR 1 . 7826 1 .3273 1 .0387 0.7939 0.5219
J48 2.3633 2 .1887 2 .1 154 2.0294 1 .9910
NBAYES 2. 1858 1 .6773 1 .2950 0.9460 0.4868
HPIPES 1 .8304 1 .3390 1 .0131 0.7738 0.4492
LWLS 2.8759 2.6461 2.5307 2.3289 2.0383

174

Table 4.87: ECM Results for KC2-23C Models Applied to JMl datasets, c=30

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .7957 1 .4126 1 . 1595 0 .9597 0 .6935
TD 2.9333 2.1049 1 .5318 1 . 1055 0.6195
LR 2.4240 1 .9813 1 .6510 1 .3209 0 .8771
LOC 2.3805 1 .8909 1 .5210 1 . 1434 0.6177
GP 2.7906 2.3625 2.0540 1 . 7370 1 .2616
ANN 5.4965 5.5377 5 .5868 5 .5413 5 .4133
LBOOST 2.4727 2 .1595 1 .8585 1 . 5484 1 .0757
RBM 2.0721 1 .6794 1 .4223 1 . 1720 0.8217
BAG 2.3855 1 .9474 1 .6038 1 . 2967 0.8167
RSET 2.0247 1 .5486 1 .2094 0.9082 0 .4996
MCOST 1 .8920 1 .4282 1 . 1022 0.8375 0.4816
ABOOST 2.2685 1 .8817 1 .5737 1 .3233 0.9391
DTABLE 2.4236 1 .9448 1 .5888 1 .2426 0 .7401
ADT 2.3017 1 .8909 1 .5543 1 .2450 0 .7996
SMO 2.0877 1 .5658 1 . 1975 0 .8779 0.4542
IB1 2.2856 1 .9234 1 .8059 1 .7690 1 .3142
IBK 2.2219 1 .5627 1 .271 1 1 .021 1 0 .4785
PART 2.3557 1 .9969 1 .7573 1 .5059 1 . 1560
ONER 2.0851 1 .6173 1 .2689 0.9774 0.5713
JRIP 2.0851 1 .6173 1 .2689 0 .9774 0.5713
RDR 2. 1328 1 .6561 1 .3119 1 .0146 0.5940
J48 2.3557 1 .9969 1 .7573 1 .5059 1 . 1560
NBAYES 2. 1835 1 .6827 1 .3022 0.9564 0.4673
HPIPES 2. 1090 1 .6138 1 .2485 0.9356 0 .5076
LWLS 2.3626 1 .9354 1 .5528 1 .2889 0 .7494

175

Table 4.88: ECM Results for KC2-17C Models Applied to JMl datasets, c=30

I Methods I Jl\11-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 . 7542 1 .2872 0.9765 0.7387 0.4384
TD 3.3338 2 .4383 1 . 7345 1 . 1434 0.5654
LR 2.2423 1 .7733 1 .4173 1.0876 0.6443
LOC 2.4384 1 .9567 1 .5902 1 .2152 0 .6715
GP 2.3337 1 .8858 1 .5528 1 .2704 0.8550
ANN 5.4449 5 .4836 5.5278 5.4780 5.3434
LBOOST 2.0633 1 .5963 1 .2537 0.9564 0.5580
RBM 1 .9856 1 .5115 1 . 1902 0.8973 0.4873
BAG 2.0617 1 .5786 1 .2163 0.8923 0.4607
RSET 2.4384 1 .9567 1 .5902 1 .2152 0.6715
MCOST 2 . 1064 1 .6298 1 .2821 0.9609 0.5212
ABOOST 2.0934 1 .6264 1 .2860 0.9738 0.5578
DTABLE 2.2959 1 .8414 1 .5068 1 . 1770 0.7193
ADT 2.2260 1 .7383 1 .3626 1 .0220 0.5415
SMO 2.0699 1 .5576 1 .2243 0.9172 0.5175
IB1 2.0036 1 .4523 1 .0952 0.8896 0.4938
IBK 2.2231 1 .5596 1 .2849 1 .0559 0.5151
PART 2.2321 1 . 7658 1 .4247 1 . 1362 0.7156
ONER 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
JRIP 2.0520 1 .5754 1 .2388 0.9314 0 .5259
RDR 2.0366 1 .5540 1 . 1844 0.8533 0.4168
J48 2. 1294 1 .6876 1 .3563 1 .0936 0.7056
NBAYES 2 . 1765 1 .6668 1 .2876 0.9438 0.4805
HPIPES 2. 1212 1 .6193 1 .2580 0.9352 0 .4816
LWLS 1 .8197 1 .3648 1 .0444 0.7699 0.4299

