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This thesis presents a noise handling technique that attempts to improve the 

quality of training data for classification purposes by eliminating instances that are 

likely to be noise. Our approach uses twenty five different classification techniques 

to create an ensemble of classifiers that acts as a noise filter on real-world software 

measurement datasets. Using a relatively large number of base-level classifiers for 

the ensemble-classifier filter facilitates in achieving the desired level of noise removal 

conservativeness with several possible levels of filtering. It also provides a higher 

degree of confidence in the noise elimination procedure as the results are less likely 

to get influenced by (possible) inappropriate learning bias of a few algorithms with 

twenty five base-level classifiers than with a relatively smaller number of base-level 

classifiers. Empirical case studies of two different high assurance software projects 

demonstrate the effectiveness of our noise elimination approach by the significant 

improvement achieved in classification accuracies at various levels of filtering. 
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Chapter 1 

INTRODUCTION 

In today's IT-driven and highly competitive world, information holds the key 

to success for any organization. However, just having vast amount of data/information 

may not necessarily work to an organization's advantage if the quality of the data 

and the usefulness of the data, in turn, is questionable. Not only can data of poor 

quality, if not handled correctly, hinder an organization's success, but it could also 

have disastrous consequences. Therefore, it is imperative for an organization to 

ensure that the data is of good quality before performing any task that involves 

extensive data analysis and/or decision making based on data mining results using 

the data available. 

Indeed, the quality of data is important from a data mining point of view. In­

ductive learning algorithms, the heart of data mining, aim to generalize the concepts 

learnt from a set of training instances so as to improve the classification accuracy 

on previously unseen observations (instances) . The predictive accuracy of a classi­

fication technique is influenced by two (among others) major factors: ( 1 )  Quality 

of the training data, and (2) Appropriateness of the chosen algorithm for the given 

1 



data. Poor-quality (noisy) data, when used during training, can have undesirable 

consequences due to decision making based on incorrect results. Hence, using an 

appropriate noise handling procedure as a preamble to any data mining / KDD task 

is of paramount importance. 

The problem of effectively dealing with data noise can be approached mainly 

in three different ways. To cope with noise, one can either use robust (noise-tolerant) 

algorithms, try to correct noisy instances, or filter out noisy instances from the 

dataset. In the first approach, a robust learning algorithm is employed in such a way 

that the classifier built will not be overfitted to the possibly noisy training instances. 

This simple but subtle approach of handling noise finds its roots in the Occam's razor 

principle applied to Inductive Learning [33] . Teng [100] has explored a different 

approach, called polishing, in which instead of removing the instances identified as 

being noisy, corrections are made to either one or more features (attributes) or the 

class label of the instances suspected of being noisy. The concept of Polishing takes 

advantage of the fact that different components in a dataset may not be totally 

independent except in the case of irrelevant attributes. The third approach, noise 

elimination, is a rather direct approach that attempts to improve the quality of 

input data for hypothesis formation by removing potentially noisy instances so that 

they do not influence the hypothesis constructed [31] . This is the approach we have 

adopted to handle potentially noisy datasets in the domain of Software Quality 

Classification. 
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The empirical study presented in this thesis investigates the use of a noise 

elimination procedure, based on ensemble-classifier approach, in the context of Soft­

ware Quality Classification problem. A Software Quality Classification model can 

assist software quality improvement efforts by identifying software program modules 

that are likely to be fault-prone (fp) during operations. This facilitates cost-effective 

utilization of resources allocated for software testing, inspection, and quality en­

hancement. Software measurements are key in developing a Software Quality Es­

timation model because of the software engineering assumption that they hold the 

underlying information regarding software product quality. 

Noise elimination with ensemble-classifier approach was deemed appropriate 

for our study. The basic assumption in our study is that if a large number of 

classifiers misclassify a given software module, then it is likely that it is a noisy 

instance in the dataset . More specifically, such a software module suggests that 

its software measurements and quality data do not adhere to (or represent) the 

underlying characteristics of the quality of the software product. Noisy instances in 

a poor-quality dataset may have either erroneous attribute values (attribute noise) 

or corrupted class labels (class noise) . However, since machine learning algorithms 

usually treat noisy examples as being mislabeled [32] , we feel that the noise identified 

by our approach could actually be either attribute noise or class noise. 

Our study extends the ensemble-classifier approach, first introduced by Brad­

ley and Friedl [9] , by experimenting with relatively large number of base-classifiers 
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to explore different levels of filtering instead of just majority- and consensus-based 

filtering. In the ensemble-classifier approach presented in [9] for noise elimination, 

only three base-level classifiers were employed. A similar work with five different 

base-level classifiers was presented in [10] . In our opinion, the number of base-level 

classifiers can be a key factor when the ensemble-classifier approach is used in noise 

detection and elimination. In the context of [9] , one can argue that it is quite possi­

ble that two out of the three different classifiers or even all the three classifiers could 

misclassify genuinely noise-free instance(s) . Similar argument can be made for five 

base classifiers [10] for noise filtering. 

Indeed, it may not be wise to form an opinion about an instance being noisy 

by considering only a small number of classifiers, because the appropriateness (or 

bias) of the chosen learning algorithms applied to a particular dataset also plays 

a significant role. It may well be that the few chosen classifiers don't have the 

appropriate bias to learn the concepts for the given domain. 

Experimenting with a rather large number of classifiers can ensure that we 

are reducing the probability of throwing away good-quality data and raising the 

level of confidence in the identification of actual noisy instances. In our study, we 

used 25 different base-level classifiers from different computational categories, such 

as Bayesian, instance-based, rule-based, decision-tree based, pattern-based, and sta­

tistical techniques, etc. , for our ensemble-classifier noise removal approach. Unlike 

Brodley and Friedl's approach [9] that only considers majority filtering (the least 
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conservative approach) and consensus filtering (the most conservative approach) ,  

our study examines the effects of different levels of noise filtering on the predictive 

accuracy of classifiers. By using 25 base-level classifiers, we were able to achieve var­

ious levels of filtering (levels of conservativeness) for noise removal from the software 

measurement data investigated. 

To our knowledge, this work is one of the few studies that examines the effect 

of a noise handling technique on a real-world dataset with potential inherent noise. 

Many empirical investigations, such as [9, 100, 117] ,  have evaluated different noise 

handling mechanisms on datasets in which noise is artificially injected, either in the 

class label or in the attribute values. In such cases, there is no way to ensure that 

the noise handling procedure improves the true classification accuracy. Whereas, 

with our approach, noise free evaluation dataset is available because of the way 

noise filtering is performed. 

The effectiveness of our noise elimination approach is evident in the signifi­

cant improvement achieved in classification accuracies at various levels of filtering 

for both the case-studies of high assurance software projects empirically investigated 

in our study. The results statistically confirmed our intuitive assumption that the 

classification performance would improve as more and more software modules likely 

to be noise are eliminated. This is evidenced by the significant performance dif­

ference between the datasets with different levels of noise filtering. This was also 

apparent as the NECM values decreased from the most conservative level to the 
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least conservative level of noise filtering. 

A Z-test was performed to compare two different proportions - proportions 

of the modules identified as likely-noise by two different noise filtering approaches. 

First , we compared the proportion of the modules identified as noisy (and hence 

eliminated) by our approach (ensemble-classifier consensus filter with 25 base-level 

classifiers) to the proportion of the instances identified as noisy by ensemble-classifier 

consensus filter with only 5 base-level classifiers [10]: J48, IBk, SMO, JRIP, and 

LWLStump. The results revealed that ensemble-classifier consensus filter is, statis­

tically speaking, much more conservative with twenty five base-level classifiers than 

with only five classifiers. Thus, experimenting with relatively large number of clas­

sifiers can provide us a flexibility to choose the amount of conservativeness desired 

for noise elimination. 

This thesis begins with an introduction to software measurement and the 

metrics involved in this study. Chapter 3 describes the various methodologies in­

volved. They include different noise handling procedures,. different classification 

techniques used as base-level classifiers, Expected Cost of Misclassification as a sin­

gular practical classification performance measure, Z-test for proportions, Two-way 

Analysis of Variance (ANOVA) model, and Multiple Pairwise Comparison. Chapter 

4 describes the experiments conducted and the results obtained. Finally, Chapter 5 

draws conclusions from this study, and indicates directions for future study. 
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Chapter 2 

SOFTWARE METRICS 

At the heart of every engineering activity, there is measurement. In fact ,  

measurements pervade almost every aspect of our lives to such a great extent that 

it is literally impossible to make a meaningful progress without measurements .  In 

this chapter, we present how measurements play a significant role in our life, with 

a particular reference to software engineering activities. 

2.1 Measurements 

Indeed, measurements are so widely used in our daily activities that they 

have become commonplace. From professional technologists to normal human be­

ings, everyone uses measurements to gain better understanding of the environment , 

interact with the surroundings, and improve life by taking important decisions in 

an objective and scientific manner. 

Fenton and Pfl.eeger [23] define measurement as a process by which numbers 

or symbols are assigned to attributes of entities in the real world in such a way as 

to describe them according to clearly defined rules. 
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The corollary to DeMarco's rule in [23]: You cannot control what you can­

not measure [18] incisively points out how vital measurements are in scientifically 

assessing our current situation, tracking progress, and evaluating effectiveness, etc. 

From an engineer's point of view, the importance of measurement is three­

fold. First, it is essential for better understanding of the environment and assessing 

present conditions so that baseline goals can be established in terms of expected 

performance, productivity, etc. ,  and realistic view of current situations and future 

possibilities can be attained. Secondly, with measurements come the knowledge of 

how the entities involved interact and the insight on how to make changes to pro­

cesses and/ or products that would help us reach our goals. Third, measurements 

encourage us to improve our processes and products. The focus of our study is soft­

ware quality classification, and hence, we describe the importance of measurements 

with a specific reference to software related activities in the following subsection. 

2.2 Software Measurements 

Software measurement, once an obscure and esoteric specialty, has become 

essential to good software engineering [23]. Although not always acknowledged as 

essential to good software engineering, software metrics play an important role. 

By measuring characteristics of a software, developers can figure out whether the 

requirements are consistent and complete, whether the design conforms to the re­

quirements, when the code can be tested, and the amount of resources required 
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during different phases of the software development process. Many effective project 

managers have successfully used various software metrics related to the process and 

the product to predict the project completion time and the amount of resources 

required for software development projects. 

Software metrics can be classified mainly into three categories: process met­

rics, product metrics, and execution metrics. Process metrics quantify the software 

related activities associated with a time-scale. Product metrics quantify the at­

tributes of the object or entity involved. Execution metrics measure the parameters 

involved during the execution of a program. Besides these three categories, some 

metrics are categorized as Quality Metrics, e.g. , the number of faults in a module. 

Quality Metrics are very good indicators of the reliability of software. Practitioners 

and researchers alike usually try to predict the value of a quality metric in advance, 

using process, product, or execution metrics, to get an idea about the reliability of 

the software and guide the development efforts accordingly. 

2.2.1 Product Metrics 

Software product metrics can be categorized mainly into three groups :  call 

graph metrics, control flow graph metrics, and statement metrics. Call graph metrics 

depict the relationship among procedures in terms of invocation. Control flow graph 

metrics indicate the flow of control from one statement to another. Statement 

metrics measure properties of program text without any inference on the meaning 

9 



Procedure A calls B, C 
Procedure B calls D 
Procedure C calls D, E 

D 

Figure 2.1: A Call Graph 

E 

of the text or the ordering of different components in a software module. 

2.2.1.1 Call Graph Metrics 

Call graph metrics are extracted from a very high level design of the software 

being developed, and hence, can be collected at a very early stage in the software 

life cycle. A directed call graph depicts how different procedures are invoked by 

examining the abstract model of the design. Figure 2 .1  [23] shows one such example 

of a directed call graph. Number of distinct procedure calls , CAL UNQ, and the 

number of second and following calls , CAL2, are some of the metrics that belong to 

this category. 

2.2.1.2 Control Flow Graph Metrics 

Control flow graph metrics graphically reveal the structural description of 

the algorithms in a given software module. They are concerned with the sequence 

in which instructions are executed in a program/software module, and are usually 
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modeled with directed graphs, where a node represents a program statement, and 

each directed edge (arc) represents the flow of control from one statement to another. 

Number of nodes, number of arcs, in-degree of a node (the number of arcs 

arriving at the node) , and the out-degree of a node (the number of arcs leaving the 

node) are some of the examples of control flow graph metrics. These metrics are 

available at a very early stage in the software development life cycle - right after 

detailed design is completed, even before the implementation phase begins. 

2.2.2 Statement Metrics 

Statement metrics are the measurements related to the property of text in 

a software module, with no inference on the meaning or ordering of program state­

ments. The value of statement metrics essentially remains the same even if the order 

in which the program statements appear changes, and does not indicate what the 

program statements imply. Typical statement metrics used in practice include lines 

of code, number of executable statements, number of distinct include files, number 

of unique/total operators, and number of unique/total operands, etc. 

2.2.3 Process Metrics 

For successful completion of a software development project, one needs to give 

due attention to the associated process, and ideally, should not just focus on the 

product (software) being developed. Process metrics are the measurements related 
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to software development activities, and in many cases, are good indicators/predictors 

of the quality metric of interest. 

For example, the experience of programmers is a very important factor. The 

more experienced the programmers, the less likely they are to introduce bugs in 

the software. The number of requirement errors found during inspection can be a 

good indicator of how effective the reviewing process actually is . Furthermore, the 

number of personnel working on the project within a period can give us insight into 

the resources needed for the development process. 

2.2.4 Execution Metrics 

Execution metrics are the metrics that measure the attributes concerning 

the execution of a software. The attributes measured could relate to the execution 

time under given conditions, e.g. , RESCPU, B USCPU, and TANCPU, or the con­

sumption of resources, such as memory usage [44] . RESCPU is the execution time 

(microseconds) of an average transaction on a system serving consumers. B USCPU 

is defined to  be the execution time (microseconds) of an average transaction on  a 

system serving businesses, whereas TANCPU is the execution time (microseconds) 

of an average transaction on a tandem system. 

2.3 Software Metrics Used in This Study 

For the case studies reported in this thesis, we used data from two C++ 

NASA projects, which are available through Metrics Data Program (MDP) website. 
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Table 2.1: Metric Description of JM1 and KC2 datasets 

I Metric Type I MetricNotation-JMl I Metric Notation-KC2 I 
McCabe Cyclomatic_Complexity v(G) 

EssentiaL Complexity ev(G) 
Design_ Complexity iv (G) 
Loc_Total loc 

Derived Halstead_Length N 
Halstead Halstead_ Volume v 

Halstead_Level L 
Halstead_Difficulty D 
Halstead_Content I 
Halstead_Effort E 
Halstead_Error _Est B 
Halstead_Prog_ Time T 

Line Loc_Executable loCode 
Count Loc_Comment loComment 

Loc__Blank loB lank 
Loc_Code_And_Comment loCodeAndComment 

Basic N urn_ U nique_Operators uniq_Op 
Halstead Num_Unique_Operands uniq_Opnd 

Num_Operators totaLOp 
Num_Operands totaLOpnd 

I Branch I Branch_Count branch Count 

The two data sets are denoted by JM1 and KC2,  the former being the larger ( 10, 883 

modules) of the two and the latter being the smaller (520 modules) . 

Both the JM1 and KC2 datasets contain 21 software metrics, which include 

the McCabe Metrics, the Halstead Metrics, the metrics of Line Count, as well as 

the metric of Branch Count. The metric description is listed in Table 2 . 1 .  Besides 

these twenty one metrics, KC2 has three quality metrics: Error Rate (number of 

defects in the module) , Defect (whether or not the module has any defects) ,  and 

Deject Density, whereas JM1 has two quality metrics: Error Rate and Defect. Out 
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of the available twenty one metrics, we used only the thirteen primitive metrics for 

our study. All the eight derived Halstead metrics were discarded. Also, we used 

only one quality metric, namely Error Rate (number of defects in the module) , for 

the purpose of classification in our case studies. The class label fp (fault-prone) 

or nfp ( not-fault-prone) was determined from the number of defects. An instance 

(module) was labelled nfp if it did not have any defect, and fp otherwise. 
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Chapter 3 

METHODOLOGIES 

This chapter aims to portray the theme of our study on noise handling in 

Software Quality Classification domain. Various aspects concerning data quality 

are introduced, and literature on different noise handling techniques reviewed. A 

conceptual framework for proposed noise handling technique is detailed, followed by 

detailed modeling methodology and a brief delineation of the different classification 

techniques used as a preamble to our approach. 

3.1 Data Quality 

Unfortunately, it is common for large datasets to have various kinds of errors, 

either random or systematic. According to [78, 87] , unless an organization takes 

severe measures attempting to prevent data errors, the error rates involved in data 

entry and/ or data acquisition typically range from 5 % or more. 

3.1.1 What Affects Data Quality? 

According to Tayi and Ballou [99] , data quality is defined as fitness for use, 

which implies that quality is relative to the use of data. If the data have deficiencies, 
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generally known as noise, the data cannot land itself to use. 

In practice, the quality, correctness, consistency, completeness, and reliability 

of a large dataset can be affected by several factors [22, 106, 107] . The dataset 

could have inconsistencies in terms of required format/syntax, semantics, or values, 

or it may have incorrect or missing values. The deficiencies could creep into the 

dataset for various reasons, such as poor interface design, data entry errors, failure 

of measurement device, lack of necessary information, subjectivity of the entity being 

measured, etc. No matter what the cause, data quality remains a prime concern in 

the fields involving extensive data analysis. 

3.1.2 Aspects of Data Quality 

There are several aspects to the quality of data, such as completeness, rel­

evance, reliability, amount of data, consistency, correctness, timeliness, precision, 

unambiguity, accuracy, objectivity, conciseness, etc. [97, 105] . The list is not ex­

haustive, but is certainly representative of the type of attributes involved concerning 

the quality of data. 

Reliability of data implies that the data stored is trustable, and can be taken 

as true information. Consistency of the data means that there is no contradiction 

between the data stored. When the data is objective, it means that the data does 

not depend on the judgement, interpretation, or evaluation of people. Informal 

definition for each of these attributes can be found in [6] . 
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It should be noted that these aspects or dimensions of quality may actually 

be related to one another. For example, if the level of objectivity is low, i .e . ,  if the 

data is subjective, then it does adversely affect the correctness and reliability of the 

data. 

3.1.3 Why Is Data Quality Important? 

Using the information at their disposal, organizations make well-informed 

decisions that improve their practice in order to attain their objectives and maintain 

a competitive edge in the market . The quality of data can have a great impact on 

the business decisions an organization may take. It is not difficult to realize what 

Redman [87] has so righteously noted - "decisions are no better than the data on 

which they are based". When the data suffers from poor quality, it may lose its 

usability, or can lead to incorrect decisions resulting in variety of losses. 

Data with poor quality, when put to use, could very well translate into disas­

trous scenarios. The social and economic impact of poor-quality data could actually 

cost billions of dollars [61 ,  70, 79, 107] . One such example has been reported in [98] , 

where hospital managers studied and used faulty information related to patients, 

and concluded that most of the patients suffered from the disease hemorrhoids. The 

managers allocated the hospital resources, such as number of beds, nurses, medical 

equipment, etc . ,  accordingly to better serve the patients suffering from hemorrhoids. 

17 



This turned out to be a wrong and costly decision, not because the rationale in de­

cision making was wrong, but because the information on which this decision was 

based was not completely accurate. The reason for inaccuracy in this case was poor 

interface design for data entry. At the check-in application, hemorrhoids was the 

default choice, and clerks selected it, because it was difficult to look for the correct 

choice. No matter what the cause was, the hospital finances suffered a great deal 

because of deficiency in data quality. 

Indeed, data quality problems have become increasingly evident, especially 

in organizational databases. According to Tayi [98] , 50 to 80% of computerized 

criminal records in the U.S. were found to be inaccurate, incomplete, or ambiguous. 

With the increasing use of computerized information to take important decisions 

that could even affect people's lives, the quality of such information/ data has become 

important more than ever, and practitioners certainly realize it. 

3.2 Coping with Noise 

With any task that involves extensive data analysis and/or decision making 

based on available data, one needs to be vigilant of data quality issues. If the 

available data suffers from poor quality, i.e. , has significant level of noise, appropriate 

noise handling procedures should be employed before the data is put to use. 

For example, it is crucial in Knowledge Discovery in Database (KDD) pro­

cesses to effectively handle noisy data for any data mining task and results to be 
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meaningful, applicable, and hence, valuable. Data Quality Mining, a deliberate ap­

plication of data mining techniques for the purpose of data quality measurement 

and improvement, can supplement KDD, and contribute to improve the results of 

KDD projects, note Hipp et al. [38] . 

Over the past decade or so, researchers have proposed and studied various 

techniques, such as Data Quality Mining (DQM) techniques and statistical tech­

niques to improve the quality of data. A brief survey of these techniques is delineated 

in the following subsections. 

The problem of effectively dealing with noise can be approached mainly in 

three different ways. To cope with noise, one can either use robust algorithms, 

filter out noisy instances from the dataset , or try to correct noisy instances. A 

comparative study of three different noise handling techniques from each of this 

category has also been carried out, and is reported in [102] . 

3.2.1 Robust Algorithms 

In the first approach, a robust learning algorithm is employed in such a 

way that the classifier built will not be overfitted to the training instances. This 

simple but subtle approach of handling noise finds its roots in the Occam's razor 

principle applied to Inductive Learning [33] . According to Li and Vitanyi [65] , the 

principle as originally stated - "Entities should not be multiplied beyond necessity" 

- could be interpreted as: "Among the theories that are consistent with the observed 
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phenomena, one should select the simplest theory". 

Simply put, the Occam's razor principle, in the context of hypothesis forma­

tion, advocates the selection of the simplest hypothesis among all the hypotheses 

that best reflect the underlying concept of the training example set. According to 

Rissanen [89] , the hypothesis thus selected would most likely be a generalization 

of the inherent concept(s) , and could bring about significant improvement in the 

predictive accuracy of the algorithm. 

This principle is fairly well-known in the inductive learning community, and 

has often been used not just to improve predictive accuracy of the algorithm, but 

also as a mechanism to handle noisy data by avoiding overfitting. Choosing the 

simplest structures to represent the underlying concept(s) and/or subconcept(s) 

over the complex ones (either by pruning in the case of tree-based algorithms or 

by truncating rules in the case of rule-based algorithms) , perhaps at the expense of 

classification accuracy on the training example set in some cases, makes sure that 

the classifier does not become complex any more than necesf?ary just to account for 

the noise. C4.5 [84] and CN2 [ 12] are examples of robust learning algorithms that 

come with in-built pruning mechanism. 

Even though the principle has been successfully employed in various machine 

learning algorithms, there are some debatable issues which raise concerns, as Lavrac 

and Gamberger point out in [62] . Robust algorithms are appealing to practitioners, 

because they do not require any preprocessing of the data, but a classifier thus built , 
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i .e. , the hypothesis thus formed, may have been influenced by the presence of noisy 

instances in the dataset, warn Gamberger et al. [31] . Also, the term complexity for 

a learning algorithm is a loosely defined term, and is subject to how one perceives 

complexity. That is why there is no single and universally agreed upon complexity 

measure to our avail. There are several different complexity measures available, 

such as Kolmogorov complexity based measure [65] , Minimum Description Length 

(MDL) [89] , and Tree size in the case of tree-based algorithms, etc. 

Different complexity measures, such as Kolmogorov measure [65] and MDL [89] , 

when used to select the simplest hypothesis, may in fact select different hypothe­

sis for the same training dataset, caution Lavrac and Gamberger [62] . Therefore, 

choosing the most appropriate complexity measure for a given learning algorithm 

can be tricky at times. 

The other issue of concern is that applying Occam's razor principle may not 

always yield the best predictive
. 
accuracy. In the empirical work [86] that threatens 

the validity of Occam's razor principle, boosting and bagging techniques (rather 

complex techniques) were found to yield better predictive accuracy. 

Despite all these, Occam's razor principle is valid, and can be applied, pro­

vided certain conditions are fulfilled. Gamberger and Lavrac discuss the conditions 

required to be met for the principle's applicability, and present related theorems in 

an elaborative manner in [33] . 
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3.2.2 Noise Elimination/Filtering 

Many researchers [9, 31 ,  42] have explored the noise elimination approach to 

improve data quality by identifying and eliminating instances evaluated as being 

noisy according to certain criteria before applying the chosen algorithms. This is 

a rather direct approach which attempts to improve the quality of the input data 

for hypothesis formation so that the noisy instances do not influence the hypothesis 

constructed [31] . The concept of removing the instances suspected of being noisy 

resembles the approach used in robust regression and outlier detection techniques 

in statistics [91] . 

Brodley and Friedl [9] have introduced a method for identifying and elim­

inating mislabeled instances. It should be noted that although noise in training 

examples may be due to erroneous attribute values and erroneous class labels , ma­

chine learning algorithms usually treat noisy examples as being mislabeled [32] . This 

would mean that the method proposed by Brodley and Friedl [9] is not just appli­

cable for removing instances with class noise, but is also applicable for eliminating 

instances that have corrupt attribute values. 

The technique was inspired by a similar approach employed for removing 

outliers in regression analysis [108] . The fundamental concept behind the method 

is to use a number of learning algorithms that would filter out the instances likely 

to contain noise on the basis of misclassification by majority or consensus. The first 

step involves identification of the instances likely to contain noise. All the training 
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examples/instances are classified using m different learning algorithms (called the 

filter algorithms) by performing n-fold cross-validation. In the second step, all the 

training instances that are misclassified either by the majority or by all of the m 

base level classifiers (filter algorithms) are eliminated, and then input to the final 

learning algorithm(s) . The results reported in [9] are quite promising, and have 

empirically substantiated that filtering can, in fact , improve classification accuracy 

for the datasets that suffer from poor-quality data. 

It is obvious that the technique is a generalized method for noise removal, 

which can be used regardless of the learning algorithm(s) selected for filtering out 

noisy instances. The approach is distinct from other previous approaches in that 

it assumes that the data errors are independent of the particular model being fit 

to the data, and attempts to identify the datapoints that would be outliers in any 

model(s) , explain Brodley and Friedl [9] . 

While noise elimination / instance selection has been shown to improve the 

performance of learning algorithms significantly [9 ,  10 ,  31 ,  32, 102] , one has to be 

judicious in removing instances suspected of being noisy to balance the amount of 

noise removed from the data set and the amount of data retained for training. When 

only meager amount of data is available, this approach may or may not be feasible. 

Since our study extends the approach proposed by Brodley and Friedl (9] , the 

procedure involved was presented in an elaborate fashion. Various other instance 
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selection / noise elimination techniques have long been used to improve the perfor­

mance of different learning algorithms, and instance-based techniques in particular, 

a brief survey of which is presented in the subsection that follows. A comprehensive 

literature survey can be found in [9] . 

3.2.3 Related Work 

Wilson [ 109] used a 3-NN classifier to select instances that were then used to 

form a 1-NN classifier; the instances that were misclassified by the 3-NN classifier 

were eliminated from the instances that would be used to build the 1-NN classifier. 

Extending the same approach, Tomek [103] experimented with several in­

creasing values of nearest neighbors as a mechanism for elimination of instances. 

Wilson and Martinez [110 ,  1 1 1] have incorporated this approach into a suite of 

instance selection techniques for exemplar-based learning algorithms. 

Aha, Kibler, and Albert [1 ]  showed that if the instances are selected on the 

basis of their contribution towards the classification accuracy of an instance-based 

classifier, the accuracy of the resulting classifier can be improved. 

A comprehensive overview of instance selection techniques for exemplar-based 

learning algorithms can be found in [ 1 11] . Applicability of the instance selection 

techniques is not limited to instance-based classifiers. It has also been applied to 

other types of classifiers. Winston [1 12] demonstrated the utility of selecting "near 

misses" when learning structural descriptions. 
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Skalak and Rissland [95] have proposed an instance selection mechanism that 

uses a case-based retrieval algorithm's taxonomy of cases for a decision tree algo­

rithm. Lewis and Catlett [64] demonstrated that instances could also be selected 

by using an estimate of classification certainty. 

Gamberger et al. [31 ,  32] have taken a different approach to dealing with 

nOise. They have proposed a technique to identify and eliminate noisy examples 

from the training set by using a simple compression measure, namely MDL (Min­

imal Description Length) .  First, all the inconsistent examples from the training 

data are removed. Subsequently, the features are transformed into a binary feature 

set. An examination is carried out to see which set of examples, when removed, 

would reduce the complexity in terms of MDL so that the current set of instances 

would be consistent . By eliminating appropriate examples this way, a consistent 

and complete hypothesis can then be built from the set of remaining examples by 

using a learning algorithm, not necessarily a robust (noise-tolerant) one. Zhu et 

al. [ 117] have introduced a new strategy to identify and eliminate noisy instances on 

a partition-based scheme that is particularly useful when dealing with distributed 

and/ or large datasets. 

To address the problems of inaccuracies in feature measurements ,  Zhao and 

Nishida [116] have adopted fuzzy logic approach to represent and calculate inaccura­

cies in the training data. Noise in the attribute values are identified using qualitative 

correlations among different attributes. For example, when n-1 out of n symptoms 
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indicate that a patient has a particular disease, then it is quite possible that the 

nth symptom was incorrectly measured or entered [9] . Zhao and Nishida's [116] 

method dynamically determines fuzzy intervals for inaccurate data, and calls for 

domain knowledge to be able to divide the features into sets whose members are 

qualitatively dependent. 

A study by Marcus and Maletic [69] demonstrates that Association Rule 

Mining can be useful in identifying not only interesting patterns in various fields of 

interest, but also patterns that uncover errors in the data sets. In their study [69] , 

Marcus and Maletic investigated the use of Ordinal Association rules to identify 

potential errors in the dataset with reasonably low computational complexity and 

high efficiency. 

Guyon et al. [35] have described a method for data cleaning by discovering 

meaningless or garbage patterns likely to be noise. In their paper on Data Quality 

Mining, Hipp et al. [38] have also explored the use of association rules as a means 

to detect , quantify, explain, and correct data quality deficiencies . 

3.2.4 Polishing 

Teng [100, 101, 102] has explored a different approach, an approach he calls 

polishing, in which instead of removing the instances identified as being noisy, cor­

rections are made to either one or more features or the class label of the instances 

suspected of being noisy. If employed correctly, this approach could approximate a 
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noise-free condition preserving maximal information. 

The concept of Polishing, introduced in [100, 101 ,  102] , takes advantage of 

the fact that different components in a data set may not be totally independent 

except in the case of irrelevant attributes. The interdependence between different 

components in a data set is the driving factor of the whole process. Conceptually, 

this technique of coming up with possible correction values using interdependence 

between different components in the dataset sounds very similar to using association 

rules. 

As Teng describes in [ 100, 101 , 102] , the basic algorithm for polishing has 

two stages, namely, prediction and adjustment. In the prediction phase, attributes 

suspected of being corrupted are identified, and appropriate replacement values are 

suggested for each of these attributes. The replacement values are obtained by 

swapping the role of the target class and the attribute of interest for each of the 

attributes in the dataset. When a predicted value of the attribute is different from 

its original value in the dataset, the predicted value is a pote:J;ltial correction for that 

particular attribute. Adjustment phase consists of selectively correcting values of 

the suspected attributes of the identified noisy instances in the dataset . A detailed 

description of the procedure can be found in [100] . 

This procedure has a distinctive advantage over other noise handling proce­

dures in the situations where the size of the dataset is small, making it unfeasible 

to toss out the noisy instances from the dataset, or where data recollection is costly 
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or practically impossible. Also, correcting noisy instances rather than eliminating 

has been shown to give better results in some cases [20] . 

While polishing has its merits in identifying and correcting noisy instances, 

it is no silver bullet. One still needs to be wary of the fact that the method comes 

with some limitations and certain degree of risk associated with it. 

The major detrimental aspect of polishing is that it is applicable to datasets 

with nominal attributes only, which would mean that for datasets with real/numeric 

attributes, one cannot really correct the noisy instances without having to perform 

discretization. As Teng [100, 101 ,  102] points out, another limitation of the proce­

dure is the time complexity involved. Not only does one need to build significant 

number of classifiers (models) with each of the attribute swapped with the respective 

class label, but one also needs to run down a potentially very long list of suggested 

changes in order to come up with appropriate replacement value(s) for respective 

attribute(s) . The amount of time thus consumed may, in many cases, turn out to 

be a restricting factor. 

In attempts to correct the noisy data, one may unintentionally introduce 

further noise, cautions Teng [100] . The task of correcting noisy instances can indeed 

be a precarious one. The suggested values from the prediction phase are not full 

proof, and can be bizarre because of the unfortunate fact that the process itself is 

based on imperfect data. The suggested correction values can contain errors also if 

there is a little or no degree of interdependence between different features and class 
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labels as in the case of irrelevant attributes. 

In this approach, the adjustment procedure tries to change the attribute 

values even when there is noise in the class label and not in the attribute values of 

the instance. While the suggested corrections may be appropriate for the noisy class 

label, in effect , they serve nothing more than to introduce more noise. This effect ,  

according to Teng [100] , becomes prominent in data sets where a small number of 

attributes are highly predictive of the class label, as then only a few changes to these 

attributes would be enough to fit the altered class value. 

There is still some room for improvement in the way Polishing is imple­

mented [ 100, 101 ,  102] for data correction. Polishing fails to treat an instance fairly 

in the case when both the class label and some of the attribute values of the instance 

have corrupted values, because in the current implementation, the attribute values 

for a noisy instance are changed first if possible, and if that fails , the class label is 

changed appropriately. Teng [100] also points out that a more stringent criterion 

needs to be adopted to subject more noisy instances to data correction. 

3.3 Our Approach to Noise Handling 

There are many similarities between our approach to noise handling and the 

approach that Brodley and Friedl [9] have employed. But there are some major 

differences too. In essence, one can say that our study leverages the work done by 
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Brodley and Friedl [9] in order to effectively handle the noise. Because of the limita­

tions and risks associated with polishing, noise elimination with ensemble classifier 

approach was deemed appropriate for our study. Also, the size of the dataset was 

not compellingly small to choose polishing over noise elimination. 

Similar to [31 ,  32] , we first remove inconsistencies from the dataset, i .e. , 

the instances for which we found inconsistent class labels . This was achieved by 

clustering the instances according to their feature values, and then removing the 

instances for which the class labels were different, but the attribute values were 

identical. 

Subsequently, an approach similar to the ensemble classifier approach [9] was 

used to identify and eliminate possibly noisy instances. Ensemble classifiers combine 

the outputs of a set of base-level classifiers [4, 36, 1 14] . 

In their ensemble classifier approach towards noise elimination, Brodley and 

Friedl [9] have reported results with only three different base-level classifiers, and 

Brodley and Utgoff [10] have carried out similar experiments with five different base 

level classifiers. In our opinion, the number of base level classifiers can be a key 

factor when ensemble classifier approach is used in noise detection and elimination. 