176

Table 4.89: ECM Results for KC2-13C Models Applied to JMl datasets, c=30

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 1 .8585 1 .4074 1 . 1008 0.8649 0.5310
TD 3.3626 2 .6303 2 .0323 1 .6006 0.9777
LR 1 .8351 1 .4291 1 .2069 1 .0021 0.7387
LOC 2.3259 1 .8288 1 .4528 1 .0859 0.5654
GP 2.4010 1 .9428 1 .5983 1 .2482 0.7813
ANN 5.5246 5.5798 5.6332 5.5911 5.4682
LBOOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
RBM 2. 1366 1 .6730 1 .351 1 1 .0662 0.6832
BAG 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
RSET 2.3269 1 .8343 1 .4706 1 . 1279 0.6240
MCOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
ABOOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
DTABLE 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
ADT 2.3123 1 .8574 1 .5171 1 .201 1 0 .7700
SMO 2.0695 1 .5569 1 .2187 0.9150 0 .5102
IB1 2.2297 1 .7183 1 .4284 1 . 1829 0.6867
IBK 2.2644 1 .5780 1 .3612 1 . 1755 0.6122
PART 2.2693 1 .8200 1 .4846 1 . 1 754 0.7562
ONER 2.2693 1 .8200 1 .4846 1 . 1754 0. 7562
JRIP 2.2693 1 .8200 1 .4846 1 .1 754 0.7562
RDR 2.2693 1 .8200 1 .4846 1 . 1754 0. 7562
J48 2.2693 1 .8200 1 .4846 1 . 1754 0.7562
NBAYES 2.0058 1 .4926 1 . 1443 0.8252 0 .4567
HPIPES 2.0624 1 .5603 1 . 1837 0.8494 0.4104
LWLS 2.2934 1 .8484 1 .5085 1 . 1852 0.7555

177

Table 4.90: ECM Results for KC2-520 Models Applied to JMl datasets, c=50

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 2.6677 2.0239 1 .5989 1 .2919 0.9014
TD 4.5197 3.5458 3 .0424 2 .6448 1 .9020
LR 3.2640 2 .4786 1 .9705 1 .4822 0.8462
LOC 3.8019 3.0384 2 .4627 1 .861 1 1 .0101
GP 3.9684 3.2285 2.6829 2 . 1241 1 .3379
ANN 7.1608 6.7321 6.5599 6.2912 5.8191
LBOOST 3 . 1115 2 .4456 1 .9997 1 .6448 1 .2320
RBM 3.4402 2 .7066 2 . 1972 1 . 7286 1 .0655
BAG 3.4532 2.8097 2.2842 1 .8201 1 .0948
RSET 3.8925 3.3500 2.8970 2.5050 1 .8766
MCOST 2.9489 2 .3781 1 .9909 1 .6105 1 . 1 129
ABOOST 4 .1763 3.6970 3 .3418 3 .0416 2.6431
DTABLE 3.2828 2.5388 1 .9813 1 .5228 0.8359
ADT 3.5759 2.8795 2 .3594 1 .8666 1 . 1976
SMO 3.2783 2 .4961 1 .9817 1 .4931 0 .8713
IB1 3.4553 2 .9569 2.7670 2.7933 1 .9952
IBK 3.4066 2 .4098 2 .0423 1 .6123 0.8967
PART 3.8880 3.3152 2 .8246 2.3277 1 .6411
ONER 3.5306 2 .7299 2 . 1309 1 .5540 0 .7509
JRIP 3.5913 2.8905 2.3644 1 .8720 1 . 1952
RDR 3.5913 2 .8905 2.3644 1 .8720 1 . 1952
J48 3.5913 2.8905 2 .3644 1 .8720 1 . 1952
NBAYES 3.3945 2.5947 2.0042 1 .4641 0.6873
HPIPES 4.7154 4.1090 3.6735 3.2495 2 .5619
LWLS 3.6195 2 .9597 2 .4079 1 .9480 1 .2774

4.8.10 NECM Results for KC2 Models Applied to the JMl Datasets,

c=50

In this subsection, the predictive performance of the classification models

built on the KC2 datasets and evaluated on the on the JM1 datasets are presented

in Tables 4. 90 to 4. 94 in terms of the Normalized Expected Cost of Misclassification

(NECM) measure, at c=50.

178

Table 4.91: ECM Results for KC2-260 Models Applied to JMl datasets, c=50

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 2.5555 1 .9807 1 .5591 1 .2869 0.9361
TD 4.4225 3. 1450 2.3098 1 .6478 0.7805
LR 3. 1069 2.3843 1 .8902 1 .4502 0.8616
LOC 3.7021 2.9249 2.3383 1 .7554 0.9147
GP 3.3009 2.7627 2.3161 1 .9554 1 .4091
ANN 8.9669 8.9790 9.0372 8.9415 8.6978
LBOOST 2.8669 2.4175 2. 1667 1 .9478 1 .7184
RBM 3. 1573 2.4447 1 .9962 1 .6276 1 . 1748
BAG 3 .1113 2 .5691 2 . 1 1 15 1 .6871 1 .0868
RSET 3.6860 2.9392 2.3918 1 .9085 1 . 1715
MCOST 3.3340 2.7548 2.3075 1 .9255 1 .3659
ABOOST 3.9844 3.6262 3.3221 3.0366 2.6677
DTABLE 3.3559 2.6424 2. 1817 1 .8150 1 .2478
ADT 3.8885 3.4263 2.9715 2 .5612 1 .9712
SMO 3.6334 2.9335 2.4815 2.0618 1 .5077
IB1 3.8188 3.1862 2.9861 2.8748 2.2551
IBK 3.3551 2.2588 1 .8860 1 .4962 0.7421
PART 3.4478 3.0295 2.7203 2.4962 2.1598
ONER 4.0072 3.6171 3.3157 3.0401 2 .5066
JRIP 3. 1660 2.5123 2 .1 122 1 .7351 1 .3418
RDR 2.7069 1 .9870 1 .5362 1 . 1497 0.7214
J48 3.6469 3.3721 3.2595 3.1211 3.0654
NBAYES 3.4400 2.6400 2.0399 1 .4858 0.7495
HPIPES 2.7954 2.0167 1 .5050 1 . 1297 0.6155
LWLS 4.5867 4.2223 4.0458 3.7161 3.2423