Especially, with regards to [9] , one can argue that it is quite possible that two out 

of the three different classifiers or even all the three classifiers could misclassify 

genuinely noise-free instance(s) . On the same line of argument, we can say that 

even the use of five base level classifiers may not be conservative enough. 
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Indeed, it would be naive to form an opinion about a module being noisy by 

considering only a small number of classifiers, because the appropriateness (bias) of 

the chosen learning algorithm applied to a particular dataset also plays a significant 

role . It may well be that the few chosen classifiers don't have appropriate bias to 

learn the concepts for a given domain. It is well known in the inductive learning 

community that classifiers do not perform consistently well across different domains. 

For example, a classifier which performs well in Software Quality Classification do­

main may not fare as well in a Medical Diagnosis domain. Experimenting with a 

rather large number of classifiers can ensure that we are reducing the probability of 

throwing away good data and raising the level of confidence in the identification of 

noisy modules. 

In our study, we used 25 different base-level classifiers from different cate­

gories , such as bayesian, instance-based, rule-based, decision-tree based, pattern­

based, and statistical techniques, etc. , for our ensemble classifier approach towards 

noise elimination. 

Unlike Brodley and Friedl's [9] approach that only considers majority filter­

ing and consensus filtering, the former being the least conservative, and the latter 

being the most conservative, our study attempts to examine the effects of several 

different levels of conservative approach to noise elimination on predictive accuracy 

of classifiers. We experimented with four different levels of filtering. In our work, we 

decided to eliminate the instances misclassified by 23 or more classifiers (the most 
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conservative approach, i .e. , misclassification by over 90% classifiers) , 20 or more 

classifiers ( misclassification by over 80% classifiers) , 17 or more classifiers ( misclas­

sification by over 68% classifiers) , and 13 or more classifiers (the majority filtering 

approach - the least conservative one) . 

Most importantly, all the empirical work towards noise detection and han­

dling we have come across [9, 10, 100, 101,  102] have a flaw in that the quality of 

evaluation set is ignored. Without having a noise-free evaluation set , the predictive 

accuracies reported for different classifiers with different noise handling techniques 

may not be the true indicators of how the noise handling technique(s) fared. It is 

certainly not fair to any algorithm or any noise handling technique when the results 

are compared in terms of predictive accuracy of a classifier without ensuring that the 

evaluation set used was in fact noise free. In order to address this issue, we perform 

filtering on the dataset before generating impartial splits for training and evaluation 

set. The filtering is performed on the basis of the misclassification by ensemble of 

classifiers with cross-validation. Thus, our approach cleans not only the training set 

but also the evaluation set. This would give us a better idea of classifiers' predictive 

accuracy and efficacy of our noise handling approach than would any other existing 

approach. 

Other than the factors mentioned above, our approach, theoretically speak­

ing, is similar to Brodley and Friedl's [9] approach. 
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3.3.1 Handling Exceptions 

Danyluk and Provost [17] note that learning from noisy data is difficult be­

cause it is hard to distinguish between instances that are noisy and instances that 

are exceptions to the general rule, especially if the noise is systematic. Brodley and 

Friedl also indicated in their paper [9] that one has to be cautious not to unknow­

ingly remove exceptions from the dataset while trying to eliminate noisy instances. 

Several researchers [35, 76, 77, 96] have done work on how to distinguish exceptions 

from noise. 

While it is indicated that further research is required to address this issue with 

ensemble-classifier approach in [9] , we think that our ensemble-classifier approach, 

especially the approach with the most conservative level of filtering, does counteract 

the problem to a certain degree. 

It is true that not all the classifiers can capture the atypicality of the instances 

that are exceptions to the general case. However, with our most conservative ap­

proach, it is likely that at least three of the twenty five classifiers would have the 

appropriate bias that could allow them to correctly classify exceptions or the in­

stances that are "hard-to-classify" . This would mean that our most conservative 

approach, where all the instances misclassified by 23 or more classifiers are elimi­

nated, is the least likely of all the four different levels of filtering approaches to take 

exceptions for noise and eliminate those instances inadvertently. However, it should 
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be noted that this study was not particularly aimed at addressing this issue, be­

cause from induction point of view, exceptions have the same effect on the induction 

process as erroneous examples themselves [62] . 

3.3.2 Distinction of Our Approach 

To our knowledge, our study is one of the few studies that examine the effect 

of a noise handling technique on a real-world data with inherent noise. Many empir­

ical studies have been carried out evaluating different noise handling mechanisms on 

the datasets in which noise is artificially injected [9, 10, 100, 101 ,  102, 1 17] ,  either 

in the class label or in the feature values. One potential problem with this approach 

is that a naturally occurring noisy class label may get changed to correct value, or 

irrelevant attributes might get their values changed. The effect of amount of noise 

handled (corrected/removed) on classification accuracy may not give the right idea 

in this situation. 

Noise free evaluation dataset is available .because of the way filtering is per­

formed in our noise handling procedure. 

Number of classifiers is rather large, and different learning algorithms from 

different categories have been chosen to form a set of base-level classifiers. This 

enables us to use different levels of filtering to eliminate noisy instances, avoids 

results from being influenced by inappropriate bias of a few classifiers, and raises 

the confidence level in the process of tossing out the instances suspected of being 
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noisy. 

3.4 Classification Modeling 

We deployed the proposed noise elimination technique on software quality 

data, as the domain of interest is Software Quality Classification. Twenty five 

different classification techniques1 were used for the purpose of Software Quality 

Classification, a proven technique in achieving better software quality control [21 ,  

74, 75, 94] . 

Typically, a two-group classification, in which software modules are classified 

as either fault-prone (fp) or not fault-prone ( nfp) , is employed for software quality 

classification. In the context of two-group classification, two types of misclassifica­

tion can take place - false positive (Type I) and false negative (Type II) . Type I 

error occurs when a not fault-prone module is misclassified as fault-prone, and Type 

II error occurs when a fault-prone module is misclassified as not fault-prone. All the 

different notations used in this study have been tabulated in Table 3 . 1 .  

3.4.1 Objective for Classification Models 

It is well-known in the Software Quality Engineering community that there 

is a significant disparity between the costs of the two types of misclassification. For 

software development projects, Type II errors are invariably more severe in terms of 

the cost involved. As opposed to extra reviews involved when software modules are 

1 Each classification technique is briefly described in Section 3.6. 
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j Symbol 
ECM 
NECM 
fp 
nfp 
CI 
Cn 
1rfp 
1rnfp 
p 
0: 
CBR 
TD 
LR 
LOC 
GP 
ANN 
LBOOST 
RBM 
BAG 
RSET 
MCOST 
ABOOST 
DTABLE 
ADT 
SMO 
IB1 
IBK 
PART 
ONER 
JRIP 
RDR 
J48 
NBAYES 
HPIPES 
LWLS 

Table 3.1: Notations 

Description 
Expected Cost of Misclassification 
Normalized Expected Cost of Misclassification 
A fault-prone or high risk module 
A not fault-prone or low risk module 
Cost of Type I misclassification error 
Cost of Type II misclassification error 
Prior probability of fp modules 
Prior probability of nfp modules 
The p-value for hypothesis testing 
The significance level for hypothesis testing 
Case-Based Reasoning [57, 63] 
The Theedisc classification tree algorithm [48] 
Logistic Regression [46] 
Lines-of-Code 
Genetic Programming [3, 59] 
Artificial Neural Network [67, 73] 
LogitBoost [29] 
Rule-Based Modeling [68] 
Bagging [7] 
Rough Sets [58] 
Meta Cost [19] 
AdaBoost [27] 
Decision Table [55] 
Alternating Decision 'frees [26] 
Sequential Minimal Optimization [81] 
1-Instance Based Learning 
k-Instance Based Learning 
Partial Decision 'frees [25] 
OneR [40] 
Repeated Incremental Pruning to Produce Error Reduction Algorithm [13] 
Ripple Down Rules [14, 15] 
Implementation of C4.5 algorithm [85] 
Naive Bayes [24] 
Hyper Pipes [80] 
LWL Stump [2] 
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misclassified according to Type I, Type II error involves inspection and correction 

after the software product becomes operational, which is obviously costlier, and can 

also hurt the organization in terms of its reputation and credibility. 

While Type II errors ( misclassifications) can cost more than Type I errors, 

the cost ratio �, ratio of the cost of misclassification of Type II to the cost of 

misclassification of Type I, is not constant, and varies depending on the quality 

improvement needs of the software development project and also the application 

domain and the nature of the system being developed. For example, for mission­

critical and high-assurance systems, the cost-ratio r�:) could be as high as 100, 

and on the contrary, for non-critical business applications, the cost-ratio (�) could 

be as low as 10. 

Looking at the vast disparity between the costs of the two types of mis­

classification, one might think that building a classification model with the lowest 

Type II error would be a very good strategy since it would be able to detect as 

many fault-prone (fp) modules as possible. While this strategy is certainly appeal­

ing, one cannot just overlook Type I error. In practice, it is observed that as the 

Type I error increases, Type II error decreases, and vice versa [46, 48, 49, 50, 52] . 

Hence, a classification model with very low Type II error is likely to have Type I 

error of a very high magnitude, misclassifying many not fault-prone(nfp) modules as 

fault-prone(fp) modules in an attempt to correctly classify as many fault-prone (fp) 

modules as possible. This strategy may not be feasible when software development 
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organizations are confronted with limited quality enhancement resources . 

A more pragmatic approach, one that is recommended by many software 

quality engineers, would be to select a classification model that offers balanced 

Type I and Type II errors, with Type II as low as possible. Adopting this strategy 

would mean that not only the Type II error rate is reasonably low, which ensures 

detection of significantly large number of fault-prone (fp) modules, but also the 

Type I error is reasonably low, which keeps the number of ineffective reviews and 

testing of the modules predicted to be fault-prone (fp) in check. Taking all these 

into consideration, we opted to select this model selection strategy for our case study 

with both the software systems (JMl and KC2) . 

However, one should be aware that the appropriateness of a model-selection 

strategy also depends on the nature of the system being modeled and the amount of 

quality enhancement resources at the organization's disposal. If ensuring maximum 

software reliability is the prime concern, and there is no constraint on the resources 

to be expended for quality improvement, a classification model that offers the lowest 

Type II error, irrespective of Type I error, would be of interest. Such a strategy 

would be more appropriate for mission-critical software systems. 

In summary, the classification modeling objectives for the two case studies 

presented in this study were: ( 1) to select appropriate classification model for each 

classification technique, (2) to use the predictions of the classification techniques to 

perform noise elimination using the proposed ensemble classifier approach, and (3) 
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to evaluate predictive performance of different classification techniques in terms of 

ECM (Expected Cost of Misclassification) values computed for different cost ratios 

on the data sets with different levels of noise. 

3.4.2 Calibrating Classification Models 

Every attempt was made to make the empirical investigation an impartial and 

unbiased one. We adopted common model-selection and model-evaluation strategy 

for all the twenty five classification techniques used as the base level classifiers in 

the noise elimination based on our ensemble-classifier approach. 

The software quality modeling process involved building, selecting, and vali­

dating classification models for all the twenty five classification techniques on datasets 

with different level of noise. The process was carried out in the following steps: 

1 .  Preprocessing and Formatting Data: Various classification modeling tools, 

such as SAS, WEKA, SMART, RBM, etc . ,  were used to perform the necessary soft­

ware quality classification. The input data to each of the tools had to be converted 

into the format acceptable by the tool. 

2. Building Models: The datasets for both the software systems (JMl and 

KC2) were proportionately split (before noise elimination and after noise elimination 

at various levels of noise filtering) into two halves to create training (fit) and evalu­

ation (test) datasets . 10-fold cross validation was performed on the training dataset 

to build classification models with almost all the classification techniques ,  with a few 
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exceptions2 of resubstitution (in the case of Rule-Based Modeling (RBM) , Treedisc, 

Logistic Regression, Lines-of-Code, and GP) and n-fold cross-validation (in the case 

of Case Based Reasoning (CBR)) .  

For building classification models, various parameters specific to the model-

ing tool/ classification technique and the cost of misclassification were varied. For 

example, when building a classification model for J48 (WEKA's implementation of 

the famous decision tree algorithm, C4.5) ,  parameters, such as Pruning Confidence 

(C), Minimum number of instances per leaf node(M) , etc. and cost of misclassifica-

tion, were varied to build classification models. The model, which best satisfies our 

model-selection strategy, among all the possible choices, was selected to be applied 

to evaluation dataset . This procedure is very similar to the generalized classification 

rule presented in [47] to classify software modules as either fp or nfp. 

It is worth mentioning here that the original unsplit dataset (the dataset 

with 8850 modules for JMl and the dataset with 520 modules for KC2 system) was 

used to build a classification model each (mostly with 10-fold cross validation, as 

mentioned earlier) for all the twenty five classifiers to form the basis for the proposed 

noise filtering. A distinctive advantage of performing noise elimination this way is 

the availability of evaluation dataset , besides the training set, both with reduced 

level of noise, upon splitting the dataset after noise removal. 

2 Exceptions had to be made either because of infeasibility of cross-validation for the technique 
or because of limitation of the modeling tool used. 
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3. Selecting and Evaluating Models: The classification model selected based 

on the quality of fit for each classifier was applied to the evaluation set to assess 

the classifier's predictive performance as compared to its counterparts at a given 

level of noise filtering. The performance of each classifier was evaluated in terms 

of Expected Cost of Misclassification (ECM) , a function of Type I and Type II 

errors. Using a singular measure for comparison makes the task of comparing the 

performance of twenty five different techniques on the datasets with different levels 

of noise much simpler. 

3.4.3 Expected Cost of Misclassification 

It was observed by our research group [48, 50, 52, 83, 90] that comparing 

different classification methods just based on the two misclassification rates is rather 

difficult, and that there is a need for a singular measure to make the task relatively 

easier. 

One may argue that overall misclassification error is a possible alternative 

for the use as a singular measure that can facilitate comparison of performance of 

different classification techniques. While the argument is certainly valid, it should be 

noted that our study addresses software quality classification for two high-assurance 

software systems (JMl and KC2) , for which, as we mentioned earlier, there is likely 

to be a vast disparity between the costs of the two types of misclassification and also 

between the proportions of the two classes (Jp and nfp) . If we were to use overall 
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misclassification as a means to compare the performance of different classification 

techniques ,  it would mean that we would be neither discriminating between the two 

types of misclassification nor taking the difference in the class (group) population 

into consideration. 

This led us to use ECM (Expected Cost of Misclassification) as a unified 

singular performance measure to compare the performance of different classification 

techniques on datasets with different levels of noise. The ECM measure (Equation 

( 3 .1 ) )  takes prior probabilities of the two classes and the costs of misclassifications 

into account [43] , and hence is considered a practically useful measure for evaluat-

ing the performance of different classification techniques in the context of Software 

Quality Classification [53] . Obviously, a preferred classification model is the one 

that yields a low Expected Cost of Misclassification. 

Practically speaking, in many cases, it may not be possible for an organiza-

tion to quantify the costs of the two types of misclassification. In order to overcome 

this problem, Normalized Expected Cost of Misclassification(NECM) , which facil-

itates the use of the cost ratio,%{ , instead of individual misclassification costs by 

normalizing the value of ECM with respect to C1 (Equation (3.2) ) ,  is employed. 

ECM �� 
NECM = 0 = Pr(fplnfp)1rnfp 

+ C1 
Pr(nfplfp) 1rJp 
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The prior probabilities of the fp and nfp classes are given by, 1r fp and 1r nfp 

respectively. Pr(fp jnjp) is the proportion of the nfp modules incorrectly classified 

as fp, and conversely, Pr(njpjjp) is the proportion of the fp modules incorrectly 

classified as nfp. The prior probabilities , i .e . ,  1rJp and 1rnfp ,  are estimated as the 

respective proportions in the given data set. We compared the performance of 

different classification techniques in terms of ECM 3 at different cost ratios, i.e. , by 

varying %;- in Equation (3.2) . 

In practice, the actual costs of misclassifications are unknown at the time of 

modeling. In order to make the empirical investigation more realistic and applicable, 

we explored a range of values (10,  20, 30, and 50) for the cost ratio %;- to compute 

the ECM. Evaluating models across a range of cost ratios can also shed some light 

on the sensitivity (robustness) of a classification model with respect to the possible 

costs and effort values. 

There is a noticeable difference between the model-selection and the model-

evaluation approach we have adopted. In the model selection, we strive to achieve a 

preferred balance between the Type I and Type II errors (Type I and Type II errors 

as balanced as possible, with the lowest Type II) , whereas the model evaluation 

approach is based on ECM. Looking at the practical usefulness of the ECM measure, 

one may wonder why it was not selected as the basis for model selection strategy. 

3 In this study, the notation ECM refers to the normalized expected cost of misclassification 
(NECM) ,  and the two are used interchangeably. 
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One of the main reasons is the fact that it is very difficult to estimate the actual 

cost ratio %{ at the time of modeling. Also, if the practical quality improvement 

objectives (See Section 3.4. 1) are taken into account , it is not difficult to realize why 

the use of ECM as the basis for model selection may not be such a good idea even 

though it is a very good practical performance evaluation measure. For example, for 

a cost ratio of 100 (empirical upper bound for software systems) , if a classification 

model demonstrates a very low Type II error rate and a high Type I error rate, its 

ECM value is likely to be very low, leading to conclusion that it be selected as the 

preferred model. However, as explained in Section 3.4. 1 ,  this may not be feasible 

when software organizations encounter the problem of limited resources for software 

quality improvement, which is often the case. 

While our model-selection and model-evaluation approaches have been well 

justified, the reader should be aware of the underlying assumption that a model, 

having been selected according to the preferred balance criterion, would most likely 

(but not necessarily) generate balanced misclassification rates, when evaluated with 

the test dataset . Having a low value of ECM does not necessarily mean the misclas­

sification error rates are balanced. However, tracking the stability and robustness 

of model performance (across training and evaluation sets) is out of scope for this 

study, and can be addressed in future work. 
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3.4.4 Two-way ANOVA: Randomized Complete Block Design 

Analysis of Variance, commonly known as ANOVA, is a popular statistical 

technique for examining whether three or more independent groups or populations 

are significantly different from one another. We performed Two-way ANOVA :  Ran­

domized Complete Block Design to compare the performance of twenty five different 

classifiers on datasets with different levels of noise for two different software systems 

( JMl and KC2) to observe if the different classification techniques and the different 

levels of noise filtering were significantly different from their respective counterparts. 

Two-Way AN OVA: Randomized Complete Block Design modeling approach [5 , 

71] involves classifying n heterogeneous subjects into r homogeneous groups, called 

blocks so that c subjects in each block can then be randomly assigned, one each, to 

the c levels of the factor of interest prior to the performance of a two-tailed F test, 

to determine the existence of significant treatment effects (Note that n = rc) . 

The primary reason to select this experimental design, one that separates 

subject variability from variability within data, is to reduce experimental error as 

much as possible. The observed data for each dataset with a specific level of noise 

filtering constitutes a replication. Since for each such dataset, the observed data is 

not affected by the level of noise filtering, blocking by dataset with specific level of 

noise filtering will make the experiment more powerful by reducing the experimental 

error variability [5] . 

NECM (Normalized Expected Cost of Misclassification) , computed for each 
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classification technique applied to the datasets with different levels of noise filtering, 

was employed as the response variable in our experimental design. It is worth noting 

here that there are certain implicit assumptions, such as normality of the data and 

randomness of the variable, etc. , that come with ANOVA, and that we did not 

observe significant deviations from these assumptions in our empirical investigation. 

Experimental design models were built using the NECM values computed for 

the four different cost ratios (%;- ) : 10, 20, 30, and 50. Two-Way ANOVA models 

for our comparative study involved 25 factor treatments (twenty five classification 

methods) , and 5 blocks (one block for the original noisy dataset, and the other four 

blocks for the datasets with noise filtering by agreement of 13 or more, 17 or more, 

20 or more, and 23 or more classification techniques) for JM1 system and 4 blocks 

(one block for the original noisy KC2 dataset , and the other three blocks for the 

datasets with noise filtering by agreement of 13 or more, 17 or more, and 23 or more 

classification techniques) for KC2 system. 

To develop the ANOVA procedure for a randomized complete block design, 

Yij , the observation in the ith block of B ( i = 1 ,  2, . . . , b) under the /h level of factor 

A (j = 1 ,  2, . . . , a) , can be represented by the model, 

(3.3) 

where, 

1-l = overall effect or mean common to all observations. 
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Aj = f.-t·j - J.-t, a treatment effect peculiar to the ;th level of factor A (classification 

technique) . 

Bi = f.-ti· - p.,, a block effect (dataset with a specific level of filtering) peculiar to the 

ith block of B. 

Eij = random variation or experimental error associated with the observation in the 

ith block of B under the ;th level of factor A. 

f.-t-J = true mean for the jth level of factor A. 

1-li· = true mean for the ith block of B. 

Yij is  NECM value in the context of this study. 

The two-way ANOVA block design results for the twenty five classification 

techniques are presented in the Section 4.5 .  

3.4.5 Multiple Pairwise Comparisons 

When comparing more than two means, an AN OVA F-Test is useful to de­

termine if the population means are significantly different from each other or not; 

however, it does not indicate which means differ from which of the other means. 

Multiple comparison methods are useful in obtaining detailed information about the 

differences among the various population means. A variety of multiple comparison 

methods are available, such as Fisher's least-significant-difference test, Thkey's test, 

Scheffe's test , Bonferroni's test , and Waller-Duncan k-ratio t-test [5 , 41, 93, 104] . 

In our comparative study, we employed the Thkey's multiple comparison 
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test [37, 41, 60] , in which the two means are declared significantly different by the 

Thkey-Kramer criterion if 

(3.4) 

where Y.i and Yj are the means of group i and group j respectively, ni and nj 

are the number of observations in the two groups, s is the root mean square error 

based on n - c degrees of freedom, p is the significance level, and q(p; c, n - c) is the 

p-level critical value of a studentized range distribution with c and n - c degrees of 

freedom. For equal group sizes, Tukey's method rejects the null hypothesis of equal 

population means if 

3.5 Z-Test Comparison of Two Proportions 

(3.5) 

The following approximate testing procedure was used for statistically com-

paring two proportions [115] . Using this procedure, we compared two proportions 

of the instances identified as noisy with two different noise filtering approaches .  The 

results are reported in Section 4. 7. 

Let ih = Xdn1 and p2 = X2/n2 be the two proportions, where Xi is a count 

for a sample of size ni . If we want to test the hypothesis H0 : p1 = p2 , with alternate 

hypothesis H A : Pt > P2 then 

(3.6) 
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When n1 = n2 , as in our case, then we get the following reductions: 

z = P1 - P2 

M 
(3 .7) 

where n is the common sample size, and p = PI �b . 

Assuming normal distributions for fh and fj2 , we determine the proportion of 

the normal curve which is greater than or equal to the computed value of Z. This 

proportion is the level of significance. It is most easily found in a table of proportions 

of the normal curve (one-tailed) by looking up the proportion corresponding to the 

z-value. If the level of significance is less than a specified limit (usually 5%) , the 

null hypothesis is rejected. 

3.6 Software Quality Classification Techniques 

This section presents a brief description of the classification techniques used 

as base-level classifiers to construct the ensemble classifier for filtering out noisy 

instances. The aim of this section is to give a brief overview of the classification 

techniques involved, and not (due to lack of space) to present an extensive algorith-

mic detail. Our research group has performed extensive empirical research in the 

area of Software Quality Classification modeling using all of the methods discussed 

herein. 
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3.6.1 Case-Based Reasoning 

Case-Based Reasoning (CBR) [ 57 ,  63] is a technique that aims to find solu-

tions to new problems, based on past experiences, which are represented by "cases" 

in a "case library". The case library and the associated retrieval and decision rules 

constitute a CBR model. In the context of a classification problem, each case in the 

case library has known attributes and class membership. The working hypothesis 

of CBR is that an instance under examination has probably the same class label as 

the instance(s) with similar features or attributes. 

A CBR system can take advantage of availability of new or revised informa­

tion by adding new cases or removing obsolete cases from the case library. Its good 

scalability provides fast retrieval even as the size of the case library scales up . CBR 

systems can be designed to alert users when a new case is outside the bounds of 

current experience. 

3.6.2 TREEDISC 

TREEDISC is a SAS macro implementation of modified CHAID algorithm [45] . 

It constructs a decision tree to predict a specified categorical dependent variable 

from one or more predictor (independent) variables . The decision tree is computed 

by recursively partitioning the data set into two or more subsets of observations, 

based on the categories of one of the predictor variables until some stopping criterion 

is met. The variable that is most significantly associated with the dependent variable 
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according to a chi-squared test of independence in contingency table is selected to 

be the predictor variable. 

Decision tree-based models are built by varying model parameters in order to 

achieve the preferred balance between the misclassification error rates, and to avoid 

overfitting of classification trees [54] . 

3.6.3 Logistic Regression 

Logistic Regression is a statistical modeling technique that offers good model 

interpretation. Independent variables in logistic regression may be categorical, dis­

crete, or continuous. However, the categorical variables need to be encoded (e.g. , 0 ,  

1 )  to facilitate classification modeling. 

Let x j be the lh independent variable, and let xi be the vector of the ith 

instance's independent variable values. In the context of two-group classification, 

an instance belonging to one of the two classes can be designated as an 'event' .  Let q 

be the probability of the event, and thus � is the odds of the event. The Logistic 

Regression model has the form, 

(3.8) 

where, log means the natural logarithm, /3j is the regression coefficient associated 

with independent variable Xj , and rn is the number of independent variables . 
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Given a list of candidate independent variables and a significance level, a: ,  

some of the estimated coefficients may not be significantly different from zero. Such 

variables should not be included in the final model. 

3.6.4 Lines-Of-Code 

Lines-of-code is one of the most important measures that can represent the 

complexity of software program modules. The classifier based on lines-of-code works 

on the hypothesis that the larger the number of lines of code for a software pro­

gram module, the more complex the software program module, and the greater the 

chance that program module is fault-prone(fp) . The procedure involved in the clas­

sifier based on lines of code is as follows: 1) sort the modules in the ascending order 

of the metric, LOC (lines-of-code) . 2) For a given threshold value thdtoc , calculate 

the two misclassification error (Type I and Type II) rates. In our study, all the 

modules with LOC less than thdtoc are predicted as nfp, fp otherwise. 3) Empiri­

cally determine the final threshold value thdtoc that satisfies desired model selection 

strategy. We adopted the strategy of selecting a model with the most balanced rates 

of misclassification of both types. 

3.6.5 Genetic Programming 

Genetic Programming ( G P) is a domain in the field of machine learning sys­

tems [59] . A unique advantage of GP is that a solution evolves automatically from 

the training data set. The evolution process in GP imitates the Darwinian principle 
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of survival and reproduction of the fittest individuals. Each individual in GP is an 

S-expression composed of functions and terminals provided by the problem. A fit­

ness value of an individual (or model in our case) indicates its quality with respect 

to the problem domain. Hence, it gives a probability of who can be selected for 

mating and reproducing for the next generation. We direct the reader to [3] for the 

basics of GP. 

Use of appropriate fitness functions is an important part of the algorithm. 

Weighted average cost of misclassification can be used as a fitness function. Since 

GP is a multi-objective optimization algorithm, tree size is often used as one of the 

fitness functions, but is not a primary one. 

3.6.6 Artificial Neural Networks 

Artificial neural networks (ANN) are systems that are deliberately constructed 

to make use of some organizational principles resembling those of the human brain. 

According to methods of learning rules, ANN can be classified mainly into two cat­

egories: supervised-learning networks and unsupervised-learning networks [66] . 

Backpropagation [92] is the most popular training algorithm for multilayer 

neural networks. The algorithm initializes the network with a random set of weights 

and basis, and the network trains from a set of input-output pairs. The batch training 

algorithm computes the weight update for each input sample, and stores these values 

(without changing the weights) during a pass through the training set (epoch) . At 
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the end of each epoch, all the weight updates are added together, and only then 

will the weights be updated with the composite value. We confined our study to 

feedforward supervised-learning neural networks, in particular backpropagated [67, 

73] neural networks. 

3.6. 7 Rule-Based Modeling 

Rule-based modeling (RBM) was proposed by our research team [68] for use 

in the software quality classification domain. In the context of RBM, if m is the 

number of independent variables, there are 2m rules. Each rule is a Boolean function 

consisting of one or more Boolean AND operators, the independent variables' values 

Xij ,  and their critical values Cj . Based on its critical value, each independent variable 

( Xij ) can have two possible values, Xij ::::; Cj and Xij > Cj ( 0 or 1 ) .  Consequently, each 

rule has a distinct index, representing one of the unique 2m possible combinations. 

The instances in the training data set are assigned to the rules . The subsequent 

work is to classify the rules based on the pre-defined model selection strategy and 

finally determine the class of instances in the test data set. 

3.6.8 Rough Sets 

Based on the classical set theory, rough sets were introduced in 1982 by 

Pawlak [58] . Using the concept of equivalence relations, partitions of a set of ob­

jects can be formed, subsets of significant attributes identified, and decision rules 

extracted, all based on the attribute values of the objects. Rough set theory can 
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be used to analyze the dependency relationship between the independent variables 

and the dependent variable to determine whether the dependent attribute can be 

characterized by the values of the independent attributes. 

In practice, it is often the case that not all the independent variables are 

equally significant indicator /predictor of the dependent variable (class label in the 

context of classification) . Hence, selecting proper attributes for prediction/classification 

is imperative for a technique to be successful. Rough set theory can be used to iden­

tify subsets of attributes, called 'reducts' ,  that have the same discrimination power 

as a complete set of attributes. Once the reducts are identified, a set of decision rules 

are obtained to perform classification. When the domain values of an attribute are 

continuous and relatively large, rough set theory requires that they be discretized. 

3.6.9 Combining Classification Technique 

Analogous to how people make decisions by consulting with a panel of ex­

perts, we can combine multiple classifiers (experts) to achieve a combined classifi­

cation [ 1 13] .  The combined classifier may significantly enhance the accuracy of the 

individual classifier. We will present Bagging [7] , followed by Boosting [27] , Logit­

Boost [29] , and MetaCost [19] . Detailed information about the techniques may be 

found in the references above and in [51 ] .  
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3.6.9.1 Bagging 

The simplest way to combine classifiers is to randomly re-sample from the 

original training data set, build a classifier for each re-sampled dataset, and use the 

prediction of each classifier in a simple vote to obtain the combined decision on the 

test data. This technique is known as Bagging. The re-sampling is performed with 

replacement: an instance may be re-sampled more than once, others may not be 

re-sampled. The re-sampled data sets usually have the same size as the original 

training data set. The combined decision or final hypothesis for classification (a 

class) is obtained using an unweighed vote. 

The classifier used for the combined decision is referred to as the weak learner. 

One requirement for the weak learner is to be unstable [7, 1 13] .  The instability of the 

weak learner ensures that small changes in the training data will yield significantly 

different models. There is no point in combining very similar learners since they 

will provide very similar outcomes. Decision trees and neural networks are typical 

unstable learners [8] . One may also notice that all the learners are generated inde­

pendently from each other. Thus, Bagging is an algorithm that is easy to implement 

on parallelized architectures [7] . Comprehensive description of the algorithm can be 

found in [34] . 
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3.6.9.2 Boosting 

Boosting [28] exploits the instability of weak learners in a way very similar 

to Bagging. However, while Bagging generates the classifiers independently of each 

other, the Boosting algorithm seeks classifiers that complement each other, rather 

than generating them randomly [ 113] .  The main difference between Boosting and 

Bagging is that while Bagging was obtained by generating independent samples, 

Boosting is an iterative method (each model is generated based on previous results) . 

The idea in Boosting is to favor classifiers that perform better on instances that 

were previously misclassified. Each classifier is thus influenced by the performance 

of the previous classifiers. In addition, while Bagging uses an unweighed vote to 

generate the final hypothesis, Boosting weighs each classifier's contribution in the 

combined decision based on its performance. Thus, the best classifiers are given 

more importance in the combined decision. 

In Boosting, the weight updating is straightforward: the weight of correctly 

classified instances is decreased while the weight of misclassified instances is in­

creased. The next classifier will then focus on the hard to classify correctly in­

stances: those with high weights. Thus, each instance's weight holds the history of 

all the previous classification (correct , incorrect) . The complete Boosting algorithm 

(AdaBoost) presented by Freund and Schapire [27] was used as one of the classifiers 

in this study. 
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3.6.9.3 LogitBoost 

LogitBoost is a re-derivation of AdaBoost as a method for fitting an additive 

model in a forward stagewise manner [29] . The idea here is to fit an additive model 

by minimizing the squared error loss in a forward stagewise manner. In LogitBoost, 

Boosting is viewed as an approximation of additive modeling on a logistic scale 

using the maximum Bernoulli likelihood as a criterion [29] . The result is an additive 

logistic model composed of functions that represent the weak hypotheses. 

The additive symmetric logistic model is fitted in a forward stagewise manner 

using Newton steps [29] . Variables are included sequentially in a stepwise regression, 

and the coefficients of variables already included in the model remain constant . The 

likelihood values are based on estimates of class probabilities. A model is fitted with 

observation weights to produce a new weak hypothesis . The complete description 

of LogitBoost is given in [29] . 

3.6.9.4 MetaCost 

MetaCost is a cost-sensitive meta learning method. This method treats the 

underlying classifier as a black box, requiring no knowledge of its functioning or 

change to it . MetaCost is based on wrapping a "meta-learning" stage around the 

error-based classifier in such a way that the classifier effectively minimizes cost while 

seeking to minimize error rates. 

MetaCost uses a variant of Breiman's [7] bagging as the ensemble method. 
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MetaCost differs from bagging in that the number of examples (modules/instances) 

in each resample may be smaller than the training size (in the bagging procedure, 

the number of the examples in each resample is the same as that of the original 

training data set) . This allows it to be more efficient . If the classifier being used 

produces class probabilities, a class' vote is estimated as the unweighted average of 

its probabilities, given the models and the example. Also, when estimating class 

probability for a given training example x, MetaCost always takes all the models 

generated into consideration or only those that were learned on resamples the exam­

ple was not included in. The first type of estimate is likely to have lower variance, 

because it is based on a large number of samples, while the second is likely to have 

lower statistical bias, because it is not influenced by the example's own class in the 

training set. 

The working procedure of MetaCost can be simply expressed as follows: 1) 

yielding multiple bootstrap replicates of the training data set, and learning a classi­

fier on each replicate; 2) estimating each class' probability for each example by the 

fraction of votes that it receives from the ensemble; 3) using the expected cost of 

misclassification to relabel each training example with the estimated optimal class; 

4) reapplying the classifier to the relabelled training data set. Readers may refer 

to [19] for more details on the MetaCost algorithm. 
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3.6.10 Decision Table 

Decision Table is one the simplest methods for learning from input data. The 

concepts/rules learnt from the input data have the same form as input - the form 

of a decision table, a list of rules in a table format. The problem of constructing a 

decision table involves selection of appropriate attributes for inclusion, and getting 

rid of irrelevant attributes . When determining a class for a test instance, all one has 

to do is to look up the appropriate conditions in the list of the rules - the decision 

table. 