179

Table 4.92: ECM Results for KC2-23C Models Applied to JMl datasets, c=50

I Methods I JMl-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 2.7065 2 . 1006 1 .7049 1 .3910 0.9696
TD 4.7571 3.3935 2 .4538 1 .7509 0.9521
LR 3.8635 3 .1749 2 .6573 2 . 1291 1 .4093
LOC 3.8019 3.0384 2 .4627 1 .861 1 1 .0101
GP 4.5172 3.8565 3 .3751 2 .8649 2.0865
ANN 9. 1575 9.2291 9 .31 13 9.2355 9.0221
LBOOST 3.9280 3.4533 2 .9829 2 .4833 1 .7076
RBM 3.2066 2 .5907 2 . 1897 1 .7903 1 .2275
BAG 3.7912 3 .1 103 2 .5736 2 .0838 1 .3023
RSET 3. 1479 2.3983 1 .8672 1 .3907 0.7357
MCOST 2.9021 2. 1 701 1 .6587 1 .2416 0.6745
ABOOST 3.5589 2.9573 2 .4732 2.0742 1 .4514
DTABLE 3.8722 3. 1257 2 .5698 2.0176 1 .2024
ADT 3.6305 2.9922 2 .4651 1 .9718 1 .2486
SMO 3.2673 2.4437 1 .8665 1 .3604 0 .6837
IB1 3 .5557 2 .9990 2 .8066 2 .7672 2 .0093
IBK 3.5010 2 .4381 1 .9992 1 .6273 0.7379
PART 3.7116 3 . 1521 2 . 7777 2 .3744 1 .8079
ONER 3.2512 2.5157 1 .9688 1 .5081 0.8573
JRIP 3.2512 2.5157 1 .9688 1 . 5081 0.8573
RDR 3.3373 2 .5880 2 .0483 1 .5786 0.9034
J48 3.7116 3. 1521 2 .7777 2 .3744 1 .8079
NBAYES 3.4423 2.6556 2 .0583 1 .5083 0.7201
HPIPES 3.3113 2.5328 1 .9597 1 .4634 0.7770
LWLS 3.7479 3.0803 2 .4860 2 .0669 1 . 1918

180

Table 4.93: ECM Results for KC2-17C Models Applied to JM1 datasets, c=50

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 2.6514 1 .9110 1 .4234 1 .0493 0.5748
TD 5.4649 3.9965 2.8364 1 .861 1 0 .9147
LR 3.5462 2.8130 2.2550 1 .7299 1 .0135
LOC 3.9051 3 .1556 2.5852 1 .9872 1 . 1039
GP 3 .7054 3.0076 2.4860 2.0363 1 .3639
ANN 9.0720 9. 1391 9.2129 9 . 1300 8.9057
LBOOST 3.2136 2.4794 1 .9424 1 .4721 0 .8340
RBM 3.0794 2.3329 1 .8311 1 .3678 0 .7101
BAG 3.2142 2.4540 1 .8853 1 .3718 0.6802
RSET 3.9051 3 .1556 2.5852 1 .9872 1 . 1039
MCOST 3.2997 2.5514 2.0073 1 .4977 0 .7906
ABOOST 3.2754 2.5428 2.0112 1 .5166 0 .8505
DTABLE 3.6496 2.9426 2.4232 1 .8978 1 . 1550
ADT 3.5277 2.7651 2 .1778 1 .6372 0.8608
SMO 3.2247 2.4150 1 .8933 1 .4058 0 .7670
IB1 3.1042 2.2122 1 .6517 1 .3450 0 .7000
IBK 3.4976 2.4119 2 .0073 1 .6591 0 .7745
PART 3.5202 2.7900 2.2568 1 .7996 1 . 1214
ONER 3.5913 2.8905 2.3644 1 .8720 1 . 1952
JRIP 3. 1955 2.4456 1 .9190 1 .4320 0 .7820
RDR 3 .1801 2.4216 1 .8422 1 .3177 0.6197
J48 3 .3339 2.6425 2. 1237 1 .7088 1 .0848
NBAYES 3.4330 2.6320 2.0381 1 .4926 0 .7499
HPIPES 3.3280 2.5383 1 .9720 1 .4599 0 .7311
LWLS 2.7779 2.0630 1 .5673 1 . 1348 0 .5929

181

Table 4.94: ECM Results for KC2-13C Models Applied to JMl datasets, c=50

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I
CBR 2.8371 2 .1236 1 .6433 1 .2720 0 .7406
TD 5.5095 4.3143 3.3282 2 .6199 1 .5897
LR 2 .7843 2 . 1427 1 .7972 1 .4726 1 .0547
LOC 3.7021 2.9249 2 .3383 1 .7554 0 .9147
GP 3.8293 3 .1 159 2.5765 2 .0172 1 .2603
ANN 9.2060 9.2994 9.3886 9.3185 9 .1 136
LBOOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952
RBM 3.3434 2.6151 2 . 1 100 1 .6573 1 .0424
BAG 3.5913 2.8905 2 .3644 1 .8720 1 . 1952
RSET 3.7009 2 .9304 2 .3616 1 .8154 0.9998
MCOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952
ABOOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952
DTABLE 3.5913 2.8905 2.3644 1 .8720 1 . 1952
ADT 3.6660 2.9561 2 .4222 1 .9189 1 .2224
SMO 3.2266 2.4169 1 .8877 1 .4065 0 .7597
IB1 3.5179 2.7040 2 .2576 1 .8795 1 .0725
IBK 3.5661 2.4277 2 . 1314 1 .8571 0 .9315
PART 3.5913 2.8905 2.3644 1 .8720 1 . 1952
ONER 3.5913 2.8905 2.3644 1 .8720 1 . 1952
JRIP 3.5913 2.8905 2.3644 1 .8720 1 . 1952
RDR 3.5913 2.8905 2.3644 1 .8720 1 . 1952
J48 3.5913 2.8905 2.3644 1 .8720 1 . 1952
NBAYES 3 .1 154 2.3038 1 .7571 1 . 2505 0.6662
HPIPES 3.2285 2.4382 1 .8471 1 .3168 0 .6133
LWLS 3.6358 2.9446 2.4108 1 .8969 1 .2012

182

4.8.11 Discussion

One obvious pattern that can be seen in the results presented in this section

is the improvement in the predictive accuracy as the quality of training dataset

improves , for a given classification model. This is an indication that one needs to

be vigilant of the quality of evaluation dataset when evaluating the classification

models built . While it was hoped that as the quality of fit improves , for a given

dataset , the predictive accuracy would improve, it was not the case.

183

Chapter 5

CONCLUSIONS

The empirical investigation reveals that the predictive performance of clas

sification techniques improves as more and more (inherent) noise is removed. Use

of relatively large number of classifiers, i .e . , 25, provides certain degree of freedom

and flexibility to explore different levels of filtering from most conservative to the

least conservative to achieve the desired level of conservativeness while removing

the instances suspect of being noisy. With twenty five base-level classifiers, it is

highly unlikely for the noise elimination process to get influenced by predictions of

a few classifiers which may not have the appropriate inductive bias for the dataset

at hand. Thus, experimenting with relatively large number of classifiers to base the

noise elimination process gives a higher level of confidence in the process.

The two case studies in Software Quality Classification presented here very

closely approximate a real-world scenario, where appropriate noise-handling tech

nique(s) need to be employed on a dataset with inherent noise. Normalized Expected

Cost of Misclassification is used as a practical performance evaluation measure, tak

ing the disparity between the two types of misclassification (very common in software

184

quality classification and many other domains) into account. Also, the datasets on

which performance of different classifiers is evaluated are noise-free, as they are gen

erated by impartially splitting the given dataset after noise removal. This gives a

better insight into the true predictive performance.

Two-way ANOVA: Randomized Complete Block Design revealed that at sig

nificance level a = 5%, predictive performance of all the classification techniques

is significantly different on the datasets for the JM1 system, but not for the KC2

system, which is a little surprising. The other finding that there was significant

difference (a = 1%) between the datasets with different levels of noise filtering

statistically confirmed our intuitive assumption that the classification performance

would improve as more and more noise is eliminated.

It is evident from the Multiple Pairwise Comparison results that there is a lot

of overlap between different clusters, and that classification methods performing well

on a particular dataset may not necessarily perform as well on some other dataset (s) ,

even if the datasets are from the same domain. And hence, in our opinion, basing the

noise elimination procedure on a few selected (base-level) classification techniques

may not be the most appropriate strategy.

Secondly, there may not be much to choose between different classifiers in

terms of their performance, evinced by the big overlaps of clusters of classifiers

for JM1 and (in most cases) no significant difference in predictive performance of

classifiers for KC2. Trying to explore new classification techniques that may (not

185

necessarily) marginally improve the classification accuracy may not be worth the

effort if the training data are noisy to begin with.

We also found that for the JM1 Software System, there is significant difference

(p < 0.01) in the proportion of the noise removed by consensus filtering with 25

classifiers and consensus filtering with only 5 classifiers, suggesting that consensus

filtering with relatively large number of classifier is more conservative than with a

few classifiers. Similarly, the proportion of the noisy instances removed by consensus

filter with 5 base-classifiers was significantly less than that with 3 base-classifiers .