Because they permit one to display succinctly the conditions that must be 

satisfied before prescribed actions are to be performed, decision tables are becom­

ing popular in computer programming and system design as devices for organizing 

logic [88] . 

Decision tables are attractive because of their simplicity, and because they 

are very easy to understand, when concise in size. Decision tables are also appeal­

ing in real-time environment, since they provide a constant classification time on 

average [55] . 

3.6.11 Alternating Decision Tree 

Alternating Decision Trees (ADTrees) resemble the option trees described by 

Buntine in [ 11 ]  and further developed by Kohavi et al. in [56] . ADTree algorithm, a 
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relatively new machine learning technique proposed by Freund and Mason [26] , com­

bines the power of boosting and decision trees in a very simple manner generalizing 

decision trees, voted decision trees, and voted decision stumps. Since, ADTree has 

alternating layers of decision nodes and prediction nodes in its tree structure, it is 

called Alternating Decision Tree. Freund and Mason [26] have shown that ADTree 

is able to achieve classification accuracy comparable to boosted decision tree algo­

rithms or algorithms that combine boosting in their implementation, keeping the 

generated rules much smaller and easily interpretable. 

3.6.12 SMO 

Sequential Minimal Optimization (SMO), proposed by Platt [81] , is a con­

ceptually simple, but subtle algorithm for training support vector machines, which 

involves solving a very large quadratic programming (QP) optimization problem, 

using Osuna's theorem to ensure convergence. The problem is resolved by divide 

and conquer approach in that the large QP problem is divided into smaller pieces 

of QP problems (subproblems )which are then solved analytically in steps instead of 

the traditional time-consuming way of numerical QP optimization. SMO, with its 

novel approach of QP optimization, reduces time complexity dramatically, and can 

be, in many cases, more than 1000 times faster than its traditional counterpart, the 

PCG (Projected Conjugate Gradient) Chunking algorithm, reports Platt [82] . SMO 

holds its appeal also because of its scalability. It is capable to handle large training 
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dataset, since the memory requirements of SMO is linearly dependent on the size of 

training dataset . 

3.6.13 IB1 

Instance-based learning is a popular classification scheme. The working hy­

pothesis of the technique is that the instance under examination (test case) would 

belong to the same class as that of other similar instances. Different instance-based 

learning algorithms vary in the context of the selected number of nearest neighbors, 

measures used to compute similarity between instances, and the solution algorithm 

for predicting the class of a test instance, etc. 

IBl ,  WEKA's implementation of 1 instance-based classifier, uses only one 

nearest neighbor to predict the class of a test instance. The similarity measure used 

is Euclidean distance. Despite its simplicity, it can achieve reasonable classification 

accuracy. Cover and Hart [16] demonstrated that INN (1-instance- based) classifier 

performs as well as Bayesian classifiers do. 

3.6.14 IBk 

IBk is WEKA's implementation of an instance-based learning technique with 

k nearest neighbors. Selecting only one nearest neighbor to predict the class of a 

test instance, especially in the presence of noise, may lead to increased inaccuracy 

[113] . Selecting more than one nearest neighbor is a much more realistic approach 

that is less easily influenced by noisy exemplars. In IBk, the class of the test case 
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is predicted by majority voting of the k nearest neighbors . Like IBl ,  the similarity 

measure used to determine the nearest neighbors is Euclidean distance. But unlike 

IBl ,  when using IBk, the attributes need to be normalized. 

As the number of nearest neighbors increases, the associated computation 

time, of course, increases. The computation time increases linearly also with the 

increase in the training set size. Indeed, IBk can be computationally expensive at 

times. But , incremental training and testing could be employed to overcome this 

issue. 

3.6.15 PART 

PART is a simple, yet surprisingly effective, method for learning decision 

lists based on the repeated generation of partial decision trees in a separate-and­

conquer manner [25] . PART, unlike the two dominant practical implementations 

of rule learners, C4.5  [85] and Ripper [ 13] , avoids the time consuming phase of 

postprocessing for global optimization. 

PART employs the separate-and-conquer strategy in that it builds a rule, 

removes the instances covered by the rule, and continues creating rules recursively 

for the remaining instances until none are left [25] . It may sound silly to repeatedly 

build a decision tree just to create one rule and then to discard it . But the process 

has certain advantages which should not be overlooked. Besides its simplicity, PART 
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offers protection against overpruning because of the way it combines the separate­

and-conquer approach with the decision trees, adding flexibility and speed to the 

process. Despite its simplicity, PART produces rule sets that are at least as accurate 

as those generated by its counterparts, i .e . C4.5  and RIPPER. [25] . 

3.6.16 OneR 

OneR algorithm, introduced by Holte [40] , is one of the simplest algorithms 

available in machine learning. Despite its simplicity, it compares favorably to many 

of the state-of-the-art machine learning techniques. It chooses the most informative 

single attribute, and bases the rule on this attribute alone. In practice, simple 

rules often achieve surprisingly high accuracy, which could be attributed to the 

rudimentary underlying structure of many real-world datasets. 

The fundamental concept of the algorithm is succinctly presented in [72] : 

For each attribute a, a rule is generated as follows: For each value v from 

the domain of a, select the set of instances where a has value v. Let c be the most 

frequent class in that set. Add the following clause to the rule for a: if a has value v 

then the class is c. Calculate the classification accuracy of this rule. The rule with 

the highest classification accuracy is used. 

The algorithm requires attributes to be discrete, and can handle missing 

values. 
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3.6.17 JRip 

JRip is WEKA's implementation of the rule-based learning algorithm, RIP­

PER (Repeated Incremental Pruning to Produce Error Reduction) - a  modification 

of the IREP (Incremental Reduced Error Pruning) . RIPPER was proposed by Co­

hen [13] , and was shown to compare favorably with C4.5 .  Both RIPPER and C4.5  

rules start with an initial model and iteratively improve it using heuristic techniques. 

However, for large noisy datasets, the former generally seems to start with an initial 

model that is about the right size, while the latter starts with an extremely large 

initial model. This means that RIPPER is more search-efficient. 

Based on the empirical work done with IREP, Cohen [13] proposed RIPPER, 

suggesting three modifications to the IREP algorithm. In order to overcome the 

occasional failure of IREP to converge, a different and more intuitive metric to 

evaluate the rules during pruning phase was introduced. In view of !REP's undue 

sensitivity to the "small disjunct problems" [39] , total description length criterion 

was proposed to replace the error rate as a stopping criterion while building the 

ruleset . Finally, a postpass that optimizes a rule set in an attempt to more closely 

approximate conventional reduced error pruning was introduced. 
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3.6.18 Ridor 

The ripple-down rule(RIDOR) technique was introduced by Compton and 

Jansen as a methodology for acquisition and maintenance of large rule-based sys-

terns [ 14, 1 5] . 

The basic idea behind the technique is to make incremental changes while 

constructing and maintaining a complex knowledge structure in a well-defined and 

restricted manner such that the effects of the changes do not propagate globally, and 

are well confined in the structure, unlike standard production rules. In RIDOR, rule 

activation is considered only in the context of other rule activation [30] . The rules 

thus formed can be viewed as a binary decision tree with a compound clause at each 

decision node. Unlike a standard decision tree, the rule at each decision node does 

not necessarily cover all the instances - a decision can be reached at an internal node. 

However, similar to a standard decision tree, only one decision node is activated for 

an instance, which makes maintaining the ruleset easier [30] . 

3.6.19 J48 

J48 is the implementation of C4.5 ,  the landmark Decision Tree algorithm 

introduced by Quinlan [ 85] . The C4.5  algorithm is an inductive supervised learning 

system which employs decision trees to represent the underlying structure of the 

input data. The algorithm is comprised of four principal components: decision tree 

generator, production rule generator, decision tree interpreter, and production rule 
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interpreter, for constructing and evaluating the classification tree models. 

The C4.5 algorithm requires certain pre-processing of data in order for it 

to build decision tree models. Some of these include attribute value description 

type, predefined discrete classes, and sufficient number of observations for supervised 

learning. 

The classification tree is initially empty, and the algorithm begins adding 

decision and leaf nodes, starting with the root node. At each decision node, the 

decision is based on only one attribute, which makes the tree easier to understand. 

C4.5  algorithm, much like its counterpart CART, builds a complete tree, and then 

prunes it to avoid overfitting, which may seem wasteful. But the act of fully explor­

ing the decision tree and then pruning it is worth the extra computation effort for 

the improved accuracy. 

3.6.20 NaiveBayes 

Naive Bayes is one of the most simplistic techniques available for classifi­

cation. This simple and intuitive method, based on Bayesian rule of conditional 

probability, "naively" assumes that attributes are independent of each other given 

the class, which may not be completely true in the real world. 

Despite the over-simplification of the actual relationship between the at­

tributes, Naive Bayes has been shown to perform fairly well, especially when used 

along with feature selection techniques that remove irrelevant attributes [24] . It is 
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important to discard irrelevant and redundant attributes to ensure that the algo­

rithm performs to its capability. It can handle missing values without any problem. 

3.6.21 Hyperpipes 

Hyperpipes also belongs to the category of the simplest classification tech­

niques. As described in [80] , for each class label, a hyperpipe that would contain all 

the instances having the same class label is constructed. For each hyperpipe, the 

attribute bounds are observed and recorded from the instances it contains. When 

classifying a test instance, the class label associated with the hyperpipe that most 

contains the test instance is assigned. 

Hyperpipes is an extremely simple algorithm, but has the advantage of being 

extremely fast, and works quite well in presence of many attributes . It cannot handle 

missing values in the test cases. 

3.6.22 LWLStump 

Locally Weighted Learning (LWL) is a non-adaptive lazy-learning technique 

that is gaining popularity in the machine learning community. Atkeson et al. have 

surveyed locally weighted learning in [2] . Local weighting reduces unnecessary bias of 

global function fitting, and gives more flexibility, retaining the desirable properties 

such as smoothness, and statistical analyzability [2] . LWL uses locally-weighted 

training to combine training data, using a distance function to fit a surface to 
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nearby points. It must be used in conjunction with another classifier to perform 

classification, e.g. Decision Stump in the case of LWLStump. 

There are mainly three different requirements for Locally Weighted Learn­

ing [2] : Distance function, Separable criterion, and Sufficient data. There is a need 

for a measure of relevance for learning with Local weighting. The more commonly 

used measure of relevance is the distance metric. Additive separability criterion is 

typically used so that the training criterion is not a general function of the predic­

tions of the training instances. LWL also calls for sufficiency of the data, which, of 

course, is subjective, and depends on the nature of the problem domain. 
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Chapter 4 

EXPERIMENTS 

The focus of this chapter is to describe the experiments conducted and the 

results obtained during our empirical investigation. 

4.1 System Description 

For the case studies reported in this study, we used data from two NASA 

projects, namely JMl and KC2,  written in C++, which are available from the Met­

rics Data Program(MDP) website 4 .  This website provides access to the data repos­

itory containing software metrics and associated error data at the function/method 

level. The data repository stores and organizes the data which has been collected 

and validated by the Metrics Data Program. This data has been made available 

through this website with the approval of the project(s) which have worked in co­

operation with the Metrics Data Program. 

The two data sets are denoted by JMl and KC2, the former being the larger 

( 10, 883 modules) and the latter being the smaller(520 modules) of the two. Even 

4 http:/ jmdp.ivv.nasa.gov 
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though KC2 actually contained more than 3, 000 modules, for our study, we con­

sidered only 520 modules - the modules which were developed by NASA software 

developers, and were not COTS software. 

Of the 10, 883 modules in JM1 dataset, 2, 105 modules had errors, ranging 

from 1 to 26. The remaining 8, 778 modules were error-free. After removing in­

consistent instances (the instances with identical independent variables, but with 

different class labels) and the instances with missing values, size of the JM1 dataset 

reduced from 10, 883 instances to 8, 850 instances. Out of the 8, 850 modules in the 

JM1 dataset, the dataset denoted by JMJ-8850 in Table 4 . 1 ,  1 ,  687 modules had 

one or more defects, whereas the remaining 7, 163 modules did not have any defects. 

While it was observed that there were some inconsistent instances among the 

520 instances in the KC2 dataset denoted by KC2-520 in Table 4. 1 ,  we decided 

not to toss them out, for the dataset size was rather small, and we wanted to 

explore whether these inconsistent examples get filtered out by our noise elimination 

approach, which was later confirmed to be true. It was found that all the inconsistent 

examples for the KC2 system were misclassified by all the twenty five classification 

techniques , and hence were filtered out by the noise elimination process. Of the 520 

modules in the KC2-520 dataset, 106 had errors ranging from 1 to 13; while the 

remaining 414 were error-free. 
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Table 4.1: Dataset Details for JMl and KC2 Systems 

nfp modules fp modules Total 
Dataset Count Proportion Count Proportion Count 

JM1-8850 7163 80.94% 1687 19 .06% 8850 
JM1-4425-Fit 3581 80.93% 844 19 .07% 4425 
JM1-4425-Test 3582 80.95% 843 19 .05% 4425 
JM1-23C-Fit 3143 80.67% 753 19 .33% 3896 
JM1-23C-Test 3143 80.69% 752 19.31% 3895 
JM1-20C-Fit 2862 80.44% 696 19 .56% 3558 
JM1-20C-Test 2861 80.43% 696 19 .57% 3557 
JM1-17C-Fit 2670 80.52% 646 19.48% 3316 
JM1-17C-Test 2670 80.52% 646 19.48% 3316 
JM1-13C-Fit 2431 80.84% 576 19 . 16% 3007 
JM1-13C-Test 2430 80.84% 576 19 . 16% 3006 

KC2-520 414 79.62% 106 20.38% 520 
KC2-260-Fit 207 79.62% 53 20.38% 260 
K C2-260-Test 207 79.62% 53 20.38% 260 
KC2-23C-Fit 181 79.04% 48 20.96% 229 
K C2-23C-Test 182 79.48% 47 20.52% 229 
KC2-17C-Fit 173 79.72% 44 20.28% 217 
KC2-17C-Test 172 79.63% 44 20.37% 216 
KC2-13C-Fit 166 79.43% 43 20.57% 209 
KC2-13C-Test 166 79.43% 43 20.57% 209 

4.2 Noise Elimination 

We performed noise elimination using the proposed ensemble-classifier ap-

proach for both the software systems (JMl and KC2) . The filtering was based 

on the performance of twenty five different classification techniques on the JMl-

8850 and KC2-520 datasets for the JMl and KC2 systems respectively. For most 

classification techniques, the predictions on which the filtering was based were ob-

tained using 10-fold cross-validation, with a few exceptions as mentioned in the 

Section 3.4 .2 .  
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Experimenting with as many as twenty five classifiers enabled us to explore 

several levels of filtering. For the JMl system, we decided to have four different 

levels of filtering denoted by 13C, 17C, 20C, and 23C, with 13C being the least 

conservative and 23C being the most conservative amongst the four. Noise filtering 

at 13C level, a noise filtering level where all the instances misclassified by 13 or more 

classification techniques have been eliminated, is analogous to majority filtering since 

we are using twenty five classification techniques. 

We strived to follow the same filtering approach for the KC2 system. How­

ever, since the number of modules to be eliminated at the 20C level was not signifi­

cantly less than that at the 23C level, we decided to skip the 20C level for the KC2 

system. Hence, in the case of the KC2 system, the noise elimination was performed 

at three different levels: 13C, 17C, and 23C. The notations, however, hold the same 

meaning for the KC2 system as well. 

We did not perform consensus filtering (25C in our case) , for it appeared 

to be too stringent a criterion for noise elimination with twenty five classification 

techniques. 

Having performed the noise elimination, each dataset was proportionately 

split into two halves: fit and test sets. The notations used for each dataset and 

distribution of fault-prone and not fault-prone modules in each dataset is summa­

rized in Table 4. 1 .  Most of the notations are self explanatory, with each one having 

prefix for the respective software system. For example, JMl-8850 stands for the 
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original dataset (with 8850 modules) used for noise elimination; JMl-4425-Fit and 

JMl-4425-Test are the training and the evaluation dataset splits respectively gen­

erated before noise elimination; and JM1-23C-Fit and JM1-23C-Test stand for the 

fit and test dataset splits respectively generated after noise elimination at the 23C 

level. The same also follows for the KC2 system. 

It was surprising to note that the distribution of fp and nfp modules in the 

datasets remains almost the same after the noise elimination process at different 

levels of filtering, for both the systems (JMl and KC2) . 

Table 4.2 displays the quality-of-fit in terms of misclassification error statis­

tics for all the twenty five classification techniques on the datasets ( JMl - 8850 

and KC2 - 520) used for noise elimination for the software systems JMl and KC2 

respectively. The relatively higher magnitude of the misclassification errors indicate 

that the datasets are likely to be noisy, which is confirmed by the improvement in 

classification accuracy with increasing level of noise filtering (going from the most 

conservative level-23C to the least conservative level-13C) . One obvious observation 

from Table 4.2 is that while the misclassification errors are still high for the KC2 

dataset, they are not as high as those for the JMl dataset , which may be the indi­

cation that relatively less amount of noise is present in the KC2 dataset than in the 

JMl dataset. 
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Table 4.2: Quality-of-Fit Results for JMl-8850 and KC2-520 Datasets 

JM1-8850 KC2-520 

Methods Type I Type II Type I Type II 

CBR 30.70% 30.88% 21 .50% 20.75% 

TD 30.78% 29. 16% 18.60% 16.04% 

LR 34.23% 33.97% 20.77% 21 .70% 

LOC 34.85% 34.08% 20.53% 19.81% 

GP 34.71% 32.66% 18.36% 16.98% 

ANN 38.06% 30.35% 21 .26% 21 .70% 

LBOOST 34.72% 32.72% 22.22% 20.75% 

RBM 33.71% 33.08% 17.39% 16.04% 

BAG 30.59% 30.76% 21 .50% 20.75% 

RSET 31 .62% 30.94% 16. 18% 14. 15% 

MCOST 33.67% 33.61% 23.43% 21 .70% 

ABOOST 33.41% 33.79% 28.26% 29.25% 

DTABLE 34.29% 34.32% 18.84% 18.87% 

ADT 33.83% 33.61% 19.81% 19.81% 

SMO 34.09% 33.97% 20.77% 20.75% 

IB1 34.73% 34. 74% 23.67% 24.53% 

IBK 32.70% 32.48% 20.53% 19.81% 

PART 33. 16% 33. 14% 20.77% 19.81% 

ONER 34.50% 34.38% 20.05% 19.81% 

JRIP 33. 18% 33.08% 19.81% 19.81% 

RDR 33.94% 34.02% 18.84% 19.81% 

J48 32.56% 32.42% 19.57% 19.81% 

NBAYES 34. 12% 33.97% 21 .26% 21 .70% 

HPIPES 37.97% 38.29% 23.91% 23.58% 

LWLS 33.59% 33.61% 20.05% 19.81% 

Average 33.75% 33. 12% 20.71% 20.30% 

Std. Dev 1 .80% 1 .80% 2.41% 2.93% 

Median 33.83% 33.61% 20.53% 19.81% 

Min 30.59% 29. 16% 16. 18% 14. 15% 

Max 38.06% 38.29% 28.26% 29.25% 
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4.3 Classification Results 

The performance of all the classification techniques on the datasets with 

different levels of noise is presented in terms of the Type I and Type II errors for 

both the software systems, in the following subsections. 

4.3.1 Misclassification Summary for the JMl System 

Presented in this subsection are the classification performance (both the 

quality-of-fit and the predictive performance) results in terms of Type I and Type 

II errors for the datasets of the JMl system, with different levels of noise. 

Table 4.3 displays the misclassification rates for all the classifiers on the JMl-

4425 datasets (Fit and Test) . JMl-4425-Fit dataset was used to build the models, 

and the selected model for each classification technique was applied to the JMl-4425-

Test dataset for evaluation. The JMl-4425-Fit and JMl-4425-Test datasets are the 

datasets generated by impartially splitting the original JMl-8850 dataset without 

any noise removal. The fact that these are not noise-free datasets is reflected in the 

higher values of misclassification error rates. 

In the Tables 4.4, 4 .5 ,  4 .6 ,  and 4.7, classification performance of all the classi­

fication techniques is displayed for datasets with all the four different levels of noise 

filtering (23C, 20C, 17C, and 13C) for the JMl system. It is evident from these re-

suits that as more and more noise is removed from the dataset, there is improvement 

in both the quality of fit and the predictive performance of all the classifiers. 
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Table 4.3: Classification Accuracy Results for JMl-4425 Datasets 

Fit Set Test Set 

Methods Type I Type II Type I Type II 

CBR 33.01% 32.23% 32.52% 31 .91% 

TD 31 .50% 30.21% 31 .85% 36.54% 

LR 33.96% 34.12% 35.34% 33.10% 

LOC 34.54% 33.89% 35.15% 34.28% 

GP 34.35% 32.46% 35.26% 32.62% 

ANN 38.82% 29.86% 37.74% 29.77% 

LBOOST 35.80% 33.77% 35.29% 32. 15% 

RBM 32.62% 32 .94% 33.92% 36.30% 

BAG 34.13% 31 .75% 33.47% 29.54% 

RSET 32.73% 31 .28% 33.98% 34.28% 

MCOST 36.92% 34.00% 41 .09% 22.89% 

ABOOST 34.82% 34. 72% 37.47% 31 .32% 
DTABLE 34. 15% 34. 12% 34.42% 36.30% 

ADT 34.60% 34.36% 26.69% 41 .76% 

SMO 33.65% 33.77% 34.28% 34.52% 

IB1 37.84% 37.68% 38.55% 33.69% 

IBK 33.54% 33.65% 33.56% 31 .91% 

PART 34.79% 34.72% 49.78% 22.78% 

ONER 34.93% 35.07% 37.55% 35.94% 

JRIP 34.04% 34.24% 38.92% 30.25% 

RDR 34.74% 34.60% 42.66% 26.45% 

J48 33.98% 34.00% 26.47% 43. 18% 

NBAYES 33.20% 33.53% 34.06% 34.28% 

HPIPES 38.59% 39. 10% 36.91% 37.01% 

LWLS 34.35% 34.60% 34.31% 30.37% 

Average 34.62% 33.79% 35.65% 32.93% 

Std. Dev 1 .78% 1 .96% 4.67% 4.74% 

Median 34.35% 34.00% 35. 15% 33. 10% 

Min 31 .50% 29.86% 26.47% 22.78% 

Max 38.82% 39. 10% 49.78% 43. 18% 
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Table 4.4: Classification Accuracy Results for JM1-23C Datasets 

Fit Set Test Set 
Methods Type I Type II Type I Type II 
CBR 23.80% 23.11% 22.62% 23. 14% 
TD 23. 13% 18. 19% 25. 17% 26.60% 
LR 24.98% 24.97% 24.94% 25.80% 
LOC 25.99% 25.23% 25.52% 26.99% 
GP 24. 75% 23. 11% 24.21% 27.79% 
ANN 25.36% 23.90% 25. 14% 26.60% 
LBOOST 25.93% 24.83% 29.62% 24.07% 
RBM 25.04% 23.51% 25.58% 26.73% 
BAG 23.35% 21 .91% 21 .99% 20.61% 
RSET 22. 14% 21 .38% 23.74% 28.46% 
MCOST 24.69% 25 .76% 23.45% 26.20% 
ABOOST 26. 19% 25.90% 23.93% 23.54% 
DTABLE 27.08% 26.29% 25.42% 28. 19% 
ADT 25. 17% 25.23% 26.66% 25.66% 
SMO 24.59% 24.70% 24.72% 27.39% 
IB1 26.22% 25.23% 27.04% 24.73% 
IBK 24.94% 24.97% 24.09% 26.86% 
PART 23.96% 23.24% 21 .64% 27.66% 
ONER 25.04% 25.90% 29. 18% 23.40% 
JRIP 24.98% 24.44% 26.41% 25.93% 
RDR 25. 14% 25.23% 24.63% 27.53% 
J48 24.72% 24.70% 24.75% 20.88% 
NBAYES 25.01% 25. 10% 25.99% 27.26% 
HPIPES 28.92% 28.82% 26.73% 27.66% 
LWLS 24.69% 24.70% 24.47% 25.40% 
Average 25.03% 24.41% 25. 10% 25.80% 
Std. Dev 1 .32% 1 .97% 1 .89% 2 . 14% 
Median 24.98% 24.83% 24.94% 26.60% 
Min 22. 14% 18. 19% 21 .64% 20.61% 
Max 28.92% 28 .82% 29.62% 28.46% 
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Table 4.5: Classification Accuracy Results for JM1-20C Datasets 

Fit Set Test Set 

Methods Type I Type II Type I Type II 

CBR 18.03% 18 .25% 17.23% 18.53% 

TD 15.55% 12.36% 17.02% 18.97% 

LR 18.41% 18 .25% 19. 12% 18.53% 

LOC 20. 16% 19.25% 20.31% 18.25% 

GP 17.30% 18.25% 18.04% 20.69% 

ANN 16.35% 19.83% 16.67% 19.97% 

LBOOST 19.60% 18.25% 18.42% 18.39% 

RBM 17.44% 16.38% 18.59% 20.55% 

BAG 16.98% 16.38% 16.64% 14.94% 

RSET 14.88% 15 .66% 19 .12% 19.54% 

MCOST 18.80% 17.39% 20.03% 15.52% 

ABOOST 16 .70% 15.95% 16.46% 16.67% 

DTABLE 18.48% 18.53% 23.66% 15.09% 

ADT 1 7.99% 18. 10% 16.22% 20.55% 

SMO 18.59% 18.39% 18.70% 19.25% 

IB1 19.01% 18.82% 18.63% 19.25% 

IBK 1 7.09% 17 . 10% 16.53% 18 .97% 

PART 16.91% 16.95% 16.04% 18.53% 

ONER 19.74% 19.54% 22.44% 16.67% 

JRIP 17.68% 17.67% 14.47% 21.84% 

RDR 1 7.65% 18.53% 20. 10% 16.95% 

J48 17. 12% 17 . 10% 16.71% 19.83% 

NBAYES 19.43% 19.54% 19.47% 20.26% 

HPIPES 21 .52% 20.26% 21 .01% 20.83% 

LWLS 19.32% 16.38% 19.61% 16.95% 

Average 18.03% 17.72% 18.45% 18.62% 

Std. Dev 1 . 50% 1 .67% 2. 13% 1 .87% 

Median 1 7.99% 18.25% 18.59% 18.97% 

Min 14.88% 12 .36% 14.47% 14.94% 

Max 21 .52% 20.26% 23.66% 21.84% 
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Table 4.6: Classification Accuracy Results for JM1-17C Datasets 

Fit Set Test Set 
Methods Type I Type II Type I Type II 
CBR 13.67% 13.00% 13.67% 10.53% 
TD 1 1 .31% 8.51% 13.82% 13.31% 
LR 12.62% 12 .54% 13.07% 13 .78% 
LOC 14.42% 13. 16% 15.32% 14.09% 
GP 12.02% 12.07% 12.02% 14.09% 
ANN 13.03% 11 .92% 13.22% 14.09% 
LBOOST 14.04% 13.47% 14.04% 13.47% 
RBM 13.07% 1 1 .76% 13.45% 14.09% 
BAG 12.43% 11 .30% 12.21% 8.20% 
RSET 10.37% 10.22% 13.71% 13.47% 
MCOST 1 1 .80% 12.85% 13.60% 12.38% 
ABOOST 12.47% 12 .07% 11 .65% 9.60% 
DTABLE 13.37% 13.00% 14.27% 10.53% 
ADT 10.90% 10.84% 12 .62% 1 1 . 15% 
SMO 12.81% 12.69% 13.07% 14.24% 
IB1 13.48% 13.62% 15 .24% 10.84% 
IBK 11 .42% 1 1 .30% 12. 13% 10.99% 
PART 1 1 .84% 1 1 .92% 11 .54% 10.06% 
ONER 13.00% 12 .69% 15.06% 13.93% 
JRIP 12.36% 12 .23% 13.71% 10.22% 
RDR 12.32% 1 1 .92% 10.67% 14.24% 
J48 12 .47% 12 .38% 13.41% 1 1 .30% 
NBAYES 13.97% 13.78% 13.60% 14.71% 
HPIPES 14.61% 15 .02% 22.55% 13.93% 
LWLS 1 1 .65% 1 1 .76% 13.30% 1 1 . 15% 
Average 12.62% 12.24% 13.64% 12.33% 
Std. Dev 1.08% 1 .27% 2 .17% 1 .88% 
Median 12.47% 12 .23% 13.45% 13.31% 
Min 10.37% 8.51% 10.67% 8.20% 
Max 14.61% 15 .02% 22.55% 14.71% 
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Table 4. 7: Classification Accuracy Results for JM1-13C Datasets 

Fit Set Test Set 

Methods Type I Type II Type I Type II 

CBR 8.02% 7.29% 6.23% 10.07% 

TD 5.02% 4 .17% 4.94% 6.42% 

LR 5.43% 5 .73% 4.36% 6.94% 

LOC 6.75% 7. 12% 5 .72% 8. 16% 

GP 5.72% 5.90% 5.43% 7.29% 

ANN 6.38% 6.08% 4.94% 7.29% 

LBOOST 5.88% 6.08% 5.84% 6.08% 

RBM 5.88% 5.21% 6.63% 7.29% 

BAG 5. 18% 5.21% 4 .90% 5.03% 

RSET 4.44% 4 .17% 7.41% 6.08% 

MCOST 5.96% 5.38% 4.81% 5.38% 

ABOOST 3.95% 5.90% 3.58% 5.21% 

DTABLE 6.21% 6.25% 7.41% 6.60% 

ADT 4.73% 5.03% 5. 10% 3.47% 

SMO 6.21% 6.08% 5.93% 7.29% 

IB1 6.33% 6.25% 6.54% 7.99% 

IBK 5.02% 5.38% 4.73% 6.60% 

PART 5.31% 5.03% 5.60% 5.73% 

ONER 6.42% 6.25% 8.27% 6.94% 

JRIP 5.72% 5 .73% 7.00% 4.51% 

RDR 6.42% 6 .77% 8 .15% 5.03% 

J48 5 .02% 5.21% 4.81% 5.56% 

NBAYES 7.53% 7.29% 6.91% 7.99% 

HPIPES 8.64% 8 . 16% 6.58% 13.72% 

LWLS 5. 10% 5 .03% 5.64% 5.90% 

Average 5 .89% 5 .87% 5.90% 6 .74% 

Std. Dev 1 .08% 0.96% 1 .20% 2.00% 

Median 5 .88% 5.90% 5 .72% 6.60% 

Min 3.95% 4. 17% 3.58% 3.47% 

Max 8.64% 8. 16% 8.27% 13.72% 

81 



4.3.2 Misclassification Summary for the KC2 System 

Presented in this subsection are the classification performance (both the 

quality-of-fit and the predictive performance) results in terms of Type I and Type 

II errors for the datasets of the KC2 system, with different levels of noise. 

Table 4.8 displays the misclassification rates for all the classifiers on the KC2-

260 datasets (Fit and Test) . The KC2-260-Fit dataset was used to build the models, 

and the selected model for each classification technique was applied to the KC2-260-

Test dataset for evaluation. The KC2-260-Fit and KC2-260-Test datasets are the 

datasets generated by impartially splitting the original KC2-560 dataset without 

any noise removal. Again, the fact that these are not noise-free datasets is reflected 

in the higher values of misclassification error rates . 

In the Tables 4.9, 4 .10 ,  and 4. 1 1 ,  classification performance of all the classi­

fication techniques is displayed for datasets with all the three different levels (23C, 

17C, and 13C) of noise filtering for the KC2 system. It is evident from these results 

that as more and more noise is removed from the dataset, there is improvement in 

both the quality of fit and the predictive performance of all the classifiers. 

4.4 ECM Results 

As explained in the Section 3.4.3, comparing as many as twenty five different 

classification methods based on the two types of misclassification rates can very 

well turn out to be a difficult and complex task, especially in the presence of many 
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Table 4.8: Classification Accuracy Results for KC2-260 Datasets 

Fit Set Test Set 
Methods Type I Type II Type I Type II 
CBR 19.81% 20.75% 22.71% 16.98% 
TD 19.81% 20.75% 20.77% 24.53% 
LR 21 .74% 20. 75% 20.29% 16.98% 
LOC 21 .26% 18.87% 20.29% 18.87% 
GP 16.91% 9.43% 20.77% 26.42% 
ANN 23.67% 15 .09% 27.05% 18.87% 
LBOOST 24.64% 24.53% 28.50% 20.75% 
RBM 18.84% 18.87% 20.77% 20.75% 
BAG 25.60% 24.53% 22.71% 13.21% 
RSET 18.84% 18.87% 17.87% 24.53% 
MCOST 26.57% 26.42% 20.29% 24.53% 
ABOOST 20.77% 24.53% 28.50% 26.42% 
DTABLE 21 .74% 18 .87% 21 .26% 20.75% 
ADT 20.77% 22.64% 17.39% 32.08% 
SMO 19.81% 20.75% 21 .74% 22.64% 
IB1 21 .26% 20.75% 25.12% 37.74% 
IBK 21 .74% 18.87% 22.22% 20.75% 
PART 23.67% 22.64% 22.22% 28.30% 
ONER 20.77% 20.75% 20.77% 20.75% 
JRIP 23. 19% 22.64% 25.60% 16.98% 
RDR 20.29% 22.64% 28.02% 15 .09% 
J48 23.67% 22.64% 31 .40% 18.87% 
NBAYES 21 .74% 20.75% 20.77% 20.'75% 
HPIPES 21 .74% 22.64% 25. 12% 18.87% 
LWLS 20.29% 20.75% 21 .26% 26.42% 
Average 21 .57% 20.83% 22.94% 22. 1 1% 
Std. Dev 2 .22% 3.38% 3.55% 5.46% 
Median 21 .26% 20.75% 21 .74% 20.75% 
Min 16.91% 9.43% 17.39% 13.21% 
Max 26.57% 26.42% 31 .40% 37.74% 
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Table 4.9: Classification Accuracy Results for KC2-23C Datasets 

Fit Set Test Set 
Methods Type I Type II Type I Type II 
CBR 12 . 15% 12.50% 9.89% 10.64% 
TD 12.71% 8.33% 13.74% 6.38% 
LR 8.84% 10.42% 5.49% 14.89% 
LOC 1 1 .60% 10.42% 7. 14% 10.64% 
GP 4.42% 10.42% 4.40% 17.02% 
ANN 9.94% 10.42% 7.69% 17.02% 
LBOOST 10.50% 12.50% 6.04% 17.02% 
RBM 8.84% 6.25% 10.44% 12 .77% 
BAG 10.50% 10.42% 6.59% 17.02% 
RSET 10.50% 10.42% 6.59% 8.51% 
MCOST 12 . 15% 14.58% 1 1 .54% 8.51% 
ABOOST 13.81% 10.42% 7. 14% 10.64% 
DTABLE 10.50% 10.42% 5.49% 17.02% 
ADT 9.39% 8.33% 6.04% 8.51% 
SMO 10.50% 10.42% 8.24% 12 .77% 
IB1 15 .47% 6.25% 14.84% 12.77% 
IBK 9.39% 10.42% 5.49% 12.77% 
PART 1 1 .60% 10.42% 13.74% 21 .28% 
ONER 10.50% 10.42% 7. 14% 14.89% 
JRIP 1 1 .05% 8.33% 7. 14% 14.89% 
RDR 1 i .05% 8 .33% 6.59% 17.02% 
J48 1 1 .60% 10.42% 13.74% 21 .28% 
NBAYES 1 1 .60% 8.33% 8.24% 17.02% 
HPIPES 10.50% 10.42% 9.34% 12.77% 
LWLS 1 1 .05% 10 .42% 4.95% 17.02% 
Average 10.81% 10.00% 8.31% 14.04% 
Std. Dev 1.99% 1 .80% 3.06% 3.93% 
Median 10.50% 10.42% 7.14% 14.89% 
Min 4.42% 6.25% 4.40% 6.38% 
Max 15.47% 14.58% 14.84% 21 .28% 
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Table 4.10: Classification Accuracy Results for KC2- 17C Datasets 

Fit Set Test Set 

Methods Type I Type II Type I Type II 

CBR 5.20% 4.55% 7.56% 2.27% 

TD 3.47% 6.82% 2.91% 4.55% 

LR 2.89% 2.27% 3.49% 2 .27% 

LOC 4.05% 4.55% 2.33% 6.82% 

GP 0.58% 0.00% 1 . 74% 6.82% 

ANN 12 . 14% 2.27% 12.21% 4.55% 

LBOOST 4.62% 6.82% 5.23% 2 .27% 

RBM 4.62% 0.00% 5.81% 2.27% 

BAG 6.36% 6.82% 5.23% 0.00% 

RSET 4.05% 4.55% 2.33% 6.82% 

MCOST 5 .78% 6.82% 4.65% 6.82% 

ABOOST 4.05% 6.82% 4.65% 4.55% 

DTABLE 6 .36% 4.55% 4 .65% 4.55% 

ADT 4.05% 4.55% 1 .74% 4.55% 

SMO 5 .20% 6.82% 4.07% 4.55% 

IB1 7.51% 9.09% 9.30% 6.82% 

IBK 5.78% 6.82% 5.81% 4.55% 

PART 5.20% 6.82% 3.49% 1 1 .36% 

ONER 4.05% 4 .55% 2.91% 0.00% 

JRIP 7.51% 6.82% 5.81% 4.55% 

RDR 5.78% 6.82% 5.23% 0.00% 

J48 5 .78% 6.82% 6.40% 9.09% 

NBAYES 6.36% 6.82% 5.23% 4.55% 

HPIPES 3.47% 4.55% 3.49% 6.82% 

LWLS 6.36% 6.82% 6.98% 0.00% 

Average 5.25% 5.36% 4.93% 4.45% 

Std. Dev 2 . 10% 2.26% 2.39% 2 .90% 

Median 5 .20% 6.82% 4.65% 4 .55% 

Min 0.58% 0.00% 1 . 74% 0.00% 

Max 12 . 14% 9.09% 12.21% 1 1 .36% 
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Table 4.11: Classification Accuracy Results for KC2-13C Datasets 

Fit Set Test Set 

Methods Type I Type II Type I Type II 

CBR 1 .81% 2 .33% 5 .42% 6 .98% 

TD 0.60% 0.00% 1 .81% 2.33% 

LR 5.42% 2.33% 7.83% 9.30% 

LOC 3.61% 2 .33% 2.41% 2 .33% 

GP 0.00% 0.00% 0.00% 6.98% 

ANN 4.22% 0.00% 4.22% 6.98% 

LBOOST 0.60% 0.00% 0.00% 4.65% 

RBM 0.00% 0.00% 1 .20% 4.65% 

BAG 0.60% 0.00% 0.00% 4.65% 

RSET 4.82% 4 .65% 5.42% 2.33% 

MCOST 0.60% 0.00% 0.00% 4.65% 

ABOOST 0.60% 0.00% 0.00% 4.65% 

DTABLE 0.60% 0.00% 0.00% 4.65% 

ADT 0.60% 0.00% 0.00% 4.65% 

SMO 2 .41% 2.33% 3.01% 6.98% 

IB1 3.61% 0.00% 4.82% 6.98% 

IBK 3.61% 0.00% 6.63% 6.98% 

PART 0.00% 0.00% 0.00% 4 .65% 

ONER 0.60% 0.00% 0.00% 4.65% 

JRIP 0.60% 0.00% 0.00% 4.65% 

RDR 0.60% 0.00% 0.00% 4.65% 

J48 0 .00% 0.00% 0.00% 4.65% 

NBAYES 4.82% 2.33% 3.61% 2.33% 

HPIPES 4.22% 2.33% 1 .81% 4.65% 

LWLS 0.00% 0.00% 0.00% 9.30% 

Average 1 .78% 0.74% 1 .93% 5.21% 

Std. Dev 1 .87% 1 .29% 2 .48% 1 .93% 

Median 0.60% 0.00% 0.00% 4.65% 

Min 0.00% 0.00% 0.00% 2.33% 

Max 5.42% 4.65% 7.83% 9.30% 
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datasets ( datasets with different level of noise) . To make the task easier, we decided 

to evaluate the performance of classifiers in terms of the Normalized Expected Cost 

of Misclassification. NECM was computed from the misclassification error statistics 

at four different cost ratios: 10, 20, 30, and 50 for the reasons explained in the 

Section 3.4.3 . 

Presented in the following subsections are the classification performance re­

sults for all the classification techniques in terms of NECM computed for the training 

and evaluation datasets at different levels of noise for both the software systems. 

4.4.1 ECM Results for the JM1 System 

Tables 4. 12, 4. 13, 4. 14, and 4 .15 display the classification performance results 

of all the classification techniques on the datasets with different levels of noise, for 

the JM1 system. It is evident from these results that the value of expected cost of 

misclassification improves (goes down) as the level of noise elimination goes from 

the most conservative (23C) to the least conservative (13C) . 
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Table 4.12: NECM Results for JMl Dataset, c=lO 

JM1-13C JM1-17C JM1-20C JM1-23C 
Methods Fit Test Fit Test Fit Test Fit Test 
CBR 0.2045 0.2433 0 .3633 0.3151 0 .5020 0.5013 0 .6386 0.6293 
TD 0. 1204 0 .1630 0 .2569 0 .3706 0.3668 0.5080 0.5382 0.7166 
LR 0. 1536 0. 1683 0 .3459 0.3736 0.5051 0.5164 0.6840 0.6994 
LOC 0.1909 0 .2026 0 .3724 0 .3978 0.5388 0.5204 0 .6974 0 .7271 
GP 0. 1593 0. 1836 0 .3320 0.3712 0.4961 0.5499 0.6463 0 .7320 
ANN 0. 1679 0 .1796 0 .3372 0.3809 0.5194 0.5249 0.6666 0.7163 
LBOOST 0.1640 0 .1637 0.3755 0.3755 0.5146 0.5080 0.6892 0.7037 
RBM 0. 1473 0 .1933 0 .3344 0 .3827 0.4607 0.5516 0.6563 0.7225 
BAG 0 .1417 0. 1361 0 .3203 0 .2581 0.4570 0.4262 0.6119 0.5754 
RSET 0.1 157 0 . 1763 0 .2826 0.3727 0.4261 0.5361 0.5919 0.7409 
MCOST 0.1513 0 . 1420 0 .3453 0.3507 0.4913 0.4647 0.6971 0 .6950 
ABOOST 0. 1450 0. 1287 0 .3356 0.2808 0.4463 0.4585 0.7118 0 .6475 
DTABLE 0. 1699 0 .1863 0.3610 0.3200 0.5112 0.4855 0.7266 0.7494 
ADT 0. 1347 0. 1078 0 .2989 0 .3188 0.4989 0.5325 0.6907 0.7107 
SMO 0.1666 0 .1876 0.3504 0.3827 0.5093 0.5271 0.6758 0 .7284 
IB1 0 .1709 0 .2059 0 .3739 0.3338 0.5211  0.5266 0.6992 0 .6958 
IBK 0. 1437 0. 1647 0.3121 0.3118 0.4719 0.5041 0.6838 0.7130 
PART 0. 1393 0 .1550 0 .3275 0 .2889 0 .4677 0.4917 0.6425 0.7086 
ONER 0. 1716 0 .1999 0.3519 0.3926 0.5410 0.5066 0.7025 0 .6873 
JRIP 0. 1560 0. 1430 0 .3378 0.3094 0.4879 0.5437 0.6738 0.7137 
RDR 0.1816 0 . 1623 0.3314 0 .3634 0.5045 0.4934 0.6905 0.7302 
J48 0. 1403 0 . 1454 0.3417 0.3281 0.4722 0.5224 0.6768 0 .6028 
NBAYES 0.2005 0.2089 0 .3809 0 .3960 0.5385 0.5530 0.6869 0 .7361 
HPIPES 0.2261 0 .3160 0.4101 0 .4530 0 .5694 0.5766 0 .7903 0.7497 
LWLS 0. 1377 0 . 1587 0 .3230 0.3242 0.4758 0.4895 0.6766 0 .6878 
Average 0. 1600 0 . 1769 0 .3401 0 .3501 0.4917 0.5127 0.6738 0.7008 
Std. Dev 0.0262 0 .0414 0.0323 0.0444 0.0418 0.0331 0.0474 0 .0438 
Median 0. 1560 0 . 1683 0.3378 0.3634 0.4989 0.5164 0.6838 0.7130 
Min 0.1 157 0 . 1078 0 .2569 0 .2581 0.3668 0.4262 0.5382 0.5754 
Max 0.2261 0 .3160 0.4101 0 .4530 0 .5694 0.5766 0.7903 0.7497 
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Table 4.12: NECM Results for JMl Dataset, c=lO, contd . . .  

JM1-8850 JM1-4425 
Methods Fit Fit Test 
CBR 0.8372 0.8818 0.8712 
TD 0.8051 0 .8312 0.9539 
LR 0.9245 0 .9256 0.9166 
LOC 0.9318 0 .9259 0.9376 
GP 0.9035 0 .8972 0.9069 
ANN 0.8866 0 .8836 0.8728 
LBOOST 0.9047 0 .9338 0.8981 
RBM 0.9034 0 .8922 0.9661 
BAG 0.8340 0 .8818 0.8337 
RSET 0.8458 0 .8615 0.9281 
MCOST 0.9132 0 .9473 0.7688 
ABOOST 0.9145 0 .9440 0.8999 
DTABLE 0.9318 0.9272 0.9702 
ADT 0.9145 0.9354 1 .0115 
SMO 0 .9234 0 .9164 0.9351 
IB1 0.9433 1 .0249 0.9539 
IBK 0.8838 0 .9132 0 .8795 
PART 0.9000 0.9437 0.8368 
ONER 0 .9346 0 .9516 0 .9887 
JRIP 0.8991 0.9286 0.8913 
RDR 0.9233 0 .9410 0.8493 
J48 0.8816 0 .9236 1 .0368 
NBAYES 0.9236 0.9082 0.9288 
HPIPES 1 .0373 1 .0581 1 .0038 
LWLS 0.9125 0 .9379 0.8563 
Average 0.9045 0 .9246 0.9158 
Std. Dev 0.0445 0 .0460 0.0630 
Median 0.9125 0.9259 0.9166 
Min 0.8051 0.8312 0.7688 
Max 1 .0373 1 .0581 1 .0368 
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Table 4.13: NECM Results for JMl Dataset, c=20 

JM1-13C JM1-17C JM1-20C JM1-23C 
Methods Fit Test Fit Test Fit Test Fit Test 
CBR 0.3442 0.4362 0.6166 0 .5202 0 .8589 0 .8639 1 .0852 1 .0760 
TD 0.2002 0.2861 0.4228 0.6300 0.6085 0.8791 0.8899 1 .2300 
LR 0.2634 0.3014 0.5902 0.6420 0.8620 0.8791 1 . 1666 1 . 1974 
LOC 0 .3272 0.3589 0.6288 0 .6722 0 .9154 0.8774 1 . 1851 1 .2483 
GP 0.2724 0.3234 0.5672 0.6457 0 .8530 0.9547 1 .0929 1 .2685 
ANN 0.2843 0.3194 0.5694 0.6553 0 .9073 0.9157 1 . 1286 1 .2298 
LBOOST 0.2803 0.2801 0.6378 0.6378 0.8716 0 .8679 1 . 1691 1 . 1684 
RBM 0.2471 0.3330 0.5636 0 .6571 0 .7811 0 .9536 1 . 1 106 1 .2385 
BAG 0.2414 0.2325 0.5404 0 .4180 0 .7774 0.7186 1 .0354 0.9733 
RSET 0. 1955 0.2927 0.4816 0 .6351 0.7324 0.9185 1 .0051 1 .2904 
MCOST 0.2544 0.2452 0.5956 0 .5920 0.8314 0.7683 1 . 1951 1 .2008 
ABOOST 0.2581 0.2285 0.5709 0 .4677 0 .7583 0. 7846 1 .2123 1 . 1019 
DTABLE 0.2897 0.3127 0.6143 0 .5250 0.8738 0.7807 1 .2349 1 .2937 
ADT 0.2311  0 . 1743 0.5100 0 .5359 0.8530 0.9345 1 . 1784 1 .2062 
SMO 0.2830 0.3273 0.5977 0.6601 0 .8690 0.9039 1 . 1532 1 .2573 
IB1 0 .2907 0 .3589 0 .6393 0 .5449 0.8893 0.9033 1 . 1869 1 . 1733 
IBK 0.2468 0.2911 0.5323 0 .5259 0.8064 0.8752 1 . 1663 1 .2316 
PART 0.2358 0.2648 0 .5597 0 .4849 0 .7993 0 .8544 1 .0916 1 .2426 
ONER 0.2913 0.3330 0.5992 0.6641 0 .9233 0 .8327 1 .2030 1 . 1392 
JRIP 0.2657 0 .2295 0 .5760 0 .5084 0.8336 0.9710 1 . 1460 1 .2144 
RDR 0.3113 0.2588 0.5636 0 .6408 0.8671 0.8251 1 . 1781 1 .2616 
J48 0.2401 0.2518 0.5829 0.5483 0 .8066 0 .9103 1 . 1543 1 .0059 
NBAYES 0.3402 0.3619 0.6493 0.6824 0.9207 0 .9494 1 . 1720 1 .2624 
HPIPES 0.3824 0 .5788 0.7027 0 .7244 0 .9657 0 .9843 1 .3473 1 .2837 
LWLS 0.2341 0.2718 0.5522 0 .5413 0 .7962 0.8212 1 . 1540 1 . 1 782 
Average 0 .2724 0.3061 0.5786 0.5904 0 .8384 0 .8771 1 . 1457 1 . 1989 
Std. Dev 0.0444 0.0792 0.0569 0 .0794 0.0741 0 .0676 0.0853 0.0837 
Median 0.2657 0.2927 0.5760 0.6300 0.8530 0 .8791 1 . 1663 1 .2298 
Min 0 . 1955 0 .1743 0.4228 0 .4180 0 .6085 0 .7186 0.8899 0.9733 
Max 0.3824 0.5788 0 .7027 0 .7244 0.9657 0 .9843 1 .3473 1 .2937 
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Table 4.13: NECM Results for JMl Dataset , c=20, contd . . .  

JM1-8850 JM1-4425 
Methods Fit Fit Test 
CBR 1 .4259 1 .4965 1 .4791 
TD 1 .3610 1 .4075 1 .6499 
LR 1 .5720 1 .5765 1 .5471 
LOC 1 .5815 1 .5722 1 .5907 
GP 1 .5261 1 .5164 1 .5284 
ANN 1 .4651 1 .4531 1 .4400 
LBOOST 1 .5285 1 .5779 1 .5105 
RBM 1 .5339 1 .5205 1 .6576 
BAG 1.4205 1 .4875 1 .3964 
RSET 1 .4356 1 .4581 1 .5812 
MCOST 1 .5539 1 .5959 1 .2050 
ABOOST 1 .5585 1 .6061 1 .4965 
DTABLE 1 .5860 1 .5781 1 .6617 
ADT 1 .5551 1 .5907 1 .8070 
SMO 1 .5708 1 .5605 1 .5928 
IB1 1 .6054 1 .7435 1 .5957 
IBK 1 .5031 1 .5550 1 .4875 
PART 1 .5316 1 .6059 1 .2707 
ONER 1 .5899 1 .6206 1 .6734 
JRIP 1 .5296 1 .5817 1 .4676 
RDR 1 .5719 1 .6009 1 .3532 
J48 1 .4997 1 .5722 1 .8594 
NBAYES 1 .5711 1 .5478 1 .5819 
HPIPES 1 . 7672 1 .8038 1 .7089 
LWLS 1 .5532 1 .5977 1 .4348 
Average 1 .5359 1 .5691 1 .5431 
Std. Dev 0.0780 0.0827 0 .1511 
Median 1 .5532 1 .5765 1 .5471 
Min 1 .3610 1 .4075 1 .2050 
Max 1 .7672 1 .8038 1 .8594 
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Table 4.14: NECM Results for JMl Dataset, c=30 

JM1-13C JM1-17C JM1-20C JM1-23C 
Methods Fit Test Fit Test Fit Test Fit Test 
CBR 0.4839 0.6291 0.8698 0.7252 1 .2158 1 .2266 1 .5318 1 .5227 
TD 0.2800 0.4092 0 .5887 0.8893 0.8502 1 .2502 1 .2415 1 .7435 
LR 0.3731 0.4345 0 .8344 0.9104 1 .2189 1 .2418 1 .6491 1 .6955 
LOC 0.4636 0.5153 0.8851 0 .9466 1 .2920 1 .2345 1 .6727 1 .7694 
GP 0.3854 0.4631 0.8025 0.9201 1 .2099 1 .3596 1 .5395 1 .8051 
ANN 0.4007 0.4591 0.8016 0.9297 1 .2951 1 .3064 1 .5906 1 .7433 
LBOOST 0.3967 0.3965 0.9002 0.9002 1 .2285 1 .2277 1 .6491 1 .6331 
RBM 0.3469 0.4727 0.7928 0.9315 1 . 1015 1 .3556 1 .5649 1 .7546 
BAG 0.3412 0 .3290 0.7606 0 .5778 1 .0978 1 .0110 1 .4589 1 .3712 
RSET 0.2754 0.4092 0 .6806 0.8975 1 .0388 1 .3008 1 .4184 1 .8398 
MCOST 0.3575 0 .3483 0.8459 0.8332 1 . 1 714 1.0720 1 .6930 1 .7065 
ABOOST 0.3711 0 .3283 0.8061 0.6547 1 .0703 1 . 1 108 1 . 7128 1 .5564 
DTABLE 0.4094 0.4391 0.8676 0.7301 1 . 2364 1 .0759 1 . 7431 1 .8380 
ADT 0.3276 0.2409 0.7210 0 .7530 1 . 2071 1 .3365 1 .6661 1 .7017 
SMO 0.3994 0.4671 0.8450 0.9376 1 .2288 1 .2806 1 .6306 1 .7861 
IB1 0.4104 0.5120 0.9047 0.7560 1 .2574 1 .2800 1 .6745 1 .6508 
IBK 0.3499 0.4175 0.7524 0.7400 1 . 1408 1 .2463 1 .6489 1 .7502 
PART 0.3322 0.3746 0 .7919 0.6809 1 . 1310 1 .2170 1 .5408 1 .7766 
ONER 0.41 10 0.4661 0.8465 0.9355 1 .3055 1 . 1588 1 . 7035 1 .5910 
JRIP 0.3755 0.3160 0.8142 0.7075 1 . 1793 1 .3984 1 .6183 1 .7150 
RDR 0.4410 0.3553 0.7958 0.9183 1 .2296 1 . 1569 1 .6658 1 .7931 
J48 0.3399 0.3583 0.8242 0.7684 1 . 141 1  1 .2983 1 .6317 1 .4090 
NBAYES 0.4799 0.5150 0.9177 0.9689 1 .3030 1 .3458 1 .6571 1 .7887 
HPIPES 0.5387 0 .8417 0.9952 0.9958 1 .3620 1 .3919 1 .9043 1 .8177 
LWLS 0.3306 0.3849 0 .7814 0.7584 1 . 1 166 1 . 1529 1 .6314 1 .6685 
Average 0.3848 0.4353 0.8170 0.8307 1 . 1852 1 .2414 1 .6175 1 .6971 
Std. Dev 0.0626 0 .1 173 0.0817 0 . 1 154 0. 1067 0. 1036 0 . 1234 0 .1245 
Median 0.3755 0.4175 0.8142 0.8893 1 . 2099 1 .2463 1 .6489 1 .7433 
Min 0.2754 0.2409 0.5887 0 .5778 0 .8502 1 .0110 1 .2415 1 .3712 
Max 0.5387 0.8417 0.9952 0.9958 1 .3620 1 .3984 1 .9043 1 .8398 
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Table 4. 14: NECM Results for JMl Dataset, c=30, contd . . .  

JM1-8850 JM1-4425 
Methods Fit Fit Test I 
CBR 2.0146 2 . 1 112 2 .0870 
TD 1 .9169 1 .9837 2.3460 
LR 2.2194 2.2273 2 . 1776 
LOC 2.2312 2.2185 2.2438 
GP 2. 1487 2 .1356 2 . 1498 
ANN 2.0436 2.0226 2 .0072 
LBOOST 2. 1522 2 .2219 2 . 1229 
RBM 2. 1644 2 . 1487 2.3492 
BAG 2.0069 2.0931 1 .9591 
RSET 2.0254 2.0547 2 .2344 
MCOST 2. 1946 2.2445 1 .641 1  
ABOOST 2.2026 2.2683 2.0931 
DTABLE 2.2402 2.2289 2.3532 
ADT 2. 1958 2.2461 2.6025 
SMO 2.2183 2 .2045 2.2504 
IB1 2.2676 2 .4621 2 .2375 
IBK 2. 1223 2.1968 2.0954 
PART 2. 1633 2.2680 1 .7046 
ONER 2.2453 2.2895 2.3582 
JRIP 2. 1601 2 .2348 2.0438 
RDR 2.2205 2.2608 1 .8572 
J48 2 .1 177 2.2208 2 .6820 
NBAYES 2.2185 2 .1873 2.2350 
HPIPES 2.4972 2.5496 2.4140 
LWLS 2. 1939 2.2576 2.0133 
Average 2. 1672 2.2135 2 . 1703 
Std. Dev 0. 1 120 0 .1 198 0.2409 
Median 2. 1939 2 .2219 2 . 1776 
Min 1 .9169 1 .9837 1 .6411  
Max 2.4972 2.5496 2.6820 
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Table 4.15: NECM Results for JMl Dataset , c=50 

JM1-13C JM1-17C JM1-20C JM1-23C 
Methods Fit Test Fit Test Fit Test Fit Test 
CBR 0.7632 1 .0150 1 .3764 1 . 1354 1 .9297 1 .9519 2 .4251 2.4162 
TD 0.4396 0.6554 0.9204 1 .4080 1 .3336 1 .9924 1 .9448 2.7705 
LR 0.5926 0.7006 1 .3230 1 .4472 1 .9328 1 .9671 2 .6142 2 .6917 
LOC 0.7363 0.8280 1 .3978 1 .4955 2.0453 1 .9486 2.6481 2 .81 18 
GP 0.61 16 0 .7425 1 . 2729 1 .4689 1 .9238 2. 1692 2 .4328 2 .8783 
ANN 0.6335 0.7385 1 .2660 1 .4786 2 .0708 2.0880 2.5146 2 .7702 
LBOOST 0.6295 0 .6294 1 .4249 1 .4249 1 .9424 1 .9474 2.6091 2 .5625 
RBM 0.5464 0.7522 1 .2512 1 .4804 1 .7423 2 . 1597 2 .4736 2 .7866 
BAG 0.5407 0.5220 1 .2008 0.8975 1 .7386 1 . 5957 2 .3060 2 . 1671 
RSET 0.4350 0.6420 1 .0787 1 .4222 1 .6515 2.0655 2.2449 2 .9386 
MCOST 0.5637 0.5546 1 .3465 1 .3157 1 .8516 1 .6792 2.6889 2 .7181 
ABOOST 0.5973 0.5279 1 .2765 1 .0286 1 .6942 1 . 7630 2 .7138 2 .4652 
DTABLE 0.6488 0.6919 1 .3742 1 . 1402 1 .9615 1 .6663 2.7595 2 .9266 
ADT 0.5205 0.3739 1 . 1432 1 . 1873 1 .9154 2 . 1406 2 .6414 2 .6927 
SMO 0.6322 0 .7465 1 .3396 1 .4925 1 .9483 2 .0340 2.5855 2 .8439 
IB1 0.6498 0.8180 1 .4355 1 . 1782 1 .9938 2.0335 2.6499 2.6059 
IBK 0 .5560 0 .6703 1 . 1927 1 . 1683 1 .8097 1 .9885 2.6140 2 .7874 
PART 0.5251 0 .5941 1 .2563 1 .0730 1 .7943 1 .9424 2.4392 2.8447 
ONER 0 .6505 0 .7322 1 .341 1 1 .4783 2 .0700 1 . 81 1 1  2 .7046 2 .4947 
JRIP 0.5949 0.4890 1 .2907 1 . 1055 1 .8707 2 .2530 2.5629 2 .7163 
RDR 0 .7004 0 .5482 1 .2603 1 .4732 1 .9547 1 . 8204 2.6412 2.8560 
J48 0.5394 0.5712 1 .3067 1 .2087 1 .8100 2 .0742 2 .5865 2.2151 
NBAYES 0 .7592 0.8210 1 .4545 1 .5419 2.0675 2 . 1386 2.6273 2 .8413 
HPIPES 0 .8513 1 .3673 1 .5802 1 . 5386 2 .1546 2 .2072 3.0182 2.8858 
LWLS 0 .5234 0 .6 1 1 1  1 .2397 1 . 1927 1 .7574 1 .8164 2.5862 2 .6493 
Average 0.6096 0.6937 1 .2940 1 .3113 1 .8786 1 .9702 2.5613 2.6935 
Std. Dev 0.0992 0 . 1938 0.1312 0 . 1881 0 .1720 0 . 1762 0 . 1995 0.2066 
Median 0.5973 0.6703 1 .2907 1 .4080 1 .9238 1 .9885 2.6091 2.7702 
Min 0 .4350 0.3739 0.9204 0.8975 1 .3336 1 .5957 1 .9448 2 . 1671 
Max 0.8513 1 .3673 1 .5802 1 . 5419 2 . 1546 2.2530 3.0182 2.9386 
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Table 4.15: NECM Results for JMl Dataset, c=50, contd . . .  

JM1-8850 JM1-4425 
Methods Fit Fit Test 
CBR 3. 1920 3.3406 3 .3028 
TD 3.0288 3 . 1363 3.7381 
LR 3.5144 3.5290 3.4386 
LOC 3.5306 3.5112 3.5501 
GP 3.3939 3 .3740 3.3928 
ANN 3.2007 3 . 1616 3. 1417 
LBOOST 3.3997 3.5101 3.3478 
RBM 3.4254 3 .4052 3.7322 
BAG 3 .1798 3 .3045 3.0845 
RSET 3.2051 3.2479 3.5406 
MCOST 3.4759 3.5417 2.5134 
ABOOST 3.4907 3.5926 3.2863 
DTABLE 3.5487 3 .5306 3.7363 
ADT 3.4772 3.5568 4.1934 
SMO 3.5132 3 .4927 3.5656 
IB1 3 .5919 3 .8994 3.5211 
IBK 3.3607 3 .4805 3.31 12 
PART 3.4266 3.5923 2.5724 
ONER 3.5560 3 .6273 3.7277 
JRIP 3.4211 3 .5410 3.1964 
RDR 3.5176 3.5806 2.8651 
J48 3.3539 3.5180 4.3272 
NBAYES 3.5134 3.4664 3.5412 
HPIPES 3.9571 4.0411 3.8242 
LWLS 3.4753 3 .5774 3 .1704 
Average 3.4300 3.5023 3.4248 
Std. Dev 0.1802 0 .1945 0.4211 
Median 3.4753 3.5180 3.4386 
Min 3.0288 3 . 1363 2.5134 
Max 3.9571 4.0411 4.3272 
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4.4.2 ECM Results for the KC2 System 

Tables 4.16 ,  4 . 17, 4 . 18 ,  and 4.19 display the classification performance results 

of all the classification techniques on the datasets with different levels of noise, for 

the KC2 system. Again, it is evident from these results that the value of expected 

cost of misclassification improves (goes down) as the level of noise elimination goes 

from the most conservative (23C) to the least conservative ( 13C) . 

4.5 ANOVA Results 

As mentioned in the Section 3.4.4, Two Way: Randomized Complete Block 

Design approach was employed to investigate whether or not the twenty five clas­

sification techniques and the datasets with different levels of noise filtering yield 

significantly different NECM values with respect to one another respectively. The 

NECM computed for the fit and test data sets , was used as the response variable 

for the ANOVA models. The results are presented in the Tables 4.20, 4.2 1 ,  4 .22,  

and 4.23.  

The notations used in these tables are as follows: DF - degrees of freedom, 

SS - sums of squares, MS - mean squares, and F - the F statistic. 