Similar observations were also made for the KC2 system. This indicates the change

in the conservativeness at the consensus level of filtering as the number of base

classifiers changes.

While it was not the focus of our study to address the issue of exceptions,

we feel that our most conservative level of filtering provides for handling exceptions

to a certain degree, as it is likely that at least three out of the twenty five base

level classifiers can correctly classify the instances that are "hard-to-classify" , or

are "exceptions" . However, further research is necessary to address this issue more

directly in the context of noise elimination with the ensemble-classifier approach.

When the classification models build on the JM1 datasets were applied to

KC2 datasets and vice versa, it was clear that for a given model, as the quality of

test dataset improves, classification (predictive) accuracy improves.

186

Future work can address how to come up with a few representative base

classifiers to perform noise elimination based on the ensemble-classifier approach,

maintaining the same degree of confidence in the noise elimination procedure. Use of

Partition-based filtering Scheme can also be explored in conjunction with Ensemble

classifier filtering approach to reduce the number of base-classifiers required. A

comprehensive comparative study of different noise handling techniques can also be

carried out to facilitate selection of appropriate noise handling procedure.

187

BIBLIOGRAPHY

[1] D. Aha, D. Kibler, and M. Albert . Instance-based learning algorithms.
Machine Learning, 6(1) :37-66, 1991 .

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11 (1-5) : 1 1-73, 1997.

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F . D . Francone. Genetic Program
ming: An Introduction On the Automatic Evolution of Computer Programs
and its Application. PWS Publishing Company, New York, 1998.

[4] J . Benediktsson and P. Swain. Consensus theoretic classification methods.
IEEE Transactions on Systems, Man, and Cybernetics, 22 (4) :668-704, 1992.

[5] M. L. Berenson, D . M. Levine, and M. Goldstein. Intermediate Statistical
Methods and Applications: A Computer Package Approach. Prentice Hall,
Englewood Cliffs, NJ, USA, 1983.

[6] M. Bobrowski, M. Marr, and D . Yankelevich. A software engineering view
of data quality. citeseer.nj .nec.com/277636.html.

[7] L. Breiman. Bagging predictors. Machine Learning, 24(2) : 123-140, 1996.

[8] L. Breiman. The heuristics of instability in model selection. Machine Learn
ing, (24) : 2350-2383, 1996.

[9] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Jour
nal of Artificial Intelligence Research, 1 1 : 131-167, 1999.

[10] C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine Learn
ing, 19:45-77, 1995.

188

[11] W. Buntine. Learning classification trees. Statistics and Computing, 2:63-
73, 1992.

[12] P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning,
3(4) :261-283, 1989.

[13] W. W. Cohen. Fast effective rule induction. In A. Prieditis and S . Russell,
editors, Proc. of the 12th International Conference on Machine Learning,
pages 115-123, Tahoe City, CA, July 9-12 1995. Morgan Kaufmann.

[14] P. Compton and R. Jansen. Knowledge in context: a strategy for expert
system maintenance. In C . J . Barter and M. J . Brooks, editors, AI'88: 2nd
Australian Joint Artificial Intelligence Conference, pages 292-306, Adelaide,
Australia, November 1990. Springer.

[15] P. Compton and R. Jansen. A philosophical basis for knowledge acquisition.
2(3) :241-258, 1990.

[16] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13:21-27, 1967.

[17] A. Danyluk and F. Provost. Small disjuncts in action: Learning to diagnose
errors in the telephone network local loop. In Machine Learning: Proceed
ings of the Tenth International Conference, pages 81-88, Amherst , MA,
1993. Morgan Kaufmann.

[18] T. DeMarco. Controlling Software Projects. Yourdon Press, New York,
1982.

[19] P. Domingos. Metacost: A general method for making classifiers cost
sensitive. In Knowledge Discovery and Data Mining, pages 155-164, 1999.

[20] G. Drastal. Informed pruning in constructive induction. In Proceedings of
the Eighth International Workshop on Machine Learning, pages 132-136,
1 99 1 .

[21] C . Ebert. Classification techniques for metric-based software development.
Software Quality Journal, 5 (4) :255-272, 1996.

189

[22] J . English. Plain english on data quality, 1999.

[23] N. E. Fenton and S. L. Pfieeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Company, Boston, MA, 2nd edition edition,
1997.

[24] E. Frank, L. Trigg, G. Holmes, and I. H. Witten. Naive bayes for regression.
Machine Learning, 41 (1) :5-25, 2000.

[25] E. Frank and I. H. Witten. Generating accurate rule sets without global
optimization. In Proc. 15th International Conf. on Machine Learning, pages
144-151. Morgan Kaufmann, San Francisco, CA, 1998.

[26] Y. Freund and L. Mason. The alternating decision tree learning algorithm.
In Proc. 16th International Conference on Machine Learning, pages 124-
133, Bled, Slovenia, 1999. Morgan Kaufmann, San Francisco, CA.

[27] Y. Freund and R. Schapire. A short introduction to boosting. J. Japan.
Soc. for Ariif. Intel. , pages 771-780, 1999.