With p-values less than 0.0001 displayed as 0.0000, Table 4.20 indicates that 

for the JM1 system, quality-of-fit wise, the classification methods we used performed 

significantly differently from one another ( o: = 1%) , and the datasets with different 

levels of noise filtering are also significantly different ( o: = 1%) from one another 
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Table 4.16: NECM Results for KC2 Dataset, c=lO 

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260 
Methods Fit Test Fit Test Fit Test Fit Fit Test 
CBR 0.0622 0.1866 0. 1336 0 . 1065 0.3581 0.2969 0.5942 0 .5808 0.5269 
TD 0.0048 0.0622 0 .1659 0. 1 157 0.2751 0.2402 0.4750 0 .5808 0.6654 
LR 0.0909 0.2536 0.0691 0.0741 0.2882 0 .3493 0.6077 0.5962 0.5077 
LOC 0.0766 0.0670 0 .1244 0. 1574 0.3100 0.2751 0.5673 0 .5538 0.5462 
GP 0.0000 0 .1435 0 .0046 0 .1528 0 .2533 0.3843 0.4923 0.3269 0 .7038 
ANN 0.0335 0 .1770 0 . 1429 0. 1898 0.2969 0.4105 0.61 15 0.4962 0.6000 
LBOOST 0.0048 0.0957 0 . 1751 0.0880 0.3450 0.3974 0.6000 0.6962 0.6500 
RBM 0.0000 0. 1053 0.0369 0.0926 0.2009 0.3450 0.4654 0 .5346 0.5885 
BAG 0.0048 0.0957 0 .1889 0.0417  0 .3013 0 .4017 0.5942 0 .7038 0 .4500 
RSET 0. 1340 0.0909 0 .1244 0. 1574 0.3013 0.2271 0.4173 0.5346 0.6423 
MCOST 0.0048 0.0957 0 .1843 0 .1759 0.4017 0.2664 0.6288 0 .7500 0.6615 
ABOOST 0.0048 0.0957 0 . 1705 0. 1296 0.3275 0.2751 0.8212 0.6654 0.7654 
DTABLE 0.0048 0.0957 0 . 1429 0. 1296 0 .3013 0.3930 0.5346 0.5577 0.5923 
ADT 0.0048 0.0957 0 .1244 0. 1065 0.2489 0.2227 0.5615 0.6269 0.7923 
SMO 0.0670 0 . 1675 0 . 1797 0. 1250 0.3013 0.3275 0.5885 0 .5808 0.6346 
IB1 0.0287 0 .1818 0.2442 0.2130 0.2533 0.3799 0.6885 0.5923 0.9692 
IBK 0.0287 0. 1962 0 .1843 0. 1389 0.2926 0.3057 0.5673 0 .5577 0.6000 
PART 0.0000 0 .0957 0 . 1797 0.2593 0.3100 0.5459 0.5692 0.6500 0.7538 
ONER 0.0048 0 .0957 0. 1244 0.0231 0.3013 0.3624 0.5635 0 .5885 0.5885 
JRIP 0.0048 0.0957 0. 1982 0. 1389 0.2620 0.3624 0.5615 0.6462 0 .5500 
RDR 0.0048 0.0957 0 .1843 0.0417 0.2620 0.4017 0.5538 0 .6231 0 .5308 
J48 0 .0000 0.0957 0 .1843 0.2361 0.3100 0.5459 . 0.5596 0 .6500 0 .6346 
NBAYES 0.0861 0.0766 0. 1889 0. 1343 0.2664 0.4148 0.6115 0.5962 0.5885 
HPIPES 0.0813 0 .1 100 0 .1 198 0. 1667 0.3013 0.3362 0.6712 0.6346 0 .5846 
LWLS 0.0000 0.1914 0 .1889 0.0556 0.3057 0.3886 0.5635 0 .5846 0 .7077 
Average 0 .0295 0 .1225 0 .1506 0.1300 0.2950 0.3542 0 .5788 0 .5963 0.6334 
Std. Dev 0.0386 0.0494 0.0532 0.0593 0.0397 0.0828 0.0784 0.0809 0 .1082 
Median 0.0048 0.0957 0 . 1705 0 .1296 0.3013 0.3624 0.5673 0 .5923 0.6000 
Min 0.0000 0.0622 0.0046 0.0231 0.2009 0.2227 0.4173 0.3269 0.4500 
Max 0.1340 0.2536 0.2442 0 .2593 0 .4017 0.5459 0.8212 0 .7500 0.9692 
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Table 4.17: NECM Results for KC2 Dataset , c=20 

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260 
Methods Fit Test Fit Test Fit Test Fit Fit Test 
CBR 0 .1100 0.3301 0.2258 0. 1528 0 .6201 0.5153 1 .0173 1 .0038 0 .8731 
TD 0.0048 0 .1 100 0.3041 0.2083 0.4498 0.3712 0.8019 1 .0038 1 . 1654 
LR 0. 1388 0.4450 0 . 1 152 0 .1204 0 .5066 0.6550 1 .0500 1 .0192 0.8538 
LOC 0. 1244 0 .1 148 0.2166 0.2963 0 .5284 0.4934 0.9712 0.9385 0.9308 
GP 0.0000 0.2871 0.0046 0.2917 0.4716 0.7336 0 .8385 0.5192 1 .2423 
ANN 0.0335 0.3206 0 .1889 0.2824 0 .5153 0.7598 1 .0538 0.8038 0.9846 
LBOOST 0.0048 0. 1914 0.3134 0 .1343 0 .6070 0.7467 1 .0231 1 . 1962 1 .0731 
RBM 0.0000 0.2010 0.0369 0.1389 0.3319 0.6070 0 .7923 0.9192 1 .0115 
BAG 0.0048 0. 1914 0.3272 0.0417 0.5197 0.7511 1 .0173 1 .2038 0 .7192 
RSET 0.2297 0.1388 0 .2166 0.2963 0.5197 0.4017 0.7058 0.9192 1 . 1423 
MCOST 0.0048 0 .1914 0 .3226 0.3148 0.7074 0.4410 1 .0712 1 .2885 1 . 1615 
ABOOST 0.0048 0 . 1914 0.3088 0.2222 0 .5459 0.4934 1 .4173 1 . 1654 1 .3038 
DTABLE 0.0048 0 . 1914 0 .2350 0.2222 0 .5197 0.7424 0.9192 0 .9423 1 .0154 
ADT 0.0048 0 .1914 0 .2166 0. 1991 0 .4236 0.3974 0.9654 1 .0885 1 .4462 
SMO 0.1148 0.3110 0.3180 0.2176 0 .5197 0.5895 1 .0115  1 .0038 1 .0962 
IB1 0.0287 0.3254 0.4286 0 .3519 0 .3843 0.6419 1 . 1885 1 .0154 1 .7385 
IBK 0.0287 0.3397 0.3226 0.2315 0 .5109 0.5677 0.9712 0.9423 1 .0231 
PART 0.0000 0. 1914 0.3180 0.4907 0 .5284 0.9825 0.9731  1 . 1 1 15 1 .3308 
ONER 0.0048 0 . 1914 0.2166 0.0231 0.5197 0.6681 0.9673 1 .0115 1 .0115 
JRIP 0.0048 0. 1914 0.3364 0 .2315 0 .4367 0.6681 0.9654 1 . 1077 0.8962 
RDR 0.0048 0. 1914 0 .3226 0.0417 0.4367 0.7511 0 .9577 1 .0846 0.8385 
J48 0.0000 0. 1914 0.3226 0.4213 0 .5284 0.9825 0.9635 1 . 1 1 15 1 .0192 
NBAYES 0. 1340 0 .1244 0.3272 0 .2269 0 .4410 0.7642 1 .0538 1 .0192 1 .0115 
HPIPES 0. 1292 0.2057 0.2120 0.3056 0 .5197 0.5983 1 . 1519 1 .0962 0.9692 
LWLS 0.0000 0 .3828 0.3272 0.0556 0 .5240 0.7380 0.9673 1 .0077 1 .2462 
Average 0.0448 0.2297 0.2594 0.2207 0 .5046 0.6424 0.9926 1 .0209 1 .0842 
Std. Dev 0.0646 0.0875 0.0979 0. 1 167 0 .0760 0. 1617 0. 1381 0. 1493 0.2177 
Median 0.0048 0 . 1914 0.3088 0.2222 0 .5197 0 .6550 0.9712 1 .0154 1 .0192 
Min 0.0000 0 .1 100 0.0046 0.0231 0.3319 0.3712 0 .7058 0.5192 0 .7192 
Max 0.2297 0.4450 0 .4286 0.4907 0 .7074 0.9825 1 .4173 1 .2885 1 . 7385 
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Table 4.18: NECM Results for KC2 Dataset , c=30 

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260 
Methods Fit Test Fit Test Fit Test Fit Fit Test 
CBR 0. 1579 0 .4737 0 .3180 0. 1991 0.8821 0.7336 1 .4404 1 .4269 1 .2192 
TD 0.0048 0 . 1579 0.4424 0.3009 0.6245 0.5022 1 . 1288 1 .4269 1.6654 
LR 0. 1866 0 .6364 0 . 1613 0. 1667 0.7249 0.9607 1 .4923 1 .4423 1 .2000 
LOC 0 .1722 0 . 1627 0 .3088 0.4352 0.7467 0.71 18 1 .3750 1 .3231 1 .3154 
GP 0.0000 0 .4306 0 .0046 0 .4306 0 .6900 1 .0830 1 .1846 0.71 15 1 .7808 
ANN 0.0335 0.4641 0 .2350 0.3750 0.7336 1 . 1092 1 .4962 1 . 1 1 15 1 .3692 
LBOOST 0.0048 0 .2871 0.4516 0. 1806 0.8690 1 .0961 1 .4462 1 .6962 1 .4962 
RBM 0.0000 0 .2967 0 .0369 0. 1852 0.4629 0.8690 1 . 1 192 1 .3038 1 .4346 
BAG 0.0048 0 .2871 0 .4654 0.0417 0.7380 1 . 1004 1 .4404 1 .7038 0.9885 
RSET 0.3254 0 . 1866 0 .3088 0.4352 0.7380 0.5764 0.9942 1 .3038 1 .6423 
MCOST 0.0048 0 .2871 0.4608 0.4537 1 .0131 0.6157 1 .5135 1 .8269 1 .6615 
ABOOST 0.0048 0 .2871 0 .4470 0.3148 0.7642 0.7118 2.0135 1 .6654 1 .8423 
DTABLE 0.0048 0 .2871 0.3272 0.3148 0.7380 1 .0917 1 .3038 1 .3269 1 .4385 
ADT 0.0048 0 .2871 0.3088 0.2917 0.5983 0.5721 1 .3692 1 . 5500 2.1000 
SMO 0. 1627 0.4545 0.4562 0.3102 0.7380 0.8515 1 .4346 1 .4269 1 .5577 
IB1 0 .0287 0 .4689 0.6129 0.4907 0.5153 0.9039 1 .6885 1 .4385 2.5077 
IBK 0.0287 0.4833 0.4608 0.3241 0.7293 0.8297 1 .3750 1 .3269 1 .4462 
PART 0.0000 0.2871 0 .4562 0.7222 0 .7467 1 .4192 1 .3769 1 .5731 1.9077 
ONER 0.0048 0 .2871 0.3088 0 .0231 0.7380 0.9738 1 .3712 1 .4346 1 .4346 
JRIP 0.0048 0.2871 0.4747 0.3241 0.6114 0.9738 1 .3692 1 .5692 1 .2423 
RDR 0.0048 0 .2871 0.4608 0.0417 0 .6114 1 . 1004 1 .3615 1 . 5462 1 . 1462 
J48 0.0000 0 .2871 0.4608 0.6065 0.7467 1 .4192 1 .3673 1 .5731 1 .4038 
NBAYES 0. 1818 0 . 1722 0.4654 0.3194 0.6157 1 . 1 135 1 .4962 1 .4423 1 .4346 
HPIPES 0 . 1770 0.3014 0.3041 0.4444 0.7380 0.8603 1 .6327 1 .5577 1 .3538 
LWLS 0.0000 0.5742 0 .4654 0.0556 0.7424 1 .0873 1 .3712 1 .4308 1 .7846 
Average 0.0601 0.3368 0 .3681 0.3115 0.7142 0 .9307 1 .4065 1 .4455 1 .5349 
Std. Dev 0.0910 0 . 1266 0 . 1433 0 . 1752 0 . 1132 0.2418 0 .1979 0 .2179 0.3284 
Median 0.0048 0.2871 0.4470 0.3148 0.7380 0 .9607 1 .3750 1 .4385 1 .4385 
Min 0.0000 0 . 1579 0 .0046 0.0231 0.4629 0.5022 0.9942 0.71 15 0.9885 
Max 0.3254 0.6364 0.6129 0.7222 1 .0131 1 .4192 2.0135 1 .8269 2.5077 
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Table 4.19: NECM Results for KC2 Dataset , c=50 

KC2-13C KC2-17C KC2-23C KC2-520 KC2-260 
Methods Fit Test Fit Test Fit Test Fit Fit Test 
CBR 0.2536 0 .7608 0.5023 0.2917 1 .4061 1 . 1 703 2.2865 2 .2731 1 .9115  
TD 0.0048 0.2536 0.7189 0.4861 0.9738 0.7642 1 .7827 2 .2731 2.6654 
LR 0.2823 1 .0191 0.2535 0.2593 1 . 1616 1 . 5721 2.3769 2.2885 1 .8923 
LOC 0.2679 0.2584 0.4931 0.7130 1 . 1834 1 . 1485 2. 1827 2 .0923 2.0846 
GP 0.0000 0.7177 0.0046 0.7083 1 . 1266 1 .7817 1 .8769 1 .0962 2.8577 
ANN 0.0335 0.7512 0.3272 0.5602 1 . 1703 1 .8079 2 .3808 1 . 7269 2 . 1385 
LBOOST 0.0048 0.4785 0.7281 0.2731 1 .3930 1 . 7948 2.2923 2 .6962 2.3423 
RBM 0.0000 0 .4880 0 .0369 0.2778 0 .7249 1 .3930 1 .7731 2.0731 2.2808 
BAG 0.0048 0 .4785 0.7419 0.0417 1 . 1747 1 . 7991 2 .2865 2 .7038 1 .5269 
RSET 0.5167 0 .2823 0 .4931 0.7130 1 . 1747 0 .9258 1 .5712 2 .0731 2.6423 
MCOST 0.0048 0.4785 0.7373 0.7315 1 .6245 0.9651 2.3981 2.9038 2.6615 
ABOOST 0.0048 0.4785 0 .7235 0.5000 1 .2009 1 . 1485 3.2058 2 .6654 2.9192 
DTABLE 0.0048 0 .4785 0.5115 0.5000 1 . 1747 1 .7904 2 .0731 2 .0962 2 .2846 
ADT 0.0048 0.4785 0.4931 0.4769 0.9476 0.9214 2 . 1769 2 .4731 3.4077 
SMO 0.2584 0.7416 0.7327 0.4954 1 . 1747 1 .3755 2 .2808 2 .2731 2 .4808 
IB1 0.0287 0 .7560 0.9816 0.7685 0 .7773 1 .4279 2.6885 2 .2846 4.0462 
IBK 0.0287 0.7703 0.7373 0.5093 1 . 1659 1 .3537 2 .1827 2 .0962 2 .2923 
PART 0.0000 0 .4785 0.7327 1 . 1852 1 . 1834 2 .2926 2 .1846 2.4962 3.0615 
ONER 0.0048 0.4785 0.4931 0.0231 1 . 1747 1 . 5852 2 . 1788 2 .2808 2.2808 
JRIP 0.0048 0.4785 0.7512 0.5093 0.9607 1 . 5852 2 . 1769 2 .4923 1 .9346 
RDR 0.0048 0 .4785 0.7373 0.0417 0.9607 1 . 7991 2. 1692 2.4692 1 .7615  
J48 0.0000 0.4785 0.7373 0.9769 1 . 1834 2 .2926 2 . 1750 2 .4962 2 . 1731  
NBAYES 0.2775 0.2679 0.7419 0.5046 0 .9651 1 .8122 2.3808 2 .2885 2 .2808 
HPIPES 0.2727 0 .4928 0.4885 0.7222 1 . 1747 1 .3843 2.5942 2 .4808 2 . 1231 
LWLS 0.0000 0.9569 0.7419 0.0556 1 . 1790 1 .7860 2 . 1788 2 .2769 2.8615 
Average 0.0907 0.5512 0.5856 0.4930 1 . 1334 1 . 5071 2.2342 2.2948 2 .4365 
Std. Dev 0. 1441 0.2055 0.2347 0.2927 0 .1884 0.4028 0.3175 0.3555 0 .5506 
Median 0.0048 0 .4785 0.7235 0.5000 1 . 1747 1 .5721 2. 1827 2.2846 2.2846 
Min 0.0000 0.2536 0.0046 0.0231 0.7249 0.7642 1 .5712 1 .0962 1 .5269 
Max 0.5167 1 .0191 0.9816 1 . 1852 1 .6245 2 .2926 3.2058 2.9038 4.0462 
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Table 4.20: Two-Way ANOVA Models for JM1 Fit Datasets 

I %;- I Source I DF I ss 1 F I p-value I 
Method 24 0. 1428 0.0059 12 .56 0.0000 
Dataset 4 8 .7528 2. 1882 4621 .05 0.0000 

10 Error 96 0.0455 0.0005 
Total 124 8.941 1 
Method 24 0.4438 0.0185 1 1 .69 0.0000 
Dataset 4 25. 1779 6.2945 3978.83 0.0000 

20 Error 96 0 . 1519 0.0016 
Total 124 25.7736 
Method 24 0.9124 0.0380 1 1 .24 0.0000 
Dataset 4 50.0842 12.5210 3700.81 0.0000 

30 Error 96 0 .3248 0.0034 
Total 124 51 .3214 
Method 24 2 .3523 0.0980 10.81 0.0000 
Dataset 4 125.3404 31 .3350 3456.85 0.0000 

50 Error 96 0 .8702 0.0091 
Total 124 128.5628 

suggesting that significant amount of noise is removed at the different levels of noise 

filtering. We can observe similar pattern in the Table 4.21 for the fit datasets of 

KC2 systems as in the Table 4.20 for the JM1 system. 

However, we are more interested in the results based on the predictive perfor-

mance of classifiers than those based on the quality of fit . Examining the ANOVA 

results based on the predictive performance of the classifiers for both the software 

systems (Tables 4 .22 and 4 .23) reveals that for all the cost ratios, the NECM values 

across the datasets (with different noise filtering levels) are significantly different 

(a:: = 1%) , indicated by p-values less than or equal to 0 .0001 ,  i .e. 0 .01%, similar to 

the quality-of-fit results. But it is a different story when it comes to the classification 
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Table 4.21: Two-Way ANOVA Models for KC2 Fit Datasets 

I ¥f- I Source I DF I 
[ 

ss 1 F I p-value I 
Method 24 0 . 1254 0.0052 2 . 17  0.0062 
Dataset 3 4.4798 1 .4933 620.39 0.0000 

10 Error 72 0 .1733 0.0024 
Total 99 4.7786 
Method 24 0.4074 0.0170 2 .05 0.0104 
Dataset 3 13.2316 4.4105 532 .78 0.0000 

20 Error 72 0.5960 0.0083 
Total 99 14.2350 
Method 24 0.8566 0.0357 2.00 0.0127 
Dataset 3 26.6105 8.8702 497.83 0.0000 

30 Error 72 1 .2829 0.0178 
Total 99 28.7500 
Method 24 2.2566 0.0940 1 .96 0.0150 
Dataset 3 67.2502 22.4167 467.98 0.0000 

50 Error 72 3.4488 0.0479 
Total 99 72.9556 

techniques. While all the classification techniques perform significantly differently 

on the test datasets for the JM1 system, indicated by very low (in some cases lower 

than 0.0001)  p-values, for the KC2 system, the p-values are much higher for the 

Classification Method factor, indicating that classification techniques are not signif-

icantly different at significance level a = 5% for all the four cost-ratios examined. 

However, if the significance level were raised to 10%, the classification techniques 

would be significantly different in terms of their predictive performance only for 

the cost ratio of 10, as the corresponding p-value of 8 .  7% would be lower than the 

specified significance level (a = 10%) .  

In summary, the surprising finding is that at significance level a 5%, 
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Table 4.22: Two-Way ANOVA Models for JMl Test Datasets 

I %f I Source I DF I ss 1 MS I F I p-value I 
Method 24 0. 1376 0.0057 4.65 0.0000 
Dataset 4 8 .3841 2 .0960 1698.48 0.0000 

10 Error 96 0 .1 185 0.0012 
Total 124 8.6402 
Method 24 0.4834 0 .0201 3 .00 0.0000 
Dataset 4 23.7994 5 .9499 886.33 0.0000 

20 Error 96 0.6444 0 .0067 
Total 124 24.9272 
Method 24 1 .0532 0 .0439 2.60 0 .0005 
Dataset 4 ' 47.0862 1 1 .7715 698 .28 0 .0000 

30 Error 96 1 .6184 0 .0169 
Total 124 49.7578 
Method 24 2.8653 0 . 1 194 2 .33 0.0020 
Dataset 4 117.2742 29.3185 573.23 0.0000 

50 Error 96 4.9100 0 .0511  
Total 124 125 .0495 

Table 4.23: Two-Way ANOVA Models for KC2 Test Datasets 

I %;- I Source I DF I ss 1 MS I F I p-value I 
Method 24 0 . 1984 0 .0083 1 .53 0.0870 
Dataset 3 4.3524 1 .4508 267.93 0.0000 

10 Error 72 0.3899 0 .0054 
Total 99 4.9406 
Method 24 0.6924 0 .0289 1 .31 0 .1884 
Dataset 3 12.6190 4 .2063 191.31 0 .0000 

20 Error 72 1 .5831 0 .0220 
Total 99 14.8945 
Method 24 1 .5009 0 .0625 1 .25 0.2343 
Dataset 3 25.2124 8 .4041 167.51 0 .0000 

30 Error 72 3.6122 0 .0502 
Total 99 30.3255 
Method 24 4.0610 0. 1692 1 .20 0 .2743 
Dataset 3 63.3793 2 1 . 1264 149.44 0 .0000 

50 Error 72 10. 1784 0 . 1414 
Total 99 77.6186 
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predictive performance of all the classification techniques is significantly different 

on the datasets for the JM1 system, but not for the KC2 system. 

The other finding that there was significant difference (a = 1%) between the 

datasets with different levels of noise filtering statistically confirmed our intuitive 

assumption that the classification performance would improve as more and more 

noise is eliminated. This was also apparent as the NECM values went down when 

we went from the most conservative level (23C) to the least conservative level ( 13C) 

of noise filtering. 

4.6 Multiple Pairwise Comparison Results 

From ANOVA Tables for the JM1 system, it was found that the classification 

methods we used performed significantly differently (a: =  0.01) from one another in 

terms of quality-of-fit and predictive quality. On the contrary, ANOVA Tables for 

the KC2 system revealed that the classification methods were significantly different 

(a: = 0.01) in terms of their performance on only the fit dataset, and not the test 

dataset . It was surprising to observe that for the KC2 system, the classification 

methods used were not significantly different (a = 0.05) in terms of their predictive 

quality. 

From ANOVA tables, we only get to know whether or not there is a significant 

difference among the given factors (classification techniques in our case) . But to get 

an insight into which factor is different from which other factor(s) , if at all, it is 
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necessary to perform multiple pairwise comparison. In the results presented in 

the following subsections, the classification techniques that were not significantly 

different from each other at a given significance level have been clustered in one 

group, indicated by an identical block letter assigned next to each such technique. 

Different block letters indicate different clusters of classification methods. It is 

noteworthy here that a classification technique can, in fact, belong to more than 

one clusters . It should also be noted that in all these tables, the classification 

methods being compared have been sorted in the descending order of the respective 

mean value of NECM at the given cost ratio. 

4.6.1  Multiple Pairwise Comparison Results for JMl System 

Tables 4.24, 4.25, 4.26, and 4.27 show the results of multiple pairwise com­

parisons in terms of quality-of-fit of the different classifiers, for significance level of 

1%, 5%,  and 10%, at the cost ratios of 10, 20, 30, and 50 respectively. 

Let's understand these tables with the help of some examples. Take Ta­

ble 4.24 for instance. In Table 4 .24, for significance level of 1%, we can say that 

Hyperpipes and IB1 do not perform significantly differently from each other, and 

belong to the same cluster (cluster A) of classifiers. If we were to compare the per­

formance of Hyperpipes with that of LOC, we could say that they do not belong 

to the same cluster, implying that they are significantly different in terms of their 

performance at significance level of 1%. IB1 belongs to cluster A and LOC belongs 
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Table 4.24: Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=lO 

Thkey Grouping 
Q = 0 . 10 0: = 0.05 0: = 0.01 Mean N Methods 

A A A 0.6108 5 HPIPES 
B B B A 0.5580 5 IB1 

c B c B B c 0.5451 5 LOC 
c B c B B c 0.5437 5 ONER 
c B c B B c 0.5430 5 NBAYES 
c B c B B c D 0.5392 5 DTABLE 
c B c B B c D 0.5354 5 LBOOST 
c B D c B D B c D 0.5298 5 RDR 
c B D c B D B c D 0.5265 5 MCOST 
c B D c B D B c D 0.5237 5 SMO 
c B D c B D B c D 0.5229 5 LR 
c B D c B D B c D 0.5180 5 CBR 
c B D c B D B c D 0.5168 5 JRIP 
c B D c B D B c D 0.5165 5 ABOOST 
c B D c B D B c D 0.5149 5 ANN 
c B D c B D B E c D 0.5117 5 ADT 
c B D c B D B E c D 0.5109 5 J48 
c B D c B D B E c D 0.5102 5 LWLS 
c D c E B D B E c D 0.5062 5 GP 
c D c E D B E c D 0.5049 5 IBK 
c D c E D B E c D 0.5041 5 PART 
c E D c E D E c D 0.4982 5 RBM 

E D E D E D 0.4825 5 BAG 
F E E F E F 0.4556 5 RSET 
F F F 0.4227 5 TD 

to cluster C .  This does not mean that they both are significantly different , because 

there is another cluster (cluster B) ,  which both of them belong to. Hence, we can 

say that IB1 and LOC are not significantly different in terms of their performance 

at significance level of 1%. On the same line of argument, we can draw many com-

parisons between various classification techniques to see whether or not they are 

significantly different from each other. 
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Table 4.25:  Multiple Pairwise Comparison Results for JM1-Fit Datasets, c=20 

Thkey Grouping 
0: = 0.10 0: = 0.05 0: = 0.01 Mean N Methods 

A A A 1 .0404 5 HPIPES 
B B A B A 0.9499 5 IB1 

c B B c B 0.9275 5 ONER 
c B B c B 0.9260 5 NBAYES 
c B B c B 0.9257 5 LOC 
c B B c B c 0.9181 5 DTABLE 
c B B c D B c 0.9073 5 LBOOST 
c B D B c D B c 0.9042 5 RDR 
c B D B c D B c 0.8945 5 MCOST 
c B D B c D B c 0.8927 5 SMO 
c B D B c D B c 0.8917 5 LR 
c B D B c D B c D 0.8811 5 ABOOST 
c B D B c D B c D 0.8806 5 JRIP 
c B D B c D B c D 0.8803 5 CBR 
c B D B c D B c D 0.8726 5 ADT 
c B D B c D B c D 0.8712 5 J48 
c B D B E c D B c D 0.8685 5 ANN 
c B D B E c D B c D 0.8669 5 LWLS 
c E D B E c D B c D 0.8614 5 IBK 
c E D B E c D B c D 0.8604 5 GP 
c E D B E c D B c D 0.8585 5 PART 
c E D E c D B c D 0.8446 5 RBM 

E D E D c D 0.8164 5 BAG 
F E E F E D 0.7746 5 RSET 
F F E 0.7058 5 TD 

It is evident from Tables 4.24, 4.25, 4.26, and 4 .27 that for the JM1 system, 

Hyperpipes and IB1 perform consistently poorly across a range of cost-ratios, while 

Treedisc and Roughsets exhibit very good quality-of-fit characteristics . 

While quality-of-fit may give a practitioner certain degree of confidence in 

the classification models built , it is the predictive quality of a classifier that really 

matters. Tables 4 .28, 4.29, 4.30, and 4.31 show how the classification techniques 
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Table 4.26: Multiple Pairwise Comparison Results for JMl-Fit Datasets, c=30 

Tukey Grouping 
a =  0 .10 a =  0.05 a =  0.01 Mean N Methods 

A A A 1 .4700 5 HPIPES 
B A B A B A 1 .3418 5 IB1 
B c B c B 1 .3112 5 ONER 
B c B c B 1 .3090 5 NBAYES 
B c B c B c 1 .3064 5 LOC 
B c B c B c 1 .2971 5 DTABLE 
B c D B c D B c 1 .2793 5 LBOOST 
B c D B c D B c 1 .2786 5 RDR 
B c D B c D B c 1 .2625 5 MCOST 
B c D B c D B c 1 .2617 5 SMO 
B c D B c D B c 1 .2606 5 LR 
B c D B c D B c D 1 .2457 5 ABOOST 
B c D B c D B c D 1 .2444 5 JRIP 
B c D B c D B c D 1 .2425 5 CBR 
B c D B c D B c D 1 .2336 5 ADT 
B c D B E c D B c D 1 .2315 5 J48 
B c D B E c D B c D 1 .2235 5 LWLS 
B E c D B E c D B c D 1 .2221 5 ANN 
B E c D B E c D B c D 1 .2178 5 IBK 
B E c D B E c D B c D 1 .2146 5 GP 
B E c D B E c D B c D 1 .2128 5 PART 

E c D E c D B c D 1 . 1910 5 RBM 
E D E D c D 1 . 1503 5 BAG 
E F E F E D 1 .0936 5 RSET 

F F E 0.9888 5 TD 

compare with each other in terms of predictive quality. It is evident from these tables 

that Hyperpipes consistently performs very poorly as compared to other classifiers, 

whereas Bagging, Adaboost , and MetaCost are among the classifiers that perform 

consistently well on the test data across a range of cost-ratios. 
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Table 4.27: Multiple Pairwise Comparison Results for JMl-Fit Datasets, c=50 

Tukey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 2.3291 5 HPIPES 
B A B A B A 2. 1257 5 IB1 
B c B c B A 2 .0787 5 ONER 
B c B c B A c 2.0750 5 NBAYES 
B c B c B c 2.0677 5 LOC 
B c B c B c 2.0549 5 DTABLE 
B c D B c D B c 2.0274 5 RDR 
B c D B c D B c 2 .0232 5 LBOOST 
B c D B c D B c 1 .9996 5 SMO 
B c D B c D B c 1 .9985 5 MCOST 
B c D B c D B c 1 .9983 5 LR 
B c D B c D B D c 1 .9749 5 ABOOST 
B c D B c D B D c 1 .9721 5 JRIP 
B c D B c D B D c 1 .9670 5 CBR 
B c D B E c D B D c 1 .9555 5 ADT 
B c D B E c D B D c 1 .9521 5 J48 
B E c D B E c D B D c 1 .9369 5 LWLS 
B E c D B E c D B D c 1 .9306 5 IBK 
B E c D B E c D B D c 1 .9293 5 ANN 
B E c D B E c D B D c 1 .9230 5 GP 
B E c D B E c D B D c 1 .9214 5 PART 

E c D E c D B D c 1 .8837 5 RBM 
E D E D D c 1 .8181 5 BAG 
E F E F E D 1 . 7316 5 RSET 

F F E 1 .5550 5 TD 

4.6.2 Multiple Pairwise Comparison Results for KC2 System 

Multiple pairwise comparison results for KC2 system, presented in Tables 4.32, 

4.33, 4 .34, and 4.35 reveal a rather different trend from the one exhibited by the re-

suits for the JMl system. MetaCost, LogitBoost, and Bagging perform consistently 

poorly in terms of quality-of-fit, with MetaCost being the worst . GP appears to 

consistently outperform all the classifiers as far as the quality-of-fit goes. 
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Table 4.28: Multiple Pairwise Comparison Results for JM1-Test Datasets, c=lO 

Tukey Grouping 
a =  0 . 10 a =  0.05 a =  0.01 Mean N Methods 

A A A 0.6198 5 HPIPES 
B A B A B A 0.5646 5 NBAYES 
B A B A B A 0.5632 5 RBM 
B A c B A B A 0.5571 5 LOC 
B A c B A B A 0.5550 5 ONER 
B A c B A B A 0.5522 5 SMO 
B A c B A B A 0.5509 5 RSET 
B A c B A B A 0.5487 5 GP 
B A c B A B A 0.5432 5 IB1 
B A c B A B A 0.5424 5 TD 
B A c B A B A 0.5423 5 DTABLE 
B c B A B A c 0.5362 5 ADT 
B c B B A c 0.5349 5 ANN 
B c B B A c 0.5349 5 LR 
B c B B A c 0.5298 5 LBOOST 
B c B c B A c 0.5271 5 J48 
B D c B c B c 0.5202 5 JRIP 
B D c B c B c 0.5197 5 RDR 
B D c B c B c 0.5146 5 IBK 
B D c B c B c 0.5120 5 CBR 
B D c B c B c 0.5033 5 LWLS 
B D c B c B c 0.4962 5 PART 

D c B c B c 0.4843 5 MCOST 
D c B c B c 0.4831 5 ABOOST 
D c c 0.4459 5 BAG 

As far as the predictive quality is concerned for KC2, the classification tech-

niques perform differently only at significance level of 10%, at the cost ratio of 10 

(Table 4.36) . For all other cost-ratios and significance levels, statistically speak-

ing, there is no significant difference 5 in the predictive performance of the different 

5 That there is no significant difference in the performance of two classifiers does not imply that 
the two classifiers are misclassifying identical instances. 
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Table 4.29: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=20 

Tukey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 1 .0560 5 HPIPES 
B A B A B A 0.9680 5 RBM 
B A B A B A 0.9676 5 NBAYES 
B A B A B A 0.9495 5 LOC 
B A B A B A 0.9483 5 SMO 
B A B A B A 0.9441 5 GP 
B A B A B A 0.9436 5 RSET 
B A B A c B A 0.9350 5 TD 
B A B A c B A 0.9316 5 ADT 
B A c B A c B A 0.9285 5 ONER 
B A c B A c B A 0.9152 5 IB1 
B A c B A c B A 0.9152 5 J48 
B A c B A c B A 0.9148 5 DTABLE 
B A c B A c B A 0 .9134 5 LR 
B A c B A c B A 0.9120 5 ANN 
B A c B A c B A 0.8929 5 LBOOST 
B A c B A c B A 0.8823 5 IBK 
B A c B A c B A 0.8782 5 JRIP 
B A c B A c B A 0.8751 5 CBR 
B c B A c B A 0.8679 5 RDR 
B c B c B A 0.8495 5 LWLS 
B c B c B 0 .8235 5 PART 
B c B c B 0.8159 5 ABOOST 
B c B c B 0.8023 5 MCOST 

c c B 0 .7478 5 BAG 

classifiers for the KC2 system. It is evident from Tables 4.37, 4.38 ,  and 4 .39 that 

all the classification techniques belong to the same cluster, indicating that there 

is no significant difference in their performance at the given significance level and 

cost-ratio. 
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Table 4.30: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=30 

Thkey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 1 .4922 5 HPIPES 
B A B A B A 1 .3727 5 RBM 
B A B A B A 1 .3707 5 NBAYES 
B A B A c B A 1 .3444 5 SMO 
B A B A c B A 1 .3419 5 LOC 
B A B A c B A 1 .3395 5 GP 
B A c B A c B A 1 .3363 5 RSET 
B A c B A c B A 1 .3276 5 TD 
B A c B A c B A 1 .3269 5 ADT 
B A c B A c B A 1 .3032 5 J48 
B A c B A c B A 1 .3019 5 ONER 
B A c B A c B A 1 .2920 5 LR 
B A c B A c B A 1 .2892 5 ANN 
B A c B A c B A 1 .2873 5 IB1 
B A c B A c B A 1 .2873 5 DTABLE 
B A c B A c B A 1 .2561 5 LBOOST 
B A c B A c B A 1 .2499 5 IBK 
B A c B A c B A 1 .2381 5 CBR 
B A c B A c B A 1 .2362 5 JRIP 
B A c B A c B A 1 .2161 5 RDR 
B c B A c B A 1 . 1956 5 LWLS 
B c B c B A 1 . 1508 5 PART 
B c B c B A 1 . 1487 5 ABOOST 
B c B c B 1 . 1202 5 MCOST 

c c B 1 .0496 5 BAG 

4.6.3 Discussion 

From the results presented here, it can be observed that there is a lot of 

overlap between different clusters, and that classification methods performing well 

on a particular dataset may not necessarily perform as well on some other dataset (s) , 

even if the datasets are from the same domain. 

And hence, in our opinion, basing the noise elimination procedure on a few 
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Table 4.31: Multiple Pairwise Comparison Results for JMl-Test Datasets, c=50 

Tukey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 2.3646 5 HPIPES 
B A B A B A 2 .1822 5 RBM 
B A B A B A 2 .1768 5 NBAYES 
B A c B A B A 2. 1365 5 SMO 
B A c B A B A 2.1304 5 GP 
B A c B A B A 2 .1268 5 LOC 
B A c B A B A 2 .1218 5 RSET 
B A c B A B A 2 .1 176 5 ADT 
B A c B A B A 2 .1 129 5 TD 
B A c B A B A 2.0793 5 J48 
B A c B A B A 2.0490 5 LR 
B A c B A B A 2.0488 5 ONER 
B A c B A B A 2.0434 5 ANN 
B A c B A B A 2.0323 5 DTABLE 
B A c B A B A 2.0313 5 IB1 
B A c B A B A 1 .9851 5 IBK 
B A c B A B A 1 .9824 5 LBOOST 
B A c B A B A 1 .9643 5 CBR 
B A c B A B A 1 .9521 5 JRIP 
B A c B A B A 1 .9126 5 RDR 
B A c B A B A 1 .8880 5 LWLS 
B c B B A 1 .8142 5 ABOOST 
B c B B A 1 .8053 5 PART 
B c B B A 1 . 7562 5 MCOST 

c B B 1 .6534 5 BAG 

selected (base-level) classification techniques (as in [9 , 10] )  may not be the most 

appropriate strategy, for the few selected classification techniques may or may not 

be the most appropriate ones for the data at hand because of possible limitations 

of the associated representation language. This problem is analogous to situations 

in which removing outliers does little to improve the quality of fit with a first-order 

linear regression model if the correct model of the data is quadratic. 
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Table 4.32: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=lO 

Tukey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 0.3352 4 MCOST 
B A B A A 0.3053 4 LBOOST 
B A B A A 0.2997 4 BAG 
B A B A B A 0.2921 4 ABOOST 
B A B A B A 0 .2861 4 J48 
B A B A B A 0.2849 4 PART 
B A B A B A 0.2844 4 NBAYES 
B A B A B A 0 .2843 4 HPIPES 
B A B A B A 0 .2837 4 CBR 
B A B A B A 0.2822 4 SMO 
B A B A B A 0 .2796 4 IB1 
B A B A c B A 0.2778 4 JRIP 
B A B A c B A 0.2736 4 RSET 
B A B A c B A 0 .2698 4 LWLS 
B A c B A c B A 0.2686 4 RDR 
B A c B A c B A 0 .2662 4 LOC 
B A c B A c B A 0 .2658 4 IBK 
B A c B A c B A 0 .2611 4 LR 
B A c B A c B A 0 .2566 4 TD 
B A c B A c B A 0 .2548 4 ONER 
B A c B A c B A 0.2517 4 DTABLE 
B A c B A c B A 0 .2513 4 ADT 
B A c B A c B A 0.2424 4 ANN 
B c B c B A 0. 1931 4 RBM 

c c B 0 . 1462 4 GP 

Secondly, there may not be much to choose between different classifiers in 

terms of their performance, evinced by the big overlaps of clusters of classifiers 

for JMl and (in most cases) no significant difference in predictive performance of 

classifiers for KC2. Trying to explore new classification techniques that may (not 

necessarily) marginally improve the classification accuracy may not be worth the 

effort jf the training data are noisy to begin with. In our opinion, instead of trying 

1 14 



Table 4.33: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=20 

Tukey Grouping 
a: =  0.10 a: =  0.05 a: =  0.01 Mean N Methods 

A A A 0.5808 4 MCOST 
B A B A A 0.5303 4 LBOOST 
B A B A B A 0.5139 4 BAG 
B A B A B A 0.5062 4 ABOOST 
B A B A c B A 0.4906 4 J48 
B A B A c B A 0.4900 4 CBR 
B A B A c B A 0.4895 4 PART 
B A B A c B A 0.4892 4 HPIPES 
B A B A c B A 0.4891 4 SMO 
B A B A c B A 0.4804 4 NBAYES 
B A c B A c B A 0.4714 4 JRIP 
B A c B A c B A 0.4713 4 RSET 
B A c B A c B A 0.4647 4 LWLS 
B A c B A c B A 0.4642 4 IB1 
B A c B A c B A 0.4622 4 RDR 
B A c B A c B A 0.4520 4 LOC 
B A c B A c B A 0.4511  4 IBK 
B A c B A c B A 0.4449 4 LR 
B A c B A c B A 0 .4406 4 TD 
B A c B A c B A 0.4381 4 ONER 
B A c B A c B A 0.4334 4 ADT 
B A c B A c B A 0.4254 4 DTABLE 
B A c B A c B A 0.3854 4 ANN 
B c B c B A 0.3220 4 RBM 

c c B 0.2489 4 GP 

to explore the use of state-of-the-art classification technique(s) , which may (if at all) 

improve the classification accuracy by a small margin, one should strive to ensure 

that the training data is noise-free using appropriate noise-handling techniques. 

The improvement in classification accuracy after noise elimination is much more 

significant than (possible) marginal improvement in accuracy with the use of a 

state-of-the-art technique. 
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Table 4.34: Multiple Pairwise Comparison Results for KC2-Fit Datasets, c=30 

Thkey Grouping 
0: = 0.10 0: = 0.05 0: = 0.01 Mean N Methods 

A A A 0.8264 4 MCOST 
B A B A B A 0.7554 4 LBOOST 
B A B A B A 0.7280 4 BAG 
B A B A B A 0.7203 4 ABOOST 
B A B A c B A 0.6962 4 CBR 
B A B A c B A 0.6960 4 SMO 
B A B A c B A 0.6952 4 J48 
B A B A c B A 0.6942 4 HPIPES 
B A B A c B A 0.6940 4 PART 
B A c B A c B A 0.6763 4 NBAYES 
B A c B A c B A 0.6690 4 RSET 
B A c B A c B A 0.6650 4 JRIP 
B A c B A c B A 0.6596 4 LWLS 
B A c B A c B A 0.6558 4 RDR 
B A c B A c B A 0.6488 4 IB1 
B A c B A c B A 0.6377 4 LOC 
B A c B A c B A 0.6364 4 IBK 
B A c B A c B A 0.6288 4 LR 
B A c B A c B A 0.6246 4 TD 
B A c B A c B A 0.6215 4 ONER 
B A c B A c B A 0.6155 4 ADT 
B A c B A c B A 0.5992 4 DTABLE 
B A c B A c B A 0.5284 4 ANN 
B c B c B A 0.4509 4 RBM 

c c B 0.3515 4 GP 

4. 7 Z-Test Comparison Results of Two Proportions 

As mentioned in Section 3.5 ,  Z-test was carried out to compare two differ-

ent proportions. The two proportions being compared are the proportions of the 

instances identified as noisy by two different noise filtering approaches. 

First , we compared the proportion of the instances identified as noisy (and 
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Table 4.35: Multiple Pairwise Comparison Results for KC2-Fit Datasets ,  c=50 

Tukey Grouping 
a =  0.10 a =  0.05 a =  0.01 Mean N Methods 

A A A 1 .3176 4 MCOST 
B A B A B A 1 .2055 4 LBOOST 
B A B A B A 1 . 1563 4 BAG 
B A B A B A 1 . 1486 4 ABOOST 
B A B A c B A 1 . 1097 4 SMO 
B A B A c B A 1 . 1088 4 CBR 
B A c B A c B A 1 . 1042 4 J48 
B A c B A c B A 1 . 1042 4 HPIPES 
B A c B A c B A 1 . 1031 4 PART 
B A c B A c B A 1 .0682 4 NBAYES 
B A c B A c B A 1 .0644 4 RSET 
B A c B A c B A 1 .0522 4 JRIP 
B A c B A c B A 1 .0495 4 LWLS 
B A c B A c B A 1 .0430 4 RDR 
B A c B A c B A 1 .0180 4 IB1 
B A c B A c B A 1 .0092 4 LOC 
B A c B A c B A 1 .0070 4 IBK 
B A c B A c B A 0.9964 4 LR 
B A c B A c B A 0.9926 4 TD 
B A c B A c B A 0.9883 4 ONER 
B A c B A c B A 0.9796 4 ADT 
B A c B A c B A 0.9468 4 DTABLE 
B A c B A c B A 0.8145 4 ANN 
B c B c B A 0.7087 4 RBM 

c c B 0.5568 4 GP 

hence eliminated) by our consensus filter (an ensemble-classifier filter with consen-

sus of 25 classification techniques) to the proportion of the instances identified as 

noisy by Brodley and Utgoff's [ 10] consensus filter (an ensemble-classifier filter with 

consensus of 5 classification techniques :  J48, IBk, SMO, JRIP, and LWLStump ) . 

For the JMl software system, our consensus filter removed only 321 out of the 8850 

instances, as compared to 1425 out of 8850 instances removed using Brodley and 

1 1 7  



Table 4.36: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=10 

Tukey Grouping 
a =  0.10 Mean N Methods 

A 0.4360 4 IB1 
B A 0.4137 4 PART 
B A 0.3781 4 J48 
B A 0.3461 4 GP 
B A 0.3443 4 ANN 
B A 0.3358 4 LWLS 
B A 0.3165 4 ABOOST 
B A 0.3137 4 SMO 
B A 0.3102 4 IBK 
B A 0.3078 4 LBOOST 
B A 0.3043 4 ADT 
B A 0.3035 4 NBAYES 
B A 0.3027 4 DTABLE 
B A 0.2999 4 MCOST 
B A 0.2994 4 HPIPES 
B A 0.2962 4 LR 
B A 0.2868 4 JRIP 
B A 0.2828 4 RBM 
B A 0.2794 4 RSET 
B A 0.2792 4 CBR 
B A 0.2709 4 TD 
B A 0.2675 4 RDR 
B A 0.2674 4 ONER 
B A 0.2614 4 LOC 
B 0.2473 4 BAG 

Utgoff's filter. When these two proportions were compared using Z-test [115] ,  the 

computed z-value came out to be of a very high magnitude (as high as 27.82) ,  indi-

eating that the two proportions are statistically different at significance level of 1%. 

This leads us to conclude that our consensus filtering approach (with twenty five 

classification techniques) is, statistically speaking, much more conservative than the 

consensus filtering approach with only five classification techniques (as in [10] ) .  
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Table 4.37: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=20 

Thkey Grouping 
a: =  0 . 10 Mean N Methods 

A 0 .7644 4 IB1 
A 0.7489 4 PART 
A 0.6536 4 J48 
A 0.6387 4 GP 
A 0.6056 4 LWLS 
A 0.5869 4 ANN 
A 0.5585 4 ADT 
A 0.5536 4 SMO 
A 0.5527 4 ABOOST 
A 0.5428 4 DTABLE 
A 0.5405 4 IBK 
A 0.5364 4 LBOOST 
A 0.5317 4 NBAYES 
A 0.5272 4 MCOST 
A 0.5197 4 HPIPES 
A 0.5186 4 LR 
A 0.4968 4 JRIP 
A 0.4948 4 RSET 
A 0.4896 4 RBM 
A 0.4735 4 ONER 
A 0.4678 4 CBR 
A 0.4637 4 TD 
A 0.4588 4 LOC 
A 0.4557 4 RDR 
A .  0 .4258 4 BAG 

Similarly, we also compared the proportions of the instances identified as 

noisy by the ensemble-classifier filter with consensus of five [10] and three [9] ( J48, 

IBk, SMO) classification techniques. For the JM1 software system, consensus filter 

with three classification techniques removed 1696 out of 8850 instances, as compared 

to 1425 out of 8850 instances removed by consensus filter with five classification tech-

niques. The Z-test for comparing these two proportions also resulted in a relatively 
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Table 4.38: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=30 

Tukey Grouping 
(); = 0.10 Mean N Methods 

A 1 .0928 4 IB1 
A 1.0841 4 PART 
A 0.9312 4 GP 
A 0.9292 4 J48 
A 0.8754 4 LWLS 
A 0.8294 4 ANN 
A 0.8127 4 ADT 
A 0.7935 4 SMO 
A 0.7890 4 ABOOST 
A 0.7830 4 DTABLE 
A 0.7708 4 IBK 
A 0.7650 4 LBOOST 
A 0.7600 4 NBAYES 
A 0.7545 4 MCOST 
A 0.7409 4 LR 
A 0.7400 4 HPIPES 
A 0.7101 4 RSET 
A 0.7068 4 JRIP 
A 0.6964 4 RBM 
A 0.6797 4 ONER 
A 0.6566 4 TD 
A 0.6564 4 CBR 
A 0.6563 4 LOC 
A 0.6438 4 RDR 
A 0.6044 4 BAG 

higher value of z (5.3449 to be precise) , suggesting that these two proportions are 

statistically different at significance level of 1%. 

From the two comparisons described here above , it is clear that as the number 

of classifiers for an ensemble-classifier consensus filter increases , the filter becomes 

more conservative at eliminating noise. A relatively more conservative approach to 

noise elimination may be of interest especially when the training data are scarce. 
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Table 4.39: Multiple Pairwise Comparison Results for KC2-Test Datasets, c=50 

Tukey Grouping 
a =  0 . 10  Mean N Methods· 

A 1 .7544 4 PART 
A 1 . 7497 4 IB1 
A 1 .5163 4 GP 
A 1 .4802 4 J48 
A 1 .415 4 LWLS 
A 1 .321 1  4 ADT 
A 1 .3144 4 ANN 
A 1 .2733 4 SMO 
A 1 .2634 4 DTABLE 
A 1 .2615  4 ABOOST 
A 1 .2314 4 IBK 
A 1 .2222 4 LBOOST 
A 1 .2164 4 NBAYES 
A 1 .2091 4 MCOST 
A 1 . 1857 4 LR 
A 1 . 1806 4 HPIPES 
A 1 . 1408 4 RSET 
A 1 . 1269 4 JRIP 
A 1 . 1099 4 RBM 
A 1 .0919 4 ONER 
A 1 .05 1 1  4 LOC 
A 1 .0423 4 TD 
A 1 .0336 4 CBR 
A 1 .0202 4 RDR 
A 0.9615 4 BAG 

In such cases, an ensemble-classifier consensus filter with relatively higher number 

of classifiers could be the answer. Besides this, using ensemble-classifier filter with 

relatively large number of (base-level) classifiers can also facilitate in achieving the 

desired level of conservativeness. Also, intuitively, the level of confidence in the noise 

removal process increases when the process is based on relatively large number of 

classifiers, as the possibility of results getting influenced by a few classifiers with 
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certain bias towards the training data is slimmer. 

4.8 Predictive Performance Results 

This section presents the predictive performance results of different classifica­

tion techniques when the models built from the JMl training datasets were applied 

to the KC2 datasets and vice versa (Tables 4.40 to 4.94) . Results for one of the 

classification techniques (ANN) were not available, and hence are not presented 

herein. 

4.8.1 Predictive Performance of JMl Models on KC2 Datasets 

This subsection provides the results of predictive quality of the classification 

models built on the JMl-Fit datasets and evaluated on the KC2 datasets. Predictive 

performance of classifiers is presented in terms of the two misclassification error rates 

(Type I and Type II) in Tables 4.40 to 4.45. For each noise filtering level, KC2-Fit 

and KC2-Test were combined to create one evaluation set each. 
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Table 4.40: Predictive Quality of JM1-8850 models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2-13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II 

CBR 22.95% 31 . 13% 16.25% 25.26% 14.49% 21 .59% 12.65% 19.77% 

TD 27.78% 20.75% 23.42% 10.53% 31 .88% 5.68% 30.42% 6.98% 

LR 18.36% 27.36% 7. 16% 18 .95% 3.48% 12.50% 2. 1 1% 10.47% 

LOC 23.19% 18.87% 12 .40% 9.47% 7.83% 3.41% 5.42% 2.33% 

GP 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 6.63% 2.33% 

LBOOST 20.29% 23.58% 9.64% 15.79% 5.22% 10.23% 4.82% 9.30% 

RBM 22.46% 24.53% 12 .40% 16.84% 8.41% 10.23% 6.33% 10.47% 

BAG 18. 12% 26.42% 1 1 .29% 16.84% 7.54% 13.64% 6.33% 12.79% 

RSET 20.05% 29.25% 10. 19% 22. 1 1% 6.67% 15.91% 4.22% 13.95% 

MCOST 17.87% 34.91% 10.74% 29.47% 8.41% 25.00% 7.53% 24.42% 

ABOOST 27.29% 37.74% 23.42% 34. 74% 22.61% 31 .82% 20.48% 30.23% 

DTABLE 23.91% 25.47% 13.50% 17.89% 9.86% 1 1 .36% 8. 13% 10.47% 

ADT 24.64% 21 .70% 14.88% 13 .68% 11 .30% 7.95% 9.94% 6.98% 

SMO 18.60% 24.53% 7.16% 15.79% 2.90% 9.09% 2 . 11% 8. 14% 

IB1 28.26% 49.06% 24.52% 44.21% 22.90% 43.18% 22.29% 44. 19% 

IBK 18.84% 28.30% 9.64% 22. 1 1% 6.67% 15.91% 5.42% 15.12% 

PART 20.29% 33.96% 13.77% 26.32% 1 1 .30% 22.73% 10.24% 22.09% 

ONER 22.95% 25.47% 13.50% 17.89% 9.86% 1 1 .36% 7.83% 11 .63% 

JRIP 22.46% 24.53% 12.95% 17.89% 9.28% 1 1 .36% 8.43% 10.47% 

RDR 31 . 16% 19.81% 22.59% 13.68% 20.00% 9.09% 18.67% 8. 14% 

J48 17.63% 31 . 13% 1 1 .85% 25.26% 9.57% 20.45% 8. 13% 19.77% 

NBAYES 18.84% 19.81% 7.44% 10.53% 2.90% 4.55% 2.41% 2.33% 

HPIPES 66. 18% 24.53% 64.46% 24.21% 65.51% 18. 18% 67.77% 17.44% 

LWLS 21 .01% 29.25% 13.22% 23. 16% 10.43% 18. 18% 9.34% 18.60% 
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Table 4.41: Predictive Quality of JMl-4425 models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2-13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II 

CBR 22.71% 32.08% 15.70% 27.37% 14.20% 25.00% 12.95% 23.26% 

TD 24. 15% 19.81% 22.31% 10.53% 26.67% 5 .68% 26.51% 5.81% 

LR 20.77% 21 .70% 9.64% 12 .63% 5.51% 5.68% 3.31% 4.65% 

LOC 23. 19% 18.87% 12.40% 9.47% 7.83% 3.41% 5.42% 2.33% 

GP 20.77% 18.87% 9.64% 10.53% 5.80% 4.55% 4.22% 4.65% 

LBOOST 23.43% 19.81% 13.22% 11 .58% 8.99% 5.68% 7.23% 4.65% 

RBM 20.29% 19.81% 9.09% 10.53% 4.64% 4.55% 2.71% 4.65% 

BAG 23.43% 21 .70% 13.77% 14.74% 10. 14% 1 1 .36% 8. 13% 10.47% 

RSET 19.32% 23.58% 8.54% 15.79% 5.22% 9.09% 3.61% 6.98% 

MCOST 28.74% 17.92% 19.56% 10.53% 15.94% 5.68% 14.16% 5.81% 

ABOOST 29.71% 32.08% 24.79% 27.37% 23.77% 23.86% 22.89% 22.09% 

DTABLE 22.95% 23.58% 12 .95% 14.74% 8.70% 9.09% 6.63% 8. 14% 

ADT 19.81% 24.53% 8.82% 16.84% 4.64% 1 1 .36% 4.22% 10.47% 

SMO 18.36% 26.42% 7.16% 17.89% 2.90% 1 1 .36% 2.41% 9.30% . 

IB1 25.85% 36. 79% 21 .49% 32.63% 20.29% 30.68% 19.58% 30.23% 

IBK 20.05% 27.36% 9.64% 18.95% 5 .22% 12.50% 3.61% 1 1 .63% 

PART 29.71% 21 .70% 23. 14% 14.74% 20.00% 12.50% 18.07% 11 .63% 

ONER 23.91% 23.58% 13.77% 14.74% 10.43% 9.09% 8 . 13% 8 .14% 

JRIP 24.64% 18.87% 14.33% 11 .58% 10. 14% 5.68% 8.43% 5.81% 

RDR 31 .88% 20.75% 22.31% 14.74% 18.55% 9.09% 17. 17% 8. 14% 

J48 17.87% 25.47% 6.89% 16.84% 2.61% 1 1 .36% 2 . 1 1% 10.47% 

NBAYES 18.60% 21 .70% 7.16% 12 .63% 2.61% 6.82% 1 .81% 4.65% 

HPIPES 56.04% 30. 19% 52.07% 26.32% 51 .59% 20.45% 52.41% 19.77% 

LWLS 21 .26% 24.53% 1 1 .29% 17.89% 7.54% 1 1 .36% 6.02% 10.47% 
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Table 4.42: Predictive Quality of JM1-23C models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2-13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II I 

CBR 18 .12% 32.08% 10.47% 26.32% 8.70% 22.73% 7.23% 20.93% 

TD 22.22% 25.47% 16.80% 8.42% 25.22% 3.41% 24. 10% 2.33% 

LR 21 .98% 18.87% 1 1 .02% 9.47% 6.38% 3.41% 3.92% 3.49% 

LOC 23. 19% 18.87% 12 .40% 9.47% 7.83% 3.41% 5.42% 2.33% 

GP 24.40% 20.75% 14.05% 1 1 .58% 9.57% 5.68% 6.63% 4.65% 

LBOOST 26.81% 18.87% 16.80% 9.47% 12.46% 3.41% 9.34% 3.49% 

RBM 22.22% 22.64% 1 1 .29% 14.74% 7.25% 9.09% 6.02% 9.30% 

BAG 23. 19% 25.47% 13.50% 17.89% 9.86% 12.50% 7.23% 10.47% 

RSET 20.05% 25.47% 10.47% 16.84% 6.67% 1 1 .36% 5.42% 10.47% 

MCOST 22.22% 29.25% 13.50% 22. 1 1% 10.72% 15 .91% 9.04% 13.95% 

ABOOST 19.57% 32.08% 1 1 .29% 25.26% 9.28% 20.45% 7.53% 18.60% 

DTABLE 19.57% 23.58% 10. 19% 14.74% 6.67% 9.09% 4.82% 6.98% 

ADT 26.33% 21 .70% 16.25% 12 .63% 11 .88% 6.82% 8.73% 6.98% 

SMO 17.63% 23.58% 6.34% 14.74% 2.32% 7.95% 2 . 1 1% 5.81% 

IB1 21 .50% 33.96% 14.88% 28.42% 11 .88% 23.86% 10.24% 23.26% 

IBK 18.60% 23.58% 7.44% 14.74% 2.90% 7.95% 1 .20% 6.98% 

PART 20.77% 27.36% 1 1 .29% 20.00% 8.12% 14.77% 7.23% 12.79% 

ONER 22.95% 18.87% 12. 12% 10 .53% 7.54% 4.55% 5 . 12% 3.49% 

JRIP 25.12% 27.36% 15.98% 20.00% 13.04% 14.77% 11 .45% 15.12% 

RDR 20.05% 22.64% 9.09% 13.68% 4.64% 6.82% 3.01% 6.98% 

J48 25. 12% 23.58% 15 .70% 16.84% 12.75% 12.50% 11 .45% 11 .63% 

NBAYES 20.77% 19.81% 9.64% 10.53% 5.22% 4.55% 3.01% 2.33% 

HPIPES 19.81% 24.53% 8.54% 15 .79% 3.77% 10.23% 2.71% 8. 14% 

LWLS 22.95% 22.64% 13.50% 14.74% 9.86% 9.09% 7.53% 8. 14% 
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Table 4.43: Predictive Quality of JM1-20C models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2- 13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II 

CBR 18.60% 28.30% 10.19% 22. 1 1% 8.41% 18. 18% 6.63% 17.44% 

TD 14.01% 33.96% 1 1 .02% 15.79% 12.46% 6.82% 10.54% 6.98% 

LR 22.95% 18.87% 12 .40% 9.47% 7.83% 3.41% 5 .12% 3.49% 

LOC 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 7.23% 2.33% 

GP 22.95% 17.92% 12. 12% 9.47% 7.54% 3.41% 5.42% 3.49% 

LBOOST 21 .50% 25.47% 1 1 .29% 16.84% 7.54% 10.23% 5 .72% 10.47% 

RBM 20.05% 22.64% 8.82% 13.68% 4.64% 7.95% 3.31% 6.98% 

BAG 21 .98% 27.36% 1 1 .85% 20.00% 7.83% 13.64% 6.33% 1 1 .63% 

RSET 18.84% 22.64% 7.44% 13.68% 3. 19% 7.95% 1 .20% 6.98% 

MCOST 21 .74% 29.25% 11 . 85% 22. 1 1% 8.41% 15.91% 6.93% 15. 12% 

ABOOST 18 .12% 25.47% 8.82% 18.95% 6.09% 12.50% 4.82% 10.47% 

DTABLE 21 .01% 20.75% 1 1 .02% 12 .63% 6.96% 7.95% 5. 12% 6.98% 

ADT 20.53% 24.53% 10.47% 16.84% 6.67% 10.23% 4.52% 9.30% 

SMO 20.05% 22.64% 9.09% 13.68% 4.64% 6.82% 2.41% 5.81% 

IB1 18.36% 27.36% 9.64% 21 .05% 7.25% 15.91% 5.42% 15. 12% 

IBK 20.77% 23.58% 9.92% 15.79% 6.38% 9.09% 3.92% 8. 14% 

PART 16.67% 32.08% . 7.44% 25.26% 4.93% 19.32% 3.92% 18.60% 

ONER 24.64% 18.87% 14.05% 9.47% 9.57% 3.41% 6.93% 3.49% 

JRIP 18.36% 28.30% 8.26% 21 .05% 4.35% 14.77% 3.01% 12 .79% 

RDR 24.40% 18.87% 14.05% 11 .58% 9.57% 5 .68% 8.43% 4.65% 

J48 19.32% 29.25% 9.92% 22. 1 1% 6.09% 17.05% 5. 12% 15. 12% 

NBAYES 20.05% 21 . 70% 8.82% 12 .63% 4.35% 6.82% 2.71% 4.65% 

HPIPES 17.63% 27.36% 7.99% 18 .95% 4.35% 12.50% 3.31% 1 1 .63% 

LWLS 21 .26% 22.64% 1 1 .85% 15.79% 8.70% 10.23% 6.93% 8.14% 
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Table 4.44: Predictive Quality of JM1-17C models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2-13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II 

CBR 19.32% 30. 19% 10.74% 22. 1 1% 8.41% 1 7.05% 6.33% 15. 12% 

TD 14.25% 33.96% 1 1 .29% 15 .79% 7.83% 4.55% 8.73% 1 . 16% 

LR 23.43% 19.81% 12.67% 10.53% 8 .12% 3.41% 5 . 12% 3.49% 

LOC 24.88% 17.92% 14.33% 8.42% 9.86% 2.27% 7.23% 2.33% 

GP 21 .98% 19.81% 1 1 .02% 10.53% 6.38% 4.55% 4.22% 3.49% 

LBOOST 24. 15% 18.87% 13.77% 9.47% 9.57% 3.41% 7.23% 3.49% 

RBM 19.08% 25.47% 8.82% 13.68% 3.48% 10.23% 1.81% 8.14% 

BAG 22.46% 19.81% 1 1 .85% 1 1 .58% 7.25% 4.55% 5. 12% 3.49% 

RSET 21 .74% 20. 75% 1 1 .02% 13.68% 6.67% 7.95% 5 .72% 6.98% 

MCOST 22.95% 23.58% 12.95% 15.79% 8 .70% 9 .09% 6.63% 8. 14% 

ABOOST 21 .01% 25.47% 10.47% 17.89% 6.96% 1 1 .36% 5. 12% 10.47% 

DTABLE 23. 19% 25.47% 13.22% 16.84% 9.57% 10.23% 7.23% 9.30% 

ADT 21 .26% 20. 75% 10.74% 1 1 .58% 6.67% 4.55% 4.82% 3.49% 

SMO 21 .26% 22.64% 10.47% 13.68% 6.09% 6.82% 4.22% 5.81% 

IB1 21 .98% 26.42% 12.40% 20.00% 8.70% 13.64% 7.23% 12.79% 

IBK 22.95% 22.64% 12.40% 13.68% 8.41% 6.82% 6.63% 5.81% 

PART 21 .98% 26.42% 1 1 .57% 18.95% 7.83% 12.50% 6.93% 1 1 .63% 

ONER 26.33% 18.87% 15.98% 9.47% 1 1 .59% 3.41% 8.73% 3.49% 

JRIP 21 .74% 19.81% 10.74% 10.53% 6.38% 4.55% 4.52% 4.65% 

RDR 20.05% 20. 75% 9.64% 12.63% 5.51% · 5.68% 3.31% 5.81% 

J48 21 .26% 21 .70% 1 1 .29% 13.68% 8.41% 7.95% 6.33% 6.98% 

NBAYES 21 .01% 19.81% 9.92% 10.53% 5.51% 4.55% 3.31% 3.49% 

HPIPES 28.02% 18.87% 17.91% 11 .58% 13.62% 5 .68% 12.65% 4.65% 

LWLS 22.22% 23.58% 1 1 .85% 14.74% 7.83% 7.95% 6.33% 8. 14% 
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Table 4.45: Predictive Quality of JM1-13C models on KC2 datasets 

KC2-520 KC2-23C KC2-17C KC2-13C 

Methods Type I Type II Type I Type II Type I Type II Type I Type II 

CBR 19.32% 31 . 13% 9.64% 23. 16% 6.67% 17.05% 5 . 12% 16.28% 

TD 14.49% 31 . 13% 8.82% 17.89% 8.12% 5.68% 6.33% 4.65% 

LR 21 .50% 19.81% 10.47% 10.53% 5.80% 4.55% 3.31% 3.49% 

LOC 21 .50% 18.87% 10.47% 9 .47% 5.80% 3.41% 3.61% 2 .33% 

GP 23.43% 18.87% 12.67% 9 .47% 8.12% 3.41% 5 .72% 3.49% 

LBOOST 21 .74% 19.81% 10.74% 10.53% 6.09% 3.41% 3.61% 2.33% 

RBM 20.77% 20.75% 9.64% 11 .58% 4.93% 5.68% 3.31% 5.81% 

BAG 23.43% 19.81% 12 .67% 1 1 .58% 8.12% 5.68% 6.02% 4.65% 

RSET 23.67% 22.64% 13.22% 13.68% 8.99% 7.95% 6.33% 6.98% 

MCOST 20.29% 21 .70% 9.09% 12.63% 4.35% 6.82% 3.31% 5.81% 

ABOOST 21 .74% 20.75% 1 1 .02% 12.63% 6.67% 6.82% 5.12% 5.81% 

DTABLE 24.40% 17.92% 13.77% 8.42% 9.28% 2.27% 6.33% 2.33% 

ADT 21 .50% 20.75% 10.47% 12 .63% 6.09% 5.68% 3.92% 4.65% 

SMO 19.08% 23.58% 7.99% 14.74% 3.48% 7.95% 2 . 1 1% 6.98% 

IB1 19.32% 22.64% 8.54% 14.74% 4.35% 9.09% 2 .71% 8. 14% 

IBK 18.60% 24.53% 7.71% 15.79% 3.48% 9.09% 2.41% 8. 14% 

PART 23.67% 19.81% 12.95% 11 .58% 8.41% 5.68% 7.53% 4.65% 

ONER 26.33% 18.87% 15.98% 9.47% 11 .59% 3.41% 8 .73% 3.49% 

JRIP 24. 15% 19.81% 13.50% 10.53% 8.99% 4.55% 6.33% 3.49% 

RDR 24.40% 17.92% 13.77% 9.47% 9.28% 3.41% 7.83% 2.33% 

J48 23.91% 19.81% 13.22% 10.53% 8.70% 4.55% 6.33% 3.49% 

NBAYES 20.29% 19.81% 9.09% 10.53% 4.64% 4.55% 2.71% 3.49% 

HPIPES 18.84% 25.47% 7.71% 16.84% 3.19% 1 1 .36% 2.71% 10.47% 

LWLS 20.05% 23.58% 9.09% 15 .79% 4.93% 9.09% 2 .71% 8.14% 
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Table 4.46: Predictive Quality of KC2-520 models on JMl datasets 

JM1-8850 JM1-23C JM1-20C 

Methods Type I Type II Type I Type II Type I Type II 

CBR 51 .78% 23.59% 45.63% 17. 14% 40.64% 13.00% 

TD 30.70% 44.81% 29.03% 34.29% 27.90% 28.81% 

LR 40.29% 30.82% 31 .99% 22.99% 25.69% 18.03% 

LOC 30.67% 37.29% 21 .03% 29.70% 13.49% 24.07% 

GP 30.29% 39.06% 20.73% 31.69% 13.79% 26.29% 

LBOOST 45. 19% 28.81% 38.24% 22. 13% 32.81% 17.74% 

RBM 38.34% 32.84% 30.02% 25.51% 24. 17% 20.47% 

BAG 39.24% 32.90% 30.86% 26.51% 24.50% 21 .34% 

RSET 39.08% 37.52% 31 .82% 32.03% 27.29% 27.37% 

MCOST 49.53% 26.73% 42.60% 21 .06% 37.83% 17.24% 

ABOOST 37. 14% 40.66% 30.27% 35.75% 26.68% 31.97% 

DTABLE 39. 13% 31 . 12% 30. 70% 23.72% 24.41% 18.25% 

ADT 35.56% 34.50% 26.79% 27.57% 20.74% 22.41% 

SMO 42.06% 30.82% 34. 16% 22.99% 27.96% 17.96% 

IB1 46.47% 32.31% 43.54% 26.98% 39.09% 25.07% 

IBK 41 . 16% 32.25% 34.60% 22.06% 26.75% 18.68% 

PART 36.42% 37.70% 28.30% 31.96% 22.66% 27.01% 

ONER 34.85% 34.08% 25. 76% 26. 11% 18.54% 20.26% 

JRIP 35.36% 34.68% 26.57% 27. 71% 20.50% 22.49% 

RDR 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

J48 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

NBAYES 36. 17% 32.54% 27.28% 24.58% 20.27% 18.82% 

HPIPES 24.86% 47.36% 16. 12% 41 .20% 1 1 . 13% 36.64% 

LWLS 39.55% 34.62% 31 .16% 28.04% 25.90% 22.49% 

4.8.2 Predictive Performance of KC2 Models on JMl Datasets 

This subsection provides the results of predictive quality of the classification 

models built on the KC2-Fit datasets and evaluated on the JMl datasets. Predictive 

performance of classifiers is presented in terms of the two misclassification error rates 

(Type I and Type II) in Tables 4.46 to 4 .50. For each noise filtering level, JMl-Fit 

and JMl-Test were combined to create one evaluation set each. 
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Table 4.46: Predictive Quality of KC2-520 models on JMl datasets, contd . . .  

JM1-17C JM1-13C 

Methods Type I Type II Type I Type II 

CBR 36.85% 10.22% 32.30% 6.68% 

TD 26.03% 25.00% 26.48% 17.62% 

LR 21 . 16% 13.47% 16.21% 7.47% 

LOC 8.30% 18.42% 3.58% 10.24% 

GP 9. 12% 21 .05% 5.04% 13.54% 

LBOOST 29. 18% 14.47% 24.85% 10.76% 

RBM 19.93% 16.10% 15 .57% 9.81% 

BAG 20.06% 17.03% 16. 1 1% 10.07% 

RSET 24.59% 23.68% 21 .27% 17.80% 

MCOST 34.29% 13.70% 30.69% 9.03% 

ABOOST 24.76% 29. 18% 22.49% 25.69% 

DTABLE 19.64% 14.01% 14.94% 7.47% 

ADT 16.46% 17.80% 12.36% 1 1 .46% 

SMO 23.45% 13 .39% 18.29% 7.55% 

IB1 35. 1 1% 25.77% 34.91% 17.88% 

IBK 19.53% 14.94% 17.32% 7.90% 

PART 18.48% 22.37% 14.77% 15.89% 

ONER 13.22% 14.86% 7.51% 7.20% 

JRIP 16.20% 17.88% 12.08% 1 1 .46% 

RDR 16.20% 17.88% 12.08% 1 1 .46% 

J48 16.20% 17.88% 12 .08% 1 1 .46% 

NBAYES 15 . 17% 13.78% 9.94% 6.34% 

HPIPES 8.45% 32.66% 6.27% 26.22% 

LWLS 20.96% 18.27% 18.12% 1 1 .81% 
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Table 4.47: Predictive Quality of KC2-260 models on JM1 datasets 

JM1-8850 JM1-23C JM1-20C 

Methods Type I Type II Type I Type II Type I Type II 

CBR 55.37% 22. 1 1% 49.81% 16.35% 45.31% 12 .21% 

TD 26.37% 44. 16% 23. 1 1%  30.63% 20.69% 21 .91% 

LR 41 .83% 29.05% 33.82% 21 .86% 27.94% 17.03% 

LOC 32.30% 36.10% 22.88% 28.37% 15.50% 22 .63% 

GP 44.86% 30.82% 37.77% 25.45% 32.83% 20.98% 

LBOOST 56. 15% 25.31% 51 .46% 20.73% 48.33% 18. 18% 

RBM 43.86% 29.40% 36.54% 22.26% 31 .50% 17.82% 

BAG 47.26% 28.63% 40.03% 23.26% 34.47% 18.75% 

RSET 34.50% 35.74% 25.44% 28.31% 18.66% 22.92% 

MCOST 43.36% 31 .30% 36.00% 25.51% 30.89% 21 .05% 

ABOOST 44.84% 38.00% 39.80% 34.22% 36.47% 30.96% 

DTABLE 42.58% 31 .59% 35.59% 24.39% 30. 11% 19.83% 

ADT 38.57% 37.52% 30.93% 32.89% 26.07% 28.23% 

SMO 40.57% 34.68% 33.49% 27.57% 28.06% 23.06% 

IB1 44.62% 36.28% 40.95% 29.57% 35.75% 27.59% 

IBK 41 .78% 31 .65% 38.94% 20. 13% 28.29% 16.95% 

PART 45.55% 32.31% 39.82% 28.04% 36.78% 24.78% 

ONER 41 .38% 38.53% 34.70% 34.55% 31 .29% 31 .32% 

JRIP 45.64% 29.34% 38.55% 22. 79% 33.69% 18.82% 

RDR 48.95% 24.24% 41 .85% 17.08% 36.34% 12 .72% 

J48 54. 10% 33.67% 51 .26% 30.63% 49.64% 29.24% 

NBAYES 37.61% 32.90% 28.92% 24.92% 22.09% 19.04% 

HPIPES 47.31% 25.31% 39.96% 17.54% 34.21% 12 .57% 

LWLS 38.28% 44.87% 34.93% 40.80% 32.08% 38.72% 
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Table 4.47: Predictive Quality of KC2-260 models on JMl datasets, contd . . .  