[28] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.
In Proc. 13th International Conference on Machine Learning, pages 148-
146. Morgan Kaufmann, 1996.

[29] J . Friedman, J . Stochastic, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting, 1999.

[30] B. R. Gaines and P. Compton. Induction of ripple-down rules applied
to modeling large databases. Journal of Intelligent Information Systems,
5 (3) :21 1-228, 1995.

[31] D. Gamberger, N. Lavrac, and S . Dzeroski. Noise elimination in inductive
concept learning: a case study in medical diagnosis . In Algorithmic Learning
Theory, 7th International Workshop, ALT '96, Sydney, Australia, October
1996, Proceedings, volume 1160, pages 199-212. Springer, 1996.

190

[32] D. Gamberger, N. Lavrac, and C. Groselj . Experiments with noise filter
ing in a medical domain. In Proc. 1 6th International Conf. on Machine
Learning, pages 143-151 . Morgan Kaufmann, San Francisco, CA, 1999.

[33] D. Gamberger and N. Lavrac. Conditions for occam's razor applicability
and noise elimination. In European Conference on Machine Learning, pages
108-123, 1997.

[34] E. Geleyn. Combining decision trees for software quaity classification: An
emprical study. Master's thesis, Florida Atlantic University, Boca Raton,
FL, USA, May 2002. Advised by Taghi M. Khoshgoftaar.

[35] I. Guyon, N. Matic, and V. Vapnik. Discovering informative patterns and
data cleaning. In Advances in Knowledge Discovery and Data Mining, pages
181-203. 1996.

[36] L. K . Hansen and P. Salamon. Neural network ensembles . IEEE Transac
tions of Pattern Analysis and Machine Intelligence, 12(10) :993-1001 , 1990.

[37] A. J. Hayter. A proof of the conjecture that tukey-kramer method is con
servative. The Annals of Statistics, 12 :61-75, 1984.

[38] J. Hipp, U. Giintzer, and U. Grimmer. Data quality mining - making a
virtue of necessity. In Proceedings of the 6th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD 2001),
pages 52-57, Santa Barbara, California, May 20 2001 .

[39] R. Holte, L. Acker, and B. Porter. Concept learning and the problem of
small disjuncts. In Proceedings of the Eleventh International Joint Confer
ence on Artificial Intelligence, Detroit, Michigan, 1989. Morgan Kaufmann.

[40] R. C . Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 1 1 :63-91, 1993.

[41] S . I. Inc. SAS/STAT User 's Guide. Cary, NC, USA, 4th edition, 1990.
Volume 2 .

191

[42] G. H. John. Robust decision trees: Removing outliers from data. In Pro
ceedings of the First International Conference on Know ledge Discovery and
Data Mining, pages 174-179, Montreal, Quebec, 1995. AAAI Press.

[43] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analy
sis. Prentice Hall, Englewood Cliffs, NJ, USA, 2nd edition, 1992.

[44] W. D . Jones, J. P. Hudepohl, T. M. Khoshgoftaar, and E. B . Allen. Ap
plication of a usage profile in software quality models. In Proceedings of
the Third European Conference on Software Maintenance and Reengineer
ing, pages 148-157, Amsterdam, Netherlands, Mar. 1999. IEEE Computer
Society.

[45] G. V. Kass. An exploratory technique for investigating large quantities of
categorical data. Applied Statistics, 29(2) : 1 19-127, 1980.

[46] T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of soft
ware quality. International Journal of Reliability, Quality and Safety Engi
neering, 6(4) :303-317, Dec. 1999.

[47] T. M. Khoshgoftaar and E. B. Allen. A practical classification rule for
software quality models . IEEE Transactions on Reliability, 49(2) :209-216,
June 2000.

[48] T. M. Khoshgoftaar and E. B. Allen. Controlling overfitting in classification
tree models of software quality. Empirical Software Engineering, 6 (1) : 59-79,
2001 .

[49] T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using regression trees to
classify fault-prone software modules. IEEE Transactions on Reliability,
5 1 (4) :455-462 , 2002.

[50] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Classi
fication tree models of software-quality over multiple releases. IEEE Trans
actions on Reliability, 49(1) :4-1 1 , 2000.

[51] T. M. Khoshgoftaar and L. A. Bullard. A survey of boosting algorithms.
Technical Report TR-CSE-02-09, Florida Atlantic University, 2001 .

192

[52] T. M. Khoshgoftaar and N . Seliya. Software quality classification modeling
using the SPRINT decision tree algorithm. In 14th International Conference
on Tools with Artificial Intelligence, pages 365-374, Washington, DC, USA,
2002.

[53] T. M. Khoshgoftaar and N. Seliya. Comparative assessment of software
quality classification techniques: An empirical case study. Empirical Soft
ware Engineering, in press . Kluwer Academic Publishers .

[54] T. M. Khoshgoftaar, X. Yuan, E. B. Allen, W. D. Jones, and J . P. Hudepohl.
Uncertain classification of fault-prone software modules. Empirical Software
Engineering, 7(4) :297-318, December 2002.