JM1-17C JM1-13C 

Methods Type I Type II Type I Type II 

CBR 41 .85% 9 .75% 37.63% 6.60% 

TD 19.25% 15 .33% 17.34% 6.68% 

LR 23. 75% 12.93% 19. 15% 7.38% 

LOC 10. 15% 17. 18% 5. 14% 9 .11% 

GP 29.36% 17.65% 26. 19% 12.50% 

LBOOST 46.22% 16 .18% 42.85% 14.32% 

RBM 27.98% 14.40% 23.95% 10.24% 

BAG 30.69% 14.78% 27.46% 9.03% 

RSET 14. 18% 18.42% 10. 16% 1 1 .37% 

MCOST 27.53% 17.49% 23.93% 12.24% 

ABOOST 34.44% 28.33% 31 .70% 25. 1 7% 

DTABLE 25.97% 16.49% 21 .66% 1 1 .20% 

ADT 23. 15% 24.38% 20.63% 18.84% 

SMO 23.86% 19.20% 18 .84% 14.15% 

IB1 34.01% 26.70% 31 .06% 20.92% 

IBK 21 .97% 13.54% 19.79% 6.08% 

PART 34.74% 22.76% 32.65% 19.79% 

ONER 29.25% 28.79% 27.20% 23.87% 

JRIP 30.09% 15 .33% 26.09% 1 1 .81% 

RDR 32.30% 9. 13% 27.53% 5·.21% 

J48 48.67% 28.02% 46.95% 28.04% 

NBAYES 16.93% 13.85% 1 1 .46% 6.86% 

HPIPES 29.81% 9. 13% 24.71% 4.34% 

LWLS 30.81% 35.60% 28.72% 31 .42% 
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Table 4.48: Predictive Quality of KC2-23C models on JMl datasets 

JM1-8850 JM1-23C I JM1-20C 

Methods Type I Type II Type I Type II 1 Type I Type II 

CBR 53.08% 23.89% 47. 18% 17.81% 42.46% 13.94% 

TD 24.43% 47.84% 21 .30% 33.36% 18.50% 23.56% 

LR 32.70% 37.76% 23.64% 30.90% 17.60% 25.72% 

LOC 30.67% 37.29% 21 .03% 29.70% 13.49% 24.07% 

GP 24.81% 45.29% 15 .05% 38.67% 8.98% 33.76% 

LBOOST 35.78% 38. 17% 27. 12% 33.49% 21 .37% 28.74% 

RBM 45.76% 29.76% 38.72% 23.59% 33.72% 19.61% 

BAG 34.23% 36.87% 25. 17% 30. 10% 18.54% 24.78% 

RSET 42.01% 29.46% 33.96% 21 .99% 27.70% 16.81% 

MCOST 46.54% 26.50% 39.09% 19.20% 33.23% 14.22% 

ABOOST 41 . 13% 33.85% 33.25% 27.84% 27.90% 22.99% 

DTABLE 30.98% 38.00% 21 .51% 30.56% 14.57% 25.07% 

ADT 38. 11% 34.85% 29.62% 28.50% 23.40% 23.28% 

SMO 39.31% 30.94% 30.85% 22.72% 24. 1 1% 17. 10% 

IB1 47.02% 33.31% 38.42% 27.84% 37.90% 25.57% 

IBK 37.47% 33.55% 30.94% 22.66% 22.26% 18.61% 

PART 39.76% 35.57% 32.74% 29.90% 28. 18% 26.08% 

ONER 41.50% 30.59% 33.41% 23.26% 27.22% 17.89% 

JRIP 41 .50% 30.59% 33.41% 23.26% 27.22% 17.89% 

RDR 40.28% 31 .59% 32.02% 24. 12% 25.76% 18.82% 

J48 39.76% 35.57% 32.74% 29.90% 28.18% 26.08% 

NBAYES 36.49% 33.02% 27.68% 25. 18% 20.88% 19.32% 

HPIPES 37.76% 31 .54% 29. 16% 23.79% 22.59% 18 . 18% 

LWLS 35. 17% 36.34% 27.03% 29.63% 19.01% 23.85% 

133 



Table 4.48: Predictive Quality of KC2-23C models on JMl datasets, contd . . .  

JM1-17C JM1-13C 

Methods Type I Type II Type I Type II 

CBR 38.86% 11 .07% 34.56% 7.21% 

TD 17.08% 16.56% 14.91% 8.68% 

LR 13.48% 20.74% 9.75% 13.89% 

LOC 8.30% 18.42% 3.58% 10.24% 

GP 5.62% 28.95% 3.00% 21.53% 

LBOOST 18. 15% 23.99% 15.80% 16.49% 

RBM 30.39% 15 .87% 26.35% 10.59% 

BAG 14.42% 20.20% 10.92% 12.67% 

RSET 22.90% 12.38% 17.98% 6. 16% 

MCOST 28.73% 10.37% 23.78% 5.03% 

ABOOST 24.46% 19.27% 21 . 13% 13.37% 

DTABLE 9.94% 19.89% 5.76% 12.07% 

ADT 19.23% 18 .65% 15 .59% 11 .72% 

SMO 19. 14% 12.38% 13.60% 5.99% 

IB1 33. 75% 25.62% 33.57% 18. 14% 

IBK 13.90% 15.56% 11 .05% 6.77% 

PART 25.22% 22.29% 22 .03% 17.01% 

ONER 22.51% 13.62% 17.59% 7.47% 

JRIP 22.51% 13.62% 17.59% 7.47% 

RDR 20.96% 14.47% 16.09% 8.07% 

J48 25.22% 22.29% 22.03% 17.01% 

NBAYES 15.97% 14.16% 10.90% 6.60% 

HPIPES 17.88% 13.54% 12.80% 7.03% 

LWLS 15. 13% 19.97% 10.62% 1 1 .55% 
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Table 4.49: Predictive Quality of KC2-17C models on JMl datasets 

JM1-8850 JM1-23C JM1-20C 

Methods Type I Type II Type I Type II Type I Type II 

CBR 50.47% 23.53% 43.57% 16. 15% 38.06% 1 1 .42% 

TD 16.95% 55.90% 12.52% 40.33% 10. 15% 28. 16% 

LR 35.38% 34.20% 26.50% 26.91% 19.99% 21 .41% 

LOC 29.46% 38.47% 19.65% 31 .03% 12. 13% 25 .43% 

GP 34. 1 1% 35.98% 25 .17% 29.04% 19.01% 23.85% 

LBOOST 41 .74% 30. 17% 33.68% 22.86% 27.43% 17.60% 

RBM 42.62% 28.69% 34.62% 21 .26% 28.45% 16.38% 

BAG 41 . 13% 30.23% 32.91% 22.66% 26.45% 17. 10% 

RSET 29.46% 38.47% 19.65% 31.03% 12.13% 25.43% 

MCOST 39. 12% 31 .30% 30.67% 23.85% 24.15% 18.53% 

ABOOST 39.61% 31 .00% 31.20% 23.72% 24.64% 18.53% 

DTABLE 32.79% 35.51% 23.48% 28.50% 16.44% 23.42% 

ADT 33.78% 34. 14% 24.55% 26.58% 17.39% 20.83% 

SMO 41 .73% 30.29% 33.65% 22. 19% 27.45% 17. 10% 

IB1 43.59% 28.87% 38.74% 19.67% 32.36% 14.22% 

IBK 38.45% 33.43% 34.86% 22.06% 25.02% 18 .46% 

PART 37.05% 33.79% 28.43% 26.51% 21 .96% 21 .26% 

ONER 35.36% 34.68% 26.57% 27. 71% 20.50% 22.49% 

JRIP 41 .60% 29.99% 33.47% 22.52% 27. 15% 17.39% 

RDR 39.70% 29.99% 31.29% 22.46% 24.59% 16.81% 

J48 39.86% 31.59% 31 .63% 24.72% 25.51% 19.61% 

NBAYES 36.05% 32.96% 27.14% 24.98% 20. 1 1% 19. 18% 

HPIPES 38.43% 31 .65% 29.84% 23.79% 23.26% 18 .25% 

LWLS 47.24% 25. 13% 39.34% 18.07% 32.34% 13.36% 
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Table 4.49: Predictive Quality of KC2-17C models on JMl datasets, contd . . .  

I JM1-17C JM1-13C 

Methods Type I Type II Type I Type II 

CBR 33.88% 7.97% 28.92% 3.56% 

TD 8.30% 18.42% 5. 14% 9. 1 1% 

LR 15.41% 16.49% 11 . 19% 9.64% 

LOC 7.10% 19.81% 2.84% 1 1 .28% 

GP 15.07% 19.66% 11 .34% 13.28% 

LBOOST 22.72% 13.24% 17.79% 7.20% 

RBM 23.80% 12.07% 18.93% 5.82% 

BAG 21 .50% 12.31% 16.25% 5.73% 

RSET 7.10% 19.81% 2.84% 1 1 .28% 

MCOST 19.34% 13 .78% 14.48% 7.03% 

ABOOST 19.81% 13.93% 14.69% 7.64% 

DTABLE 1 1 .91% 18.50% 8. 13% 1 1 .37% 

ADT 12.32% 15 .79% 7.74% 8.33% 

SMO 22.90% 12.54% 17.73% 6.51% 

IB1 25.66% 1 1 .69% 22.81% 5.38% 

IBK 18.78% 15.48% 15.57% 6.77% 

PART 17.51% 17.03% 13.23% 10.59% 

ONER 16.20% 17.88% 12.08% 1 1 .46% 

JRIP 22.42% 12.85% 17.53% 6.68% 

RDR 19.46% 1 1 .92% 13.91% 5.30% 

J48 21 .22% 15 .79% 16.93% 9.90% 

NBAYES 14.96% 14.09% 9.44% 7.03% 
HPIPES 18.39% 13.47% 13.29% 6.51% 

LWLS 27.64% 9.37% 22.94% 4.25% 
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Table 4.50: Predictive Quality of KC2-13C models on JMl datasets 

JM1-8850 JM1-23C JM1-20C 

Methods Type I Type II Type I Type II Type I Type II 

CBR 48.28% 25.67% 41 .28% 18.54% 35.68% 13.87% 

TD 17.58% 56.31% 12 .93% 43.59% 1 1 .01% 33. 12% 

LR 50.83% 24.90% 44.45% 18.47% 39.96% 15 .09% 

LOC 32.30% 36. 10% 22.88% 28.37% 15.50% 22.63% 

GP 31 .96% 37.46% 22.69% 30.37% 16.29% 25.00% 

LBOOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

RBM 40.33% 31.65% 32.20% 24.39% 26.44% 19.40% 

BAG 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

RSET 32.85% 36.04% 23.56% 28.37% 16.65% 22 .77% 

MCOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

ABOOST 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

DTABLE 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

ADT 34.82% 35.51% 25.95% 28.44% 19.81% 23 . 13% 

SMO 41 .25% 30.35% 33.09% 22.26% 26.75% 17. 10% 

IB1 36.76% 33.79% 29.70% 25.51% 22.94% 21 . 19% 

IBK 38.53% 34. 14% 37.61% 21 .99% 25.60% 19.68% 

PART 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

ONER 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

JRIP 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

RDR 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

J48 35.36% 34.68% 26.57% 27.71% 20.50% 22.49% 

NBAYES 42. 18% 29.10% 34. 19% 21 .00% 27.99% 15.66% 

HPIPES 38. 70% 30.59% 30.16% 22.72% 23.45% 16.95% 

LWLS 34.58% 35.21% 25.31% 28.37% 19.27% 23.06% 
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Table 4.50: Predictive Quality of KC2-13C models on JMl datasets, contd . . .  

JM1-17C JM1-13C 

Methods Type I Type II Type I Type II 

CBR 31 .57% 10.45% 26.81% 5.47% 

TD 8.90% 26. 16% 7.39% 15.97% 

LR 36.82% 12.07% 32.75% 8.25% 

LOC 10. 15% 17. 18% 5. 14% 9. 1 1% 

GP 1 1 .76% 19.74% 7.78% 12.50% 

LBOOST 16.20% 17.88% 12.08% 1 1 .46% 

RBM 22.30% 15. 17% 17.86% 9.38% 

BAG 16.20% 17.88% 12.08% 1 1 .46% 

RSET 1 1 .99% 17.65% 7.45% 9.81% 

MCOST 16.20% 17.88% 12 .08% 1 1 .46% 

ABOOST 16.20% 17.88% 12.08% 1 1 .46% 

DTABLE 16.20% 17.88% 12.08% 1 1 .46% 

ADT 15 .47% 18 .42% 1 1 .31% 1 1 .81% 

SMO 22.06% 12.62% 16.83% 6.51% 

IB1 17 . 13% 17.88% 13.35% 10.07% 

IBK 19.03% 17.49% 16 .48% 8.33% 

PART 16.20% 17.88% 12.08% 1 1 .46% 

ONER 16.20% 17.88% 12.08% 1 1 .46% 

JRIP 16.20% 17.88% 12.08% 1 1 .46% 

RDR 16.20% 17.88% 12.08% 1 1 .46% 

J48 16.20% 17.88% 12.08% 1 1 .46% 

NBAYES 23.28% 10.91% 17.61% 5 .47% 

HPIPES 18.41% 12.00% 13. 12% 5 .30% 

LWLS 14.61% 18.27% 10.76% 1 1 .63% 
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Table 4.51:  ECM Results for JM1-8850 Models Applied to KC2 datasets, c=10 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.8173 0.6489 0.5543 0.5072 
TD 0.6442 0.4026 0.3695 0.3852 
LR 0.7038 0.4467 0.2818 0.2321 
LOC 0.5692 0 .2934 0. 1316 0.0909 
GP 0.5635 0.2870 0.1247 0. 1005 
LBOOST 0.6423 0 .4014 0.2494 0.2297 
RBM 0.6788 0.4450 0.2748 0.2656 
BAG 0.6827 0.4362 0.3372 0.3134 
RSET 0.7558 0.5358 0.3764 0 .3206 
MCOST 0.8538 0.6917 0.5751 0.5622 
ABOOST 0.9865 0.9007 0.8268 0.7847 
DTABLE 0.7096 0.4754 0.3095 0.2799 
ADT 0.6385 0.3997 0.2517 0.2225 
SMO 0.6481 0 .3817 0.2079 0.1842 
IB1 1 .2250 1 . 1043 1 .0600 1 .0861 
IBK 0.7269 0.5314 0.3764 0.3541 
PART 0.8538 0.6508 0.5520 0.5359 
ONER 0.7019 0.4754 0.3095 0.3014 
JRIP 0.6788 0 .4710 0.3048 0 .2823 
RDR 0.6519 0.4610 0.3441 0.3158 
J48 0.7750 0.6139 0.4919 0.4713 
NBAYES 0.5538 0 .2756 0 .1 155 0.0670 
HPIPES 1 .0269 1 .0101 0.8915 0.8971 
LWLS 0.7635 0 .5815 0.4527 0 .4569 

4.8.3 NECM Results for JMl Models Applied to· the KC2 Datasets, 

c=lO 

In this subsection, the predictive performance of the classification models 

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented 

in Tables 4 . 5 1  to 4.56 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=10. 
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Table 4.52: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=lO 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.8346 0 .6878 0.6212 0.5813 
TD 0.5962 0.3938 0 .3279 0.3301 
LR 0.6077 0.3365 0 . 1594 0 . 1220 
LOC 0.5692 0.2934 0 . 1316 0 .0909 
GP 0.5500 0.2932 0 . 1386 0 . 1292 
LBOOST 0.5904 0.3433 0 . 1871 0 . 1531 
RBM 0.5654 0.2888 0 . 1293 0 .1 172 
BAG 0.6288 0.4126 0 .3118 0.2799 
RSET 0.6346 0 .3927 0 .2263 0 . 1722 
MCOST 0.5942 0 .3719 0 .2425 0.2321 
ABOOST 0.8904 0.7600 0 .6744 0.6364 
DTABLE 0.6635 0.4060 0 .2540 0.2201 
ADT 0.6577 0.4165 0.2679 0.2488 
SMO 0.6846 0 .4251 0 .2540 0 .2105 
IB1 0.9558 0.8420 0 .7852 0.7775 
IBK 0.7173 0.4664 0 .2956 0 .2679 
PART 0.6788 0 .4870 0.4134 0.3828 
ONER 0.6712 0.4126 0 .2679 0.2321 
JRIP 0.5808 0 .3520 0 . 1963 0 .1866 
RDR 0.6769 0.4804 0.3326 0.3038 
J48 0.6615 0.4012 0 .2517 0.2321 
NBAYES 0.5904 0 .3168 0 . 1594 0 . 1 100 
HPIPES 1 .0615 0 .9550 0 .8268 0.8230 
LWLS 0.6692 0.4579 0 .2910 0 .2632 
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Table 4.53: ECM Results for JM1-23C Models Applied to KC2 datasets, c=10 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.7981 0.6246 0.5312 0.4880 
TD 0.6962 0.3067 0.2702 0.2392 
LR 0.5596 0.2824 0. 1201 0.1029 
LOC 0.5692 0.2934 0. 1316 0.0909 
GP 0.6173 0.3498 0. 1917 0. 1483 
LBOOST 0.5981 0.3284 0.1686 0. 1459 
RBM 0.6385 0.3929 0.2425 0.2392 
BAG 0.7038 0.4754 0.3326 0.2727 
RSET 0.6788 0.4297 0.2841 0.2584 
MCOST 0.7731 0.5620 0.4088 0.3589 
ABOOST 0.8096 0.6095 0.4896 0.4426 
DTABLE 0.6365 0.3842 0.2379 0. 1818 
ADT 0.6519 0.3890 0.2333 0.2129 
SMO 0.6212 0.3535 0. 1801 0.1364 
IB1 0.8635 0.7029 0.5797 0.5598 
IBK 0.6288 0.3623 0. 1848 0. 1531 
PART 0.7231 0.5012 0.3649 0.3206 
ONER 0.5673 0.3128 0. 1524 0. 1 124 
JRIP 0.7577 0.5384 0.4042 0.4019 
RDR 0.6212 0.3537 0 .1755 0.1675 
J48 0.6808 0.4712 0.3557 0.3301 
NBAYES 0.5692 0.2932 0. 1339 0.0718 
HPIPES 0.6577 0.3927 0.2379 0. 1890 
LWLS 0.6442 0.4104 0.2633 0.2273 

141 



Table 4.54: ECM Results for JM1-20C Models Applied to KC2 datasets, c=lO 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.7250 0.5358 0 .4365 0.4115 
TD 0.8038 0.4124 0 .2379 0 .2273 
LR 0.5673 0.2934 0 . 1316 0 . 1 124 
LOC 0.5635 0.2870 0 . 1247 0 .1053 
GP 0.5481 0.2912 0 . 1293 0 .1 148 
LBOOST 0.6904 0.4362 0 .2679 0.2608 
RBM 0.6212 0 .3516 0 . 1986 0.1699 
BAG 0.7327 0.5056 0 .3395 0 .2895 
RSET 0.6115 0 .3406 0. 1871 0. 1531 
MCOST 0.7692 0.5489 0 .3903 0.3660 
ABOOST 0.6635 0 .4598 0 .3025 0.2536 
DTABLE 0.5904 0.3474 0.2171 0 .1842 
ADT 0.6635 0.4297 0.2610 0.2273 
SMO 0.6212 0 .3537 0 . 1755 0 .1388 
IB1 0.7038 0.5097 0.3811  0.3541 
IBK 0.6462 0.4036 0 .2356 0 .1986 
PART 0.7865 0 .5788 0 .4319 0.4139 
ONER 0.5808 0.3065 0 . 1455 0 .1268 
JRIP 0.7231 0 .4988 0 .3349 0.2871 
RDR 0.5788 0.3498 0 . 1917 0 .1627 
J48 0.7500 0.5336 0.3949 0.3517 
NBAYES 0.6019 0.3299 0 . 1732 0. 1 1 72 
HPIPES 0.6981 0 .4533 0 .2887 0.2656 
LWLS 0.6308 0 .4189 0.2771 0.2225 
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Table 4.55: ECM Results for JM1-17C Models Applied to KC2 datasets, c=lO 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.7692 0 .5401 0.4134 0.3612 
TD 0.8058 0.4146 0. 1547 0.0933 
LR 0.5904 0.3172 0 . 1339 0 .1 124 
LOC 0.5635 0 .2870 0 .1247 0 .1053 
GP 0.5788 0.3041 0. 1432 0 .1053 
LBOOST 0.5769 0.3043 0 . 1455 0 .1292 
RBM 0.6712 0.3516 0.2356 0. 1818 
BAG 0.5827 0.3323 0 .1501 0 . 1 124 
RSET 0.5962 0.3691 0 .2148 0.1890 
MCOST 0.6635 0.4277 0.2540 0.2201 
ABOOST 0.6865 0.4513 0.2864 0.2560 
DTABLE 0.7038 0.4515 0.2841 0.2488 
ADT 0.5923 0.3236 0. 1455 0 .1 100 
SMO 0.6308 0 .3647 0. 1871 0 .1531 
IB1 0 .7135 0 .5099 0.3464 0.3206 
IBK 0.6442 0.3800 0.2055 0 .1722 
PART 0.7135 0 .4817 0.3164 0.2943 
ONER 0.5942 0.3218 0 .1617 0 .1411 
JRIP 0.5769 0.3019 0. 1432 0. 1316 
RDR 0.5827 0 .3365 0 .1594 0 .1459 
J48 0 .6115 0.3713 0.2286 0. 1938 
NBAYES 0.5712 0 .2953 0 .1363 0.0981 
HPIPES 0.6077 0.3804 0.2240 0. 1962 
LWLS 0.6577 0.3973 0.2240 0.2177 
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Table 4:56: ECM Results for JM1-13C Models Applied to KC2 datasets, c=lO 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 0.7885 0.5530 0.3995 0.3756 
TD 0.7500 0.4382 0. 1801 0 .1459 
LR 0.5750 0.2997 0. 1386 0.0981 
LOC 0.5558 0.2781 0 . 1 155 0.0766 
GP 0.5712 0.2956 0. 1339 0 .1 172 
LBOOST 0.5769 0.3019 0 . 1 178 0.0766 
RBM 0.5885 0 .3148 0. 1547 0 . 1459 
BAG 0.5904 0.3389 0. 1801 0 . 1435 
RSET 0.6500 0.3866 0.2333 0 .1938 
MCOST 0.6038 0.3321 0 . 1732 0.1459 
ABOOST 0.5962 0.3474 0.1917 0 . 1603 
DTABLE 0.5596 0 .2827 0. 1201 0.0981 
ADT 0.5942 0.3430 0.1640 0. 1268 
SMO 0.6327 0.3667 0.1894 0 . 1603 
IB1 0.6154 0.3710 0.2194 0 .1890 
IBK 0.6481 0.3861 0.2125 0 .1866 
PART 0.5923 0.3411  0. 1824 0 .1555 
ONER 0.5942 0.3218 0.1617 0.1411 
JRIP 0.5962 0 .3238 0.1640 0 . 1220 
RDR 0.5596 0.3043 0. 1432 0 .1 100 
J48 0.5942 0.3216 0.1617 0 .1220 
NBAYES 0.5654 0.2888 0. 1293 0.0933 
HPIPES 0.6692 0 .4078 0.2564 0.2368 
LWLS 0.6404 0.3971 0.2240 0.1890 
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Table 4.57: ECM Results for JMl-8850 Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .4519 1 . 1686 0.9931 0.9139 
TD 1 .0673 0.6191 0.4850 0.5287 
LR 1 .2615 0 .8365 0.5358 0.4474 
LOC 0.9538 0.4883 0.2009 0.1388 
GP 0.9288 0 .4603 0 .1709 0. 1483 
LBOOST 1 . 1231 0 .7263 0.4573 0.4211 
RBM 1 . 1788 0 .7915 0.4827 0 .4809 
BAG 1 .2212 0 .7827 0.6143 0.5766 
RSET 1 .3519 0 .9906 0.6998 0 .6077 
MCOST 1 .5654 1 . 2981 1 .0831 1 .0646 
ABOOST 1 .7558 1 .6153 1 .4734 1 .4067 
DTABLE 1 .2288 0 .8436 0.5404 0.4952 
ADT 1 .0808 0 .6812 0.4134 0.3660 
SMO 1 . 1481 0 .7066 0.3926 0.3517 
IB1 2.2250 2 .0139 1 .9376 1 .9952 
IBK 1 .3038 0.9862 0.6998 0 .6651 
PART 1 .5462 1 . 1923 1 .0139 0.9904 
ONER 1 .2212 0 .8436 0.5404 0 .5407 
JRIP 1 . 1 788 0.8392 0.5358 0.4976 
RDR 1 .0558 0 .7425 0.5289 0.4833 
J48 1 .4096 1 . 1336 0.9076 0.8780 
NBAYES 0.9577 0 .4922 0.2079 0 .1 148 
HPIPES 1 .5269 1 . 5082 1 .2610 1 .2560 
LWLS 1 .3596 1 .0579 0.8222 0.8397 

4.8.4 NECM Results for JMl Models Applied to the KC2 Datasets, 

c=20 

In this subsection, the predictive performance of the classification models 

built on the JMl datasets and evaluated on the on the KC2 datasets are presented 

in Tables 4 .57 to 4 .62 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=20. 
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Table 4.58: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .4884 1 .2509 1 . 1293 1 .0598 
TD 1 .0000 0.6104 0.4434 0.4498 
LR 1 .0500 0.5963 0.2748 0.2177 
LOC 0.9538 0.4883 0 .2009 0 . 1388 
GP 0.9346 0.5097 0.2309 0.2249 
LBOOST 0.9942 0.5815 0.3025 0.2488 
RBM 0.9692 0.5053 0.2217 0.2129 
BAG 1 .0712 0.7158 0.5427 0.4952 
RSET 1 . 1 154 0.7175 0.4111  0.3158 
MCOST 0.9596 0 .5885 0.3580 0.3517 
ABOOST 1 .5442 1 .3231 1 . 1594 1 .0909 
DTABLE 1 . 1442 0.7092 0.4388 0.3876 
ADT 1 . 1577 0.7630 0.4988 0.4641 
SMO 1 .2231 0.7932 0.4850 0.4019 
IB1 1 .7058 1 .5134 1 .4088 1 .3995 
IBK 1 .2750 0.8562 0.5497 0.5072 
PART 1 . 1212 0.7902 0.6674 0.6220 
ONER 1 . 1519 0 .7158 0.4527 0.3995 
JRIP 0.9654 0.5902 . 0 .3118 0.3062 
RDR 1 . 1000 0.7836 0.5173 {).4713 
J48 1 . 1808 0.7477 0.4827 0.4474 
NBAYES 1.0327 0.5767 0 .2979 0.2057 
HPIPES 1 .6769 1 .4964 1 .2425 1 .2297 
LWLS 1 .1692 0.8260 0.5219 0.4785 
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Table 4.59: ECM Results for JM1-23C Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .4519 1 . 1660 0.9931 0.9187 
TD 1 .2154 0.4800 0.3395 0 .2871 
LR 0.9442 0 .4773 0 . 1894 0 .1746 
LOC 0.9538 0 .4883 0.2009 0 . 1388 
GP 1 .0404 0.5880 0.3072 0.2440 
LBOOST 0.9827 0.5233 0.2379 0.2177 
RBM 1 . 1000 0.6961 0 .4273 0 .4306 
BAG 1 .2231 0.8436 0 .5866 0 .4880 
RSET 1 . 1981 0.7762 0.5150 0 .4737 
MCOST 1 .3692 1 .0168 0 .7321 0 .6459 
ABOOST 1 .4635 1 . 1292 0.9053 0.8254 
DTABLE 1 . 1 173 0.6874 0 .4226 0.3254 
ADT 1 .0942 0 .6489 0 .3718 0 .3565 
SMO 1 . 1019 0 .6567 0 .3418 0 .2560 
IB1 1 .5558 1 .2876 1 .0647 1 .0383 
IBK 1 . 1096 0.6655 0.3464 0.2967 
PART 1 .2808 0.9127 0.6651 0.5837 
ONER 0.9519 0.5294 0 .2448 0. 1842 
JRIP 1 .3154 0 .9499 0 .7044 0 .7129 
RDR 1 .0827 0 .6353 0.3141 0.31 10 
J48 1 . 1615 0.8177 0.6097 0.5694 
NBAYES 0.9731 0.5097 0 .2263 0 .1 196 
HPIPES 1 . 1577 0.7175 0.4457 0.3565 
LWLS 1 . 1058 0 .7136 0.4480 0.3947 
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Table 4.60: ECM Results for JM1-20C Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .3019 0 .9905 0.8060 0.7703 
TD 1 .4962 0.7372 0 .3764 0.3708 
LR 0.9519 0 .4883 0 .2009 0 .1842 
LOC 0.9288 0.4603 0 .1709 0. 1531 
GP 0.9135 0.4861 0 . 1986 0.1866 
LBOOST 1 .2096 0.7827 0.4758 0.4761 
RBM 1 .0827 0 .6331 0.3603 0.3134 
BAG 1 .2904 0.9171 0.6166 0.5287 
RSET 1 .0731 0 .6222 0.3487 0.2967 
MCOST 1 .3654 1 .0037 0 .7136 0 .6770 
ABOOST 1 . 1827 0.8497 0.5566 0.4689 
DTABLE 1 .0135 0 .6073 0 .3788 0.3278 
ADT 1 . 1635 0.7762 0 .4688 0.4187 
SMO 1 .0827 0.6353 0.3141 0.2584 
IB1 1 .2615 0.9429 0.7044 0.6651 
IBK 1 . 1269 0.7285 0.4203 0.3660 
PART 1 .4404 1 .0986 0.8245 0.7967 
ONER 0.9654 0.5014 0.2148 0.1986 
JRIP 1 .3000 0 .9319 0.6351 0.5502 
RDR 0.9635 0.5880 0.3072 0.2584 
J48 1 .3462 0.9884 0 .7413 0.6627 
NBAYES 1 .0442 0.5898 0.3118 0.2129 
HPIPES 1 .2558 0.8431 0.5427 0.5048 
LWLS 1 .0923 0.7438 0.4850 0.3900 
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Table 4.61 :  ECM Results for JM1-17C Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .3846 0.9949 0 .7598 0.6722 
TD 1 .4981 0.7394 0 .2471 0. 1 172 
LR 0.9942 0.5338 0 .2032 0 . 1842 
LOC 0.9288 0.4603 0 . 1709 0 .1531 
GP 0.9827 0.5207 0.2356 0 . 1770 
LBOOST 0.9615 0.4992 0.2148 0.2010 
RBM 1 . 1904 0.6331 0.4434 0.3493 
BAG 0.9865 0 .5705 0 .2425 0 .1842 
RSET 1 .0192 0.6506 0.3764 0.3325 
MCOST 1 . 1442 0 .7525 0.4388 0.3876 
ABOOST 1 .2058 0.8195 0 .5173 0.4713 
DTABLE 1 .2231 0.7981 0.4919 0 .4402 
ADT 1 .0154 0.5618 0 .2379 0 .1818 
SMO 1 .0923 0.6462 0.3256 0.2727 
IB1 1 .2519 0.9214 0 .6236 0.5837 
IBK 1 . 1058 0 .6615 0.3441 0.2919 
PART 1 .2519 0.8716 0.5704 0.5335 
ONER 0.9788 0.5167 0 .2309 0.2129 
JRIP 0.9808 0.5185 0.2356 0.2273 
RDR 1 .0058 0.5963 0 .2748 0.2656 
J48 1 .0538 0.6528 0.3903 0.3373 
NBAYES 0.9750 0.5119 0.2286 0. 1699 
HPIPES 0.9923 0.6187 0.3395 0.2919 
LWLS 1 . 1385 0.7005 0.3857 0.3852 
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Table 4.62: ECM Results for JM1-13C Models Applied to KC2 datasets, c=20 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .4231 1 .0295 0.7459 0.7105 
TD 1 .3846 0.8064 0.2956 0.2416 
LR 0.9788 0.5163 0.2309 0. 1699 
LOC 0.9404 0 .4730 0. 1848 0 . 1244 
GP 0.9558 0 .4905 0.2032 0 .1890 
LBOOST 0.9808 0.5185 0. 1871 0 .1244 
RBM 1 .0115 0.5530 0.2702 0 .2656 
BAG 0.9942 0.5771 0.2956 0 .2392 
RSET 1 . 1 1 15  0.6681 0.3949 0.3373 
MCOST 1 .0462 0.5920 0.3118 0 .2656 
ABOOST 1 .0192 0.6073 0.3303 0.2799 
DTABLE 0.9250 0.4559 0. 1663 0 . 1459 
ADT 1 .0173 0.6029 0.2794 0 .2225 
SMO 1 . 1 135 0 .6698 0.3510 0 .3038 
IB1 1 .0769 0 .6742 0.4042 0 .3565 
IBK 1 . 1481 0.7110 0.3972 0.3541 
PART 0.9962 0 .5793 0.2979 0.2512 
ONER 0.9788 0.5167 0.2309 0.2129 
JRIP 1.0000 0.5404 0.2564 0 .1938 
RDR 0.9250 0.4992 0.2125 0 .1579 
J48 0.9981 0.5382 0.2540 0 .1938 
NBAYES 0.9692 0.5053 0.2217 0. 1651 
HPIPES 1 . 1885 0.7543 0.4873 0.4522 
LWLS 1 . 1212 0.7219 0.4088 0.3565 
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Table 4.63 :  ECM Results for JM1-8850 Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 2.0865 1 .6884 1 .4319 1 .3206 
TD 1 .4904 0.8357 0.6005 0 .6722 
LR 1 .8192 1 . 2264 0.7898 0.6627 
LOC 1 .3385 0.6832 0 .2702 0 . 1866 
GP 1 .2942 0.6335 0.2171 0 .1962 
LBOOST 1 .6038 1 .051 1  0 .6651 0.6124 
RBM 1 .6788 1 . 1380 0.6905 0.6962 
BAG 1 . 7596 1 .1292 0.8915 0 .8397 
RSET 1 .9481 1 .4453 1 .0231 0.8947 
MCOST 2.2769 1 .9045 1 .5912 1 .5670 
ABOOST 2.5250 2.3300 2 . 1201 2.0287 
DTABLE 1 .7481 1 .2 1 17  0 .7714 0 .7105 
ADT 1 .5231 0 .9628 0.5751 0.5096 
SMO 1 .6481 1 .0315 0 .5774 0.5191 
IB1 3.2250 2.9235 2.8152 2.9043 
IBK 1 .8808 1 .4410 1 .0231 0 .9761 
PART 2.2385 1 . 7337 1 .4758 1 .4450 
ONER 1 . 7404 1 .2117  0 .7714 0 .7799 
JRIP 1 .6788 1 .2073 0 .7667 0 .7129 
RDR 1 .4596 1 .0240 0 .7136 0.6507 
J48 2.0442 1 .6534 1 .3233 1 .2847 
NBAYES 1 .3615  0.7088 0.3002 0. 1627 
HPIPES 2.0269 2.0063 1 .6305 1 .6148 
LWLS 1 .9558 1 .5344 1 . 1917 1 .2225 