[55] R. Kohavi. The power of decision tables. In N. Lavrac and S. Wrobel, edi
tors, Proceedings of the European Conference on Machine Learning, Lecture
Notes in Artificial Intelligence, pages 174-189. Springer Verlag, 1995.

[56] R. Kohavi and C. Kunz . Option decision trees with majority votes. In
Machine Learning: Proceedings of the Fourteenth International Conference,
pages 161-169, 1997.

[57] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc . ,
San Mateo, California USA, 1993.

[58] J. Komorowski, L. Polkowski , and A. Skowron. Rough Set: A Tutorial.
Springer-Verlag, 1998.

[59] J. R. Koza. Genetic Programming, volume I. MIT Press, New York, 1992.

[60] C. Y. Kramer. Extension of multiple range tests to group means with
unequal number of replications. Biometrics, 12 :307-310, 1956.

[61] K. C. Laudon. Data quality and the due process in large interorganizational
record systems. Communications of the A CM, 29(1) :4-1 1 , 1986.

[62] N. Lavrac and D . Gamberger. Saturation filtering for noise and outlier
detection.

193

[63] D . B. Leake, editor. Case-Based Reasoning: Experience, Lessons, and Fu
ture Directions. MIT Press, Cambridge, MA USA, 1996.

[64] D . Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised
learning. In Machine Learning: Proceedings of the Eleventh International
Conference, pages 148-156, New Brunswick, NJ, 1994. Morgan Kaufmann.

[65] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, 1993.

[66] C . T. Lin and C. S. G. Lee. Neural Fuzzy Systems: A Neuro-Fuzzy Syn
ergism to Intelligent Systems. Prentice Hall Inc . , Upper Saddle River, NJ
USA, 1996.

[67] R. P. Lippmann. An introduction to computing with neural networks. Ac
coustics, Speech and Signal Processing Magazine, 4(2) :4-22 , 1987.

[68] W . Mao. Classification of software quality using tree modeling with the
sprint-sliq algorithm. Master's thesis, Florida Atlantic University, Boca
Raton, Florida USA, May 2000. Advised by Taghi M. Khoshgoftaar.

[69] A. Marcus and J. I. Maletic. Utilizing association rules for identification
of possible errors in data sets. Technical Report, CS-00-03, Division of
Computer Science, The University of Memphis .

[70] R. C. Morey. Estimating and improving the quality of information in MIS.
Communications of the ACM, 25(5):337-342, 1982.

[71] J. Neter, M. H. Kutner, C. J . Nachtsheim, and W. Wasserman. Applied
Linear Statistical Models. 1996.

[72] C. G. Nevill-Manning, G. Holmes, and I. H. Witten. The development of
holte's 1r classifier. In Proc. Artificial Neural Networks and Expert Systems,
pages 239-242, Dunedin, NZ, 1995.

[73] R. H. Nielsen. Counter propagation network. Applied Optics Journal,
26(23) , 1987.

194

[74] N. Ohlsson, M. Helander, and C. Wohlin. Quality improvement by iden
tification of fault-prone modules using software design metrics. In Inter
national Conference on Software Quality, pages 1-13, Ottawa, Ontario,
Canada, 1996.

[75] N. Ohlsson, M. Zhao, and M. Helander. Application of multivariate analysis
for software fault prediction. Software Quality Journal, 7(1) : 51-66, 1998.

[76] N. Oka and K. Yoshida. Learing regular and irregular examples separately.
In Proceedings of the 1993 IEEE International Joint Conference on Neural
Networks, pages 171-174. IEEE Press, 1993.

[77] N. Oka and K. Yoshida. A noise-tolerant hybrid model of a global and a
local learning model. In Proceedings of the AAAI-96 Workshop: Integrat
ing Multiple Learned Models for Improving and Scaling Machine Learning
Algorithms, pages 95-110. AAAI Press, 1996.

[78] K. Orr. Data quality and systems theory. CACM, 41 (2) :66-71 , February
1998.

[79] D. B. Owen. Data Quality Control: Theory and Pragmatics. Marcel Dekker,
New York, N.Y . , 1990.

[80] J. Peng, F.Ertl, S. Bhagotra, A. Mosam, N. Vijayaratnam, and I. Kanwal.
Classification of U.S . census data. Data Mining Project CS4TF3.

[81] J . C . Platt. Sequential minimal optimization: A fast algorithm for train
ing support vector machines. Technical Report 98-14, Microsoft Research,
Redmond, Washington, April 1998.

[82] J. C. Platt . Advances in Kernel Methods - Support Vector Training, chap
ter 12, pages 185-208. MIT Press, 1999.

[83] V. Ponnuswamy. Classification of software quality with tree modeling using
C4.5 algorithm. Master's thesis, Florida Atlantic University, Boca Raton,
FL, 2001 . Advised by T. M. Khoshgoftaar.

195

[84] J . R. Quinlan. Simplifying decision trees . International Journal of Man
Machine Studies, 27(3) :221-234, 1987.

[85] J. R. Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

[86] J. R. Quinlan. Baggin, boosting and c4.5 . In Proc. of the Thirteenth Na
tional Conference on Artificial Intelligence, pages 725-730. AAAI Press,
1996.

[87] T. Redman. The impact of poor data quality on the typical enterprise.
CACM, 41(2) : 79-82, February 1998.

[88] L. T. Reinwald and R. M. Soland. Conversion of limited-entry decision
tables to optimal computer programs i: Minimum average processing time.
Journal of the A CM, 13(3) :339-358, 1966.

[89] J. Rissanen. Modeling by the shortest data description. Automatica,
14:465-471 , 1978.

[90] F. D . Ross. An empirical study of analogy based software quality classifica
tion models. Master's thesis, Florida Atlantic University, Boca Raton, FL
USA, August 2001 . Advised by T. M. Khoshgoftaar.

[91] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection.
John Wiley & Sons, 1987.

[92] D. E. Rumelhart , G. E. Hinton, and R. Williams. Parallel Distributed Pro
cessing, volume 1 . MIT Press, Cambridge, MA, USA, 1962.

[93] H. Scheffe. The Analysis of Variance. John Wiley & Sons, New York, 1959.

[94] N. F. Schneidewind. Software metrics validation: Space shuttle flight soft
ware example. Annals of Software Engineering, 1 :287-309, 1995.

[95] D. Skalak and E. Rissland. Inductive learning in a mixed paradigm setting.
In Proceedings of the Eighth National Conference on Artificial Intelligence,
pages 840-847, Boston, MA, 1990. Morgan Kaufmann.

196

[96] A. Srinivasan, S. Muggleton, and M. Bain. Distinguishing exceptions from
noise in non-monotonic learning. In Proceedings of the Second Inductive
Logic Programming Workshop, pages 97-107, Tokyo, Japan, 1992.

[97] D. M. Strong, Y. W. Lee, and R. Y. Wang. Data quality in context. Com
munications of the ACM, 40(5) : 103-1 10, 1997.

[98] G. K. Tayi . Data quality management. Research Seminar at Universidad
de Buenos Aires, July 22 1998.

[99] G. K. Tayi and D . P. Ballou. Examining data quality. Communications of
the ACM, 41(2) : 54-57, 1998.

[100] C. M. Teng. Correcting noisy data. In Proceedings of the Sixteenth Inter
national Conference on Machine Learning, pages 239-248, 1999.

[101] C. M. Teng. Evaluating noise correction. In Lecture notes in Artificial
Intelligence: Proceedings of the Sixth Pacific Rim International Conference
on Artificial Intelligence. Springier-Verlag, 2000.

[102] C. M. Teng. A comparison of noise handling techniques. In Proceedings of
the International Florida Artificial Intelligence Research Symposium, pages
269-273, 2001 .

[103] I. Tomek. An experiment with edited nearest-neighbor rule. IEEE Trans
actions on Systems, Man and Cybernetics, 6(6) :448-452, 1976.

[104] R. A. Waller and D. B. Duncan. A hayes rule for the symmetric multi
ple comparison problem. Journal of the American Statistical Association,
64: 1484-1499, 1969.

[105] Y. Wand and R. Wang. Anchoring data quality dimensions in ontological
foundations. Communications of the ACM, 39(11) , November 1996.

[106] R. Wang, D. Strong, and L. Guarascio. A framework for analysis of data
quality research. Journal of Management Information Systems, 12(4) :5-34,
Spring 1996.

197

[107] R. Y. Wang, V. C. Storey, and C. P. Firth. A framework for analysis of data
quality research. IEEE Transactions on Knowledge and Data Engineering,
7(4) :623-639, August 1995.

[108] S. Weisberg. Applied Linear Regression. John Wiley & Sons, 1985.

[109] D . Wilson. Asymptotic properties of nearest neighbor rules using edited
data. IEEE Transactions on Systems, Man and Cybernetics, 2:408-421 ,
1972.

[110] D. R. Wilson and T. R. Martinez. Instance pruning techniques. In Machine
Learning: Proceedings of the Fourteenth International Conference, pages
404-411 , Nashville, TN, 1997. Morgan Kaufmann.

[1 1 1] D. R. Wilson and T. R. Martinez. Reduction techniques for exemplar-based
learning algorithm. Machine Learning - in press, 1999.

[112] P. H . Winston. Learning structural descriptions from examples. In P. H.
Winston, editor, The Psychology of Computer Vision, New York, 1975.
McGraw-Hill.

[113] I. H . Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. The Morgan Kaufmann Series
in Data Management Systems. Morgan Kaufmann, 2000.

[1 14] D. H . Wolpert . Stacked generalization. Neural Networks, 5 :241-259, 1992 .

[1 15] J . H . Zar. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ, 2nd
edition, 1984.

[1 16] Q. Zhao and T. Nishida. Using qualitative hypotheses to identify inaccurate
data. Journal of Artificial Intelligence Research, 3:119-145 , 1995.

[117] X. Zhu, X. Wu, and Q. Chen. Eliminating class noise in large datasets. In
Proceedings of the Twentieth International Conference on Machine Learn
ing, Washington, DC, 2003.

198