4.8.5 NECM Results for JMl Models Applied to the KC2 Datasets, 

c=30  

In this subsection, the predictive performance of the classification models 

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented 

in Tables 4 .63 to 4.68 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=30. 
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Table 4.64: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 2. 1423 1 .8139 1 .6374 1 .5383 
TD 1 .4038 0 .8269 0.5589 0.5694 
LR 1 .4923 0 .8562 0.3903 0.3134 
LOC 1 .3385 0.6832 0.2702 0. 1866 
GP 1 .3192 0 .7263 0.3233 0.3206 
LBOOST 1 .3981 0.8197 0.4180 0.3445 
RBM 1 .3731 0 .7219 0.3141 0.3086 
BAG 1 .5135 1 .0190 0.7737 0.7105 
RSET 1 .5962 1 .0424 0.5958 0.4593 
MCOST 1 .3250 0 .8051 0.4734 0.4713 
ABOOST 2. 1981 1 .8862 1 .6443 1 .5455 
DTABLE 1 .6250 1 .0124 0.6236 0.5550 
ADT 1 .6577 1 . 1096 0.7298 0.6794 
SMO 1 .7615 1 . 1614 0.7159 0.5933 
IB1 2 .4558 2 . 1848 2.0323 2.0215 
IBK 1 .8327 1 .2461 0.8037 0.7464 
PART 1.5635 1 .0934 0.9215 0.8612 
ONER 1 .6327 1 .0190 0.6374 0 .5670 
JRIP 1 .3500 0 .8285 0.4273 0 .4258 
RDR 1 .5231 1 .0868 0. 7021 0.6388 
J48 1 .7000 1 .0942 0.7136 0.6627 
NBAYES 1 .4750 0.8365 0.4365 0.3014 
HPIPES 2.2923 2.0378 1 .6582 1 .6364 
LWLS 1 .6692 1 . 1942 0.7529 0.6938 
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Table 4.65: ECM Results for JM1-23C Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 2. 1057 1 . 7074 1 .4550 1 .3493 
TD 1 .7346 0.6532 0.4088 0 .3349 
LR 1 .3288 0.6723 0.2587 0 .2464 
LOC 1 .3385 0.6832 0.2702 0. 1866 
GP 1 .4635 0.8263 0.4226 0.3397 
LBOOST 1.3673 0 .7182 0.3072 0 .2895 
RBM 1 .5615 0 .9993 0.6120 0 .6220 
BAG 1 .7423 1 .2117 0.8406 0.7033 
RSET 1 .7173 1 . 1227 0 .7460 0 .6890 
MCOST 1 .9654 1 .4716 1 .0554 0.9330 
ABOOST 2 .1 173 1 .6490 1 .3210 1 .2081 
DTABLE 1 .5981 0.9906 0.6074 0 .4689 
ADT 1 .5365 0 .9087 0.5104 0.5000 
SMO 1 .5827 0 .9599 0.5035 0 .3756 
IB1 2.2481 1 .8724 1 .5497 1 .5167 
IBK 1 .5904 0.9687 0.5081 0.4402 
PART 1 .8385 1 .3242 0.9654 0.8469 
ONER 1 .3365 0.7460 0.3372 0.2560 
JRIP 1 .8731 1 .3614 1 .0046 1 .0239 
RDR 1 .5442 0 .9168 0.4527 ·0.4545 
J48 1 .6423 1 . 1643 0.8637 0.8086 
NBAYES 1 .3769 0 .7263 0.3187 0. 1675 
HPIPES 1 .6577 1 .0424 0.6536 0 .5239 
LWLS 1 .5673 1 .0168 0.6328 0 .5622 

153 



Table 4.66: ECM Results for JM1-20C Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 1 .8789 1 .4453 1 . 1755 1 . 1292 
TD 2 . 1885 1 .0621 0.5150 0.5144 
LR 1 .3365 0.6832 0.2702 0.2560 
LOC 1 .2942 0.6335 0.2171 0.2010 
GP 1 .2788 0 .6810 0.2679 0.2584 
LBOOST 1 . 7288 1 . 1292 0.6836 0.6914 
RBM 1 .5442 0.9146 0.5219 0.4569 
BAG 1 .8481 1 .3285 0.8938 0.7679 
RSET 1 .5346 0.9037 0.5104 0.4402 
MCOST 1 .9615 1 .4585 1 .0370 0.9880 
ABOOST 1 . 7019 1 .2395 0.8106 0.6842 
DTABLE 1 .4365 0.8672 0.5404 0.4713 
ADT 1 . 6635 1 . 1227 0.6767 0.6100 
SMO 1 . 5442 0 .9168 0.4527 0.3780 
IB1 1 . 8 192 1 .3760 1 .0277 0.9761 
IBK 1 .6077 1 .0533 0.6051 0.5335 
PART 2 .0942 1 .6184 1 .2171 1 . 1794 
ONER 1 .3500 0.6963 0.2841 0.2703 
JRIP 1 .8769 1 .3651 0.9353 0.8134 
RDR 1 .3481 0.8263 0.4226 0.3541 
J48 1 .9423 1 .4432 1 .0878 0.9737 
NBAYES 1 .4865 0.8497 0.4503 0.3086 
HPIPES 1 .8 135 1 .2329 0.7968 0.7440 
LWLS 1 .5538 1 .0687 0.6928 0.5574 
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Table 4.67: ECM Results for JM1-17C Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 2.0000 1 .4497 1 . 1062 0.9832 
TD 2.1904 1 .0643 0.3395 0.1411 
LR 1 .3981 0.7504 0.2725 0.2560 
LOC 1 .2942 0.6335 0.2171 0.2010 
GP 1 .3865 0.7372 0.3279 0.2488 
LBOOST 1 .3462 0.6941 0.2841 0.2727 
RBM 1 .7096 0.9146 0.6513 0.5167 
BAG 1 .3904 0.8088 0.3349 0.2560 
RSET 1 .4423 0.9321 0.5381 0.4761 
MCOST 1 .6250 1 .0774 0.6236 0.5550 
ABOOST 1 . 7250 1 . 1877 0 .7483 0.6866 
DTABLE 1 . 7423 1 . 1446 0.6998 0.6316 
ADT 1 .4385 0.8000 0.3303 0 .2536 
SMO 1 .5538 0.9278 0.4642 0.3923 
IB1 1 .7904 1 .3329 0.9007 0.8469 
IBK 1 .5673 0 .9431 0.4827 0.4115 
PART 1 . 7904 1 .2614 0.8245 0.7727 
ONER 1 .3635 0.7116 0.3002 0.2847 
JRIP 1 .3846 0.7350 0.3279 0.3230 
RDR 1 .4288 0.8562 0.3903 0.3852 
J48 1 .4962 0.9343 0.5520 0.4809 
NBAYES 1 .3788 0.7285 0.3210 0 .2416 
HPIPES 1 .3769 0 .8569 0.4550 0.3876 
LWLS 1 .6192 1 .0037 0.5473 0.5526 
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Table 4.68: ECM Results for JM1-13C Models Applied to KC2 datasets, c=30 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 2.0577 1 .5060 1 .0924 1 .0454 
TD 2.0192 1 . 1 745 0.4111  0.3373 
LR 1 .3827 0 .7329 0.3233 0 .2416 
LOC 1 .3250 0.6679 0 .2540 0 .1722 
GP 1 .3404 0.6854 0.2725 0.2608 
LBOOST 1 .3846 0 .7350 0.2564 0 .1722 
RBM 1.4346 0 .7913 0.3857 0.3852 
BAG 1 .3981 0.8153 0.41 1 1  0.3349 
RSET 1 .5731 0.9496 0.5566 0 .4809 
MCOST 1 .4885 0.8519 0 .4503 0.3852 
ABOOST 1.4423 0.8672 0 .4688 0.3995 
DTABLE 1 .2904 0.6292 0.2125 0 . 1938 
ADT 1 .4404 0 .8628 0.3949 0.3182 
SMO 1 .5942 0 .9730 0.5127 0.4474 
IB1 1 .5385 0 .9774 0.5889 0 .5239 
IBK 1 .6481 1 .0358 0 .5820 0.5215 
PART 1 .4000 0 .8175 0.4134 0.3469 
ONER 1 .3635 0.7116 0.3002 0.2847 
JRIP 1 .4038 0 .7569 0 .3487 0.2656 
RDR 1 .2904 0.6941 0.2818 0.2057 
J48 1 .4019 0 .7547 0.3464 0.2656 
NBAYES 1 .3731 0 .7219 0.3141 0.2368 
HPIPES 1 .7077 1 . 1008 0.7182 0.6675 
LWLS 1 .6019 1 .0468 0.5935 0.5239 
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Table 4.69: ECM Results for JM1-8850 Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.3558 2.7279 2.3095 2 . 1339 
TD 2.3365 1 .2688 0.8314 0.9593 
LR 2.9346 2.0060 1 .2979 1 .0933 
LOC 2. 1077 1 .0730 0.4088 0.2823 
GP 2.0250 0.9801 0.3095 0.2919 
LBOOST 2.5654 1 .7009 1 .0808 0.9952 
RBM 2.6788 1 .8310 1 . 1062 1 . 1268 
BAG 2.8365 1 .8223 1 .4457 1 .3660 
RSET 3. 1404 2.3549 1 .6697 1 .4689 
MCOST 3.7000 3 .1173 2.6074 2.5718 
ABOOST 4.0635 3.7594 3.4134 3.2727 
DTABLE 2.7865 1 .9481 1 .2333 1 . 1411  
ADT 2.4077 1 .5259 0.8984 0 .7967 
SMO 2.6481 1 .6812 0.9469 0 .8541 
IB1 5.2250 4.7427 4.5704 4.7225 
IBK 3.0346 2.3506 1 .6697 1 .5981 
PART 3.6231 2.8165 2.3995 2 .3541 
ONER 2.7788 1 .9481 1 .2333 1 .2584 
JRIP 2.6788 1 .9437 1 .2286 1 . 1435 
RDR 2.2673 1 .5871 1 .0831 0.9856 
J48 3.3135 2.6929 2 .1547 2 .0981 
NBAYES 2. 1692 1 . 1419 0.4850 0 .2584 
HPIPES 3.0269 3.0026 2.3695 2.3325 
LWLS 3.1481 2.4873 1 .9307 1 .9880 

4.8.6 NECM Results for JMl Models Applied to the KC2 Datasets, 

c=50  

In this subsection, the predictive performance of the classification models 

built on the JM1 datasets and evaluated on the on the KC2 datasets are presented 

in Tables 4 .69 to 4. 7 4 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=50. 
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Table 4. 70: ECM Results for JMl-4425 Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.4499 2 .9401 2.6536 2 .4952 
TD 2.2 1 15 1 . 2601 0.7898 0 .8086 
LR 2.3769 1 .3760 0.6212 0 .5048 
LOC 2 .1077 1 .0730 0.4088 0.2823 
GP 2.0885 1 . 1594 0.5081 0.5120 
LBOOST 2.2058 1 . 2962 0.6490 0 .5359 
RBM 2 .1808 1 . 1551 0.4988 0.5000 
BAG 2.3981 1 .6254 1 .2356 1 . 1411 
RSET 2.5577 1 .6921 0.9654 0 .7464 
MCOST 2.0558 1 . 2382 0 .7044 0.7105 
ABOOST 3.5058 3.0123 2.6143 2 .4545 
DTABLE 2.5865 1 .6188 0.9931 0 .8900 
ADT 2.6577 1 .8026 1 . 1917 1 . 1 100 
SMO 2.8385 1 .8977 1 . 1778 0.9761 
IB1 3.9558 3 .5275 3 .2794 3 .2656 
IBK 2 .9481 2 .0257 1 .3118 1 .2249 
PART 2.4481 1 .6998 1 .4296 1 .3397 
ONER 2.5942 1 .6254 1 .0069 0.9019 
JRIP 2 . 1 192 1 .3049 0.6582 0.6651 
RDR 2.3692 1 .6932 1 .0716 0.9737 
J48 2 .7385 1 . 7873 1 . 1755 1 .0933 
NBAYES 2.3596 1 .3563 0 .7136 0.4928 
HPIPES 3.5231 3 . 1207 2 .4896 2.4498 
LWLS 2.6692 1 .9306 1 .2148 1 . 1244 
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Table 4. 71: ECM Results for JM1-23C Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.4134 2.7903 2 .3787 2 .2105 
TD 2.7731 0.9998 0.5473 0.4306 
LR 2.0981 1 .0621 0.3972 0.3900 
LOC 2.1077 1.0730 0.4088 0 .2823 
GP 2.3096 1 .3027 0.6536 0.5311  
LBOOST 2. 1365 1 . 1080 0.4457 0 .4330 
RBM 2.4846 1 .6057 0.9815 1 .0048 
BAG 2.7808 1 .9481 1 .3487 1 . 1340 
RSET 2.7558 1 .8157 1 .2079 1 . 1 196 
MCOST 3. 1577 2.3812 1 .  7021 1 .5072 
ABOOST 3.4250 2.6886 2 . 1524 1 .9737 
DTABLE 2.5596 1.5969 0.9769 0.7560 
ADT 2.4212 1 .4285 0.7875 0 .7871 
SMO 2.5442 1 .5663 0.8268 0.6148 
IB1 3.6327 3.0419 2.5196 2.4737 
IBK 2.5519 1 .5751 0.8314 0 .7273 
PART 2.9538 2. 1471 1 .5658 1 .3732 
ONER 2. 1058 1 . 1791 0.5219 0 .3995 
JRIP 2.9885 2.1843 1 .6051 1 .6459 
RDR 2.4673 1 .4799 0.7298 0 .7416 
J48 2.6038 1.8573 1 .3718 1 .2871 
NBAYES 2 .1846 1 . 1594 0.5035 0 .2632 
HPIPES 2.6577 1 .6921 1 .0693 0.8589 
LWLS 2.4904 1 .6232 1 .0023 0 .8971 
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Table 4. 72: ECM Results for JM1-20C Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.0327 2.3549 1 .9146 1 .8469 
TD 3.5731 1 .7118 0.7921 0.8014 
LR 2.1058 1 .0730 0.4088 0.3995 
LOC 2.0250 0.9801 0.3095 0.2967 
GP 2.0096 1 .0708 0 .4065 0.4019 
LBOOST 2.7673 1 .8223 1 .0993 1 . 1220 
RBM 2.4673 1 .4777 0.8453 0.7440 
BAG 2.9635 2. 1515 1 .4480 1 .2464 
RSET 2 .4577 1 .4668 0.8337 0.7273 
MCOST 3 .1538 2.3681 1 .6836 1 .6100 
ABOOST 2.7404 2.0191 1 .3187 1 . 1 148 
DTABLE 2.2827 1 .3869 0.8637 0.7584 
ADT 2.6635 1 .8157 1 .0924 0.9928 
SMO 2.4673 1 .4799 0.7298 0.6172 
IB1 2.9346 2.2423 1 .6744 1 .5981 
IBK 2.5692 1 .7030 0.9746 0.8684 
PART 3.4019 2.6579 2.0023 1 .9450 
ONER 2 . 1 192 1 .0862 0.4226 0.4139 
JRIP 3.0308 2.2313 . 1 .5358 1.3397 
RDR 2 . 1 173 1 .3027 0.6536 0.5455 
J48 3. 1346 2 .3528 1 .7806 1 .5957 
NBAYES 2.3712 1 .3694 0.7275 0.5000 
HPIPES 2.9288 2.0126 1 .3048 1 .2225 
LWLS 2.4769 1 .7184 1 . 1085 0.8923 
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Table 4. 73: ECM Results for JM1-17C Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.2308 2 .3593 1 .7990 1 .6052 
TD 3.5750 1 . 7140 0.5242 0.1890 
LR 2.2058 1 . 1835 0.411 1  0.3995 
LOC 2.0250 0.9801 0.3095 0.2967 
GP 2 . 1942 1 . 1704 0.5127 0.3923 
LBOOST 2 . 1 154 1 .0840 0.4226 0.4163 
RBM 2 .7481 1 .4777 1 .0670 0.8517 
BAG 2. 1981 1 .2852 0.5196 0.3995 
RSET 2 .2885 1 .4952 0.8614 0.7632 
MCOST 2 .5865 1 . 7271 0.9931 0.8900 
ABOOST 2 .7635 1 .9240 1 .2102 1 . 1 172 
DTABLE 2 .7808 1 .8376 1 . 1 155 1 .0144 
ADT 2.2846 1 .2765 0.5150 0.3971 
SMO 2 .4769 1 .4909 0.7413 0.6316 
IB1 2 .8673 2 . 1559 1 .4550 1 .3732 
IBK 2.4904 1 .5062 0.7598 0.6507 
PART 2.8673 2 .0410 1 .3326 1 .2512 
ONER 2 . 1327 1 . 1015 0.4388 0.4282 
JRIP 2 . 1923 1 . 1682 0.5127 0.5144 
RDR 2.2750 1 .3760 0.6212 0.6244 
J48 2 .3808 1 .4974 0.8753 0.7679 
NBAYES 2. 1865 1 . 1616 0.5058 0.3852 
HPIPES 2 . 1462 1 .3334 0.6859 0.5789 
LWLS 2.5808 1 .6101 0.8707 0.8876 
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Table 4.74: ECM Results for JM1-13C Models Applied to KC2 datasets, c=50 

I Methods I KC2-520 I KC2-23C I KC2-17C I KC2-13C I 
CBR 3.3269 2 .4589 1 . 7852 1 .7153 
TD 3.2885 1 .9109 0.6420 0 .5287 
LR 2.1904 1 . 1660 0 .5081 0.3852 
LOC 2.0942 1 .0577 0.3926 0 .2679 
GP 2. 1096 1 .0752 0.411 1  0.4043 
LBOOST 2. 1923 1 . 1682 0 .3949 0.2679 
RBM 2.2808 1 .2677 0.6166 0.6244 
BAG 2.2058 1 .2918 0.6420 0.5263 
RSET 2.4962 1 .5127 0 .8799 0.7679 
MCOST 2.3731 1 .3716 0.7275 0.6244 
ABOOST 2.2885 1 .3869 0 .7460 0 .6388 
DTABLE 2.0212 0 .9757 0.3048 0.2895 
ADT 2.2865 1 .3826 0.6259 0 .5096 
SMO 2.5558 1 . 5794 0 .8360 0 .7344 
IB1 2 .4615 1 .5838 0.9584 0 .8589 
IBK 2.6481 1 .6855 0.9515 0.8565 
PART 2.2077 1 . 2940 0.6443 0 .5383 
ONER 2. 1327 1 . 1015 0 .4388 0 .4282 
JRIP 2.2115 1 . 1901 0 .5335 0.4091 
RDR 2.0212 1 .0840 0 .4203 0.3014 
J48 2.2096 1 . 1879 0.5312 0.4091 
NBAYES 2 .1808 1 . 1551 0.4988 0 .3804 
HPIPES 2.7462 1 . 7938 1 . 1801 1 .0981 
LWLS 2.5635 1 .6965 0.9630 0 .8589 
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Table 4. 75: ECM Results for KC2-520 Models Applied to JMl datasets, c=lO 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 0.8688 0.6993 0 .5813 0.495"8 0.3892 
TD 1 . 1027 0.8965 0.7881 0.6966 0.5516 
LR 0.9137 0.7022 0 .5594 0.4328 0.2741 
LOC 0.9590 0.7434 0.5793 0.4257 0.2252 
GP 0.9898 0.7795 0 .6253 0.4836 0.3002 
ANN 1 .4840 1 .3721 1 .3259 1 .2670 1 . 1691 
LBOOST 0.9149 0.7360 0.6111  0.5169 0.4071 
RBM 0.9363 0.7351 0.5949 0 .4741 0 .3138 
BAG 0.9447 0.7611  0.6145 0.4932 0.3231 
RSET 1 .0315 0.8754 0 .7550 0.6594 0.5129 
MCOST 0.9105 0.7506 0.6416 0.5430 0.4211  
ABOOST 1 .0757 0.9348 0.8401 0.7678 0.6740 
DTABLE 0.9099 0.7059 0.5533 0.4311  0.2638 
ADT 0.9454 0.7488 0 .6053 0.4793 0 .3195 
SMO 0.9280 0.7197 0.5762 0.4496 0.2925 
IB1 0.9920 0.8724 0.8049 0 .7848 0 .6248 
IBK 0.9478 0 .7053 0.5806 0.4483 0 .2914 
PART 1 .0134 0.8457 0 .7108 0 .5846 0 .4237 
ONER 0.9318 0.7122 0.5455 0 .3960 0 . 1987 
JRIP 0.9472 0.7496 0.6048 0 .4787 0.3171 
RDR 0.9472 0.7496 0.6048 0 .4787 0.3171 
J48 0.9472 0.7496 0.6048 0.4787 0.3171 
NBAYES 0.9131 0 .6950 0 .5313 0.3905 0.2017 
HPIPES 1 . 1041 0.9258 0.8063 0.7043 0.5530 
LWLS 0.9800 0.7931 0.6482 0.5246 0 .3727 

4.8. 7 NECM Results for KC2 Models Applied to the JMl Datasets, 

c=lO 

In this subsection, the predictive performance of the classification models 

built on the KC2 datasets and evaluated on the on the JMl datasets are presented 

in Tables 4. 75 to 4. 79 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=lO. 
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Table 4. 76: ECM Results for KC2-260 Models Applied to JMl datasets, c=lO 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 0.8696 0 .7176 0.6034 0 .5270 0.4306 
TD 1 .0553 0.7782 0 .5951 0 .4536 0 .2683 
LR 0.8922 0.6952 0.5578 0 .4430 0 .2962 
LOC 0.9496 0 .7326 0.5674 0 .4165 0 .2162 
GP 0.9506 0 .7963 0.6745 0.5802 0.4512 
ANN 1 .7985 1 . 7963 1 .8074 1 . 7883 1 . 7396 
LBOOST 0.9369 0.8157 0.7443 0.6873 0 .6208 
RBM 0.9155 0.7248 0.6020 0.5057 0 .3898 
BAG 0.9282 0.7722 0 .6441 0 .5351 0 .3950 
RSET 0.9606 0 .7520 0.5985 0.4730 0 .3000 
MCOST 0.9476 0 .7833 0.6603 0.5624 0.4279 
ABOOST 1 .0872 0.9822 0.8991 0.8292 0 .7386 
DTABLE 0.9469 0.7582 0.6301 0.5303 0.3897 
ADT 1 .0275 0 .8849 0.7621 0.6613 0 .5277 
SMO 0.9894 0.8028 0 .6769 0.5660 0.4234 
IB1 1 .0527 0 .9016 0.8273 0 .7940 0.6519 
IBK 0.9416 0. 7031 0 .5592 0.4407 0.2764 
PART 0.9845 0.8629 0.7807 0.7230 0.6431 
ONER 1 .0694 0 .9474 0.8645 0.7964 0.6772 
JRIP 0.9287 0 .7513 0.6392 0.5409 0 .4371 
RDR 0.8583 0.6676 0.5411  0.4380 0 .3223 
J48 1 .0797 1 .0053 0 .9713 0 .9377 0.9167 
NBAYES 0.9315 0 .7147 0 .5501 0 .4062 0.2240 
HPIPES 0.8654 0.6613 0.5212 0 .4180 0 .2829 
LWLS 1 . 1652 1 .0700 1 .0156 0.9416 0.8342 

164 



Table 4.77: ECM Results for KC2-23C Models Applied to JMl datasets ,  c=lO 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 0.8850 0 .7247 0 .6142 0.5285 0.4174 
TD 1 . 1096 0 .8162 0.6098 0.4602 0.2869 
LR 0.9844 0 . 7876 0.6447 0.5127 0.3449 
LOC 0.9590 0 .7434 0.5793 0.4257 0.2252 
GP 1 .0641 0 .8684 0 .7328 0.6092 0 .4367 
ANN 1 .8355 1 . 8462 1 .8623 1 .8471 1 .8044 
LBOOST 1 .0173 0 .8657 0 .7341 0 .6135 0 .4437 
RBM 0.9376 0 .7681 0.6550 0.5538 0.4159 
BAG 0.9799 0 .7845 0.6340 0.5097 0.3311 
RSET 0.9016 0 .6989 0.5517 0 .4257 0.2634 
MCOST 0.8818 0 .6863 0 .5456 0.4334 0.2887 
ABOOST 0.9781 0 .8061 0.6742 0.5724 0 .4269 
DTABLE 0.9750 0 .7640 0.6077 0 .4676 0.2777 
ADT 0.9729 0 .7896 0.6436 0.5182 0.3506 
SMO 0.9080 0 .6878 0.5285 0 .3954 0.2247 
IB1 1 .0156 0 .8478 0.8052 0.7708 0.6190 
IBK 0.9428 0 .6873 0 .5431 0 .4150 0.2190 
PART 0.9998 0 .8417 0 .7369 0 .6374 0.5041 
ONER 0.9190 0 .7188 0 .5689 0.4466 0.2852 
JRIP 0.9190 0 .7188 0.5689 0.4466 0.2852 
RDR 0.9282 0.7243 0 .5754 0 .4507 0.2847 
J48 0.9998 0 .8417 0 .7369 0 .6374 0.5041 
NBAYES 0.9247 0 .7098 0 .5460 0.4046 0.2145 
HPIPES 0.9068 0.6948 0 .5373 0 .4079 0.2382 
LWLS 0.9773 0.7905 0.6195 0.5109 0.3070 
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Table 4. 78: ECM Results for KC2-17C Models Applied to JMl datasets ,  c=lO 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 0.8571 0.6635 0.5296 0 .4281 0 .3020 
TD 1 .2027 0.8801 0.6326 0.4257 0.2162 
LR 0.9383 0.7337 0.5796 0 .4453 0.2751 
LOC 0.9718 0.7579 0.5951 0 .4432 0.2391 
GP 0.9619 0.7640 0 .6195 0.5044 0.3461 
ANN 1 .8177 1 .8281 1 .8426 1 .8260 1 .781 1  
LBOOST 0.9130 0.7133 0.5650 0 .4407 0.2819 
RBM 0.8919 0.6900 0.5493 0 .4269 0.2644 
BAG 0.9092 0.7032 0.5473 0.4128 0.2411  
RSET 0.9718 0.7579 0.5951 0.4432 0.2391 
MCOST 0.9132 0.7083 0.5569 0.4242 0.2518 
ABOOST 0.9115 0.7099 0.5608 0.4309 0.2651 
DTABLE 0.9423 0.7401 0.5904 0 .4563 0.2836 
ADT 0.9243 0.7115 0.5474 0.4068 0.2222 
SMO 0.9151 0.7002 0.5553 0 .4287 0 .2681 
IB1 0.9031 0.6925 0.5386 0 .4343 0 .2875 
IBK 0.9485 0.7074 0.5625 0.4528 0.2556 
PART 0.9440 0.7415 0.5927 0.4727 0.3098 
ONER 0.9472 0.7496 0.6048 0 .4787 0.3171 
JRIP 0.9085 0.7052 0.5585 0.4308 0.2697 
RDR 0.8931 0 .6863 0.5266 0.3889 0.2139 
J48 0.9249 0.7326 0.5889 0.4784 0.3265 
NBAYES 0.9200 0.7016 0.5370 0 .3949 0 .2110 
HPIPES 0.9145 0.7003 0.5441 0.4104 0.2322 
LWLS 0.8615 0.6665 0.5216 0 .4050 0.2669 
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Table 4. 79: ECM Results for KC2-13C Models Applied to JMl datasets, c=lO 

I Methods I JMl-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 0.8800 0.6912 0 .5583 0.4578 0 .3215 
TD 1 .2157 0 .9463 0 .7365 0.5813 0.3657 
LR 0.8860 0.7154 0.6166 0.5317 0 .4228 
LOC 0.9496 0 .7326 0.5674 0.4165 0.2162 
GP 0.9728 0 .7696 0.6201 0.4792 0 .3023 
ANN 1 . 8433 1 . 8601 1 . 8777 1 .8637 1 .8227 
LBOOST 0.9472 0 .7496 0.6048 0.4787 0.3171 
RBM 0.9298 0 .7308 0 .5921 0.4751 0 .3240 
BAG 0.9472 0 .7496 0.6048 0 .4787 0.3171 
RSET 0.9529 0 .7382 0 .5795 0.4403 0.2481 
MCOST 0.9472 0 .7496 0 .6048 0.4787 0.3171 
ABOOST 0.9472 0 .7496 0.6048 0.4787 0.3171 
DTABLE 0.9472 0.7496 0.6048 0 .4787 0.3171 
ADT 0.9586 0 .7587 0.6119 0.4834 0.3176 
SMO 0.9124 0.6970 0 .5497 0.4234 0.2608 
IB1 0 .9416 0 .7325 0 .5992 0 .4863 0 .3008 
IBK 0.9627 0 .7283 0.5910 0.4940 0.2929 
PART 0.9472 0 .7496 0.6048 0.4787 0.3171 
ONER 0.9472 0 .7496 0.6048 0.4787 0.3171 
JRIP 0.9472 0 .7496 0.6048 0.4787 0.3171 
RDR 0.9472 0 .7496 0.6048 0 .4787 0.3171 
J48 0.9472 0 .7496 0.6048 0.4787 0.3171 
NBAYES 0.8962 0 .6814 0 .5316 0.4000 0.2471 
HPIPES 0.8963 0.6823 0 .5203 0.3819 0.2076 
LWLS 0.9511  0 .7523 0.6062 0 .4735 0.3098 
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Table 4.80: ECM Results for KC2-520 Models Applied to JMl datasets, c=20 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .3185 1.0304 0.8357 0.6948 0 .5172 
TD 1 .9569 1 .5588 1 .3517 1 . 1837 0.8892 
LR 1 .5012 1 . 1463 0.9122 0 .6951 0.4171 
LOC 1 .6697 1 .3172 1 .0502 0 .7845 0.4214 
GP 1 .7345 1 .3917 1 . 1397 0.8937 0.5596 
ANN 2.9032 2.7121 2.6344 2 .5231 2.3316 
LBOOST 1 .4641 1 . 1634 0.9583 0 .7989 0.6133 
RBM 1 .5623 1 .2280 0.9955 0 .7877 0.5017 
BAG 1 .5719 1 .2733 1 .0319 0 .8249 0.5160 
RSET 1 .7468 1 .4940 1 .2905 1 . 1208 0.8538 
MCOST 1 .4201 1 . 1575 0.9789 0.8099 0.5940 
ABOOST 1 .8508 1 .6253 1 .4655 1 .3362 1 . 1663 
DTABLE 1 .5032 1 . 1642 0.9103 0 .7040 0 .4068 
ADT 1 .6031 1 .2815 1 .0439 0.8261 0.5390 
SMO 1 .5156 1 . 1638 0 .9276 0.7105 0 .4372 
IB1 1 .6078 1.3935 1 .2954 1 . 2869 0.9674 
IBK 1 .5625 1 . 1314 0.9460 0 .7393 0.4427 
PART 1 .7321 1 .4631 1 .2392 1 .0204 0 .7281 
ONER 1 .5815 1 .2167 0 .9418 0.6855 0.3368 
JRIP 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367 
RDR 1 .6082 1 .2848 1 .0447 0.8271 0.5367 
J48 1 .6082 1 .2848 1 .0447 0.8271 0.5367 
NBAYES 1 .5334 1 . 1699 0.8995 0.6589 0 .3231 
HPIPES 2.0069 1 .7216 1 .5231 1 .3406 1 .0552 
LWLS 1 .6399 1 .3347 1 .0881 0 .8804 0.5989 

4.8.8 NECM Results for KC2 Models Applied to the JMl Datasets, 

c=20 

In this subsection, the predictive performance of the classification models 

built on the KC2 datasets and evaluated on the on the JMl datasets are presented 

in Tables 4 .80 to 4 .84 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=20. 
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Table 4.81 :  ECM Results for KC2-260 Models Applied to JMl datasets, c=20 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .291 1 1 .0334 0.8423 0 .7170 0.5570 
TD 1 . 8971 1 .3699 1 .0238 0 .7521 0.3963 
LR 1 .4459 1 . 1 174 0.8909 0.6948 0 .4376 
LOC 1 .6377 1 .2807 1 .0101 0 .7512 0 .3908 
GP 1 .5382 1 .2879 1 .0849 0.9240 0 .6907 
ANN 3.5906 3.5920 3 .6149 3 .5766 3 .4791 
LBOOST 1 .4194 1 .2161 1 .0999 1 .0024 0.8952 
RBM 1 .4759 1 . 1548 0 .9505 0 .7862 0.5861 
BAG 1 .4740 1 .2214 1 .0110 0.8231 0.5679 
RSET 1 .6419 1 .2988 1 .0468 0.8319 0.5179 
MCOST 1 .5442 1 .2762 1 .0721 0.9032 0.6624 
ABOOST 1 .8115 1 .6432 1 .5048 1 .3810 1 .2209 
DTABLE 1 .5492 1 .2292 1 .0180 0.8515 0.6042 
ADT 1 . 7427 1 .5202 1 .3144 1 . 1363 0.8886 
SMO 1 .6504 1 .3355 1 . 1280 0.9400 0.6945 
IB1 1 . 7442 1 .4727 1 .3670 1 .3142 1 .0527 
IBK 1 .5450 1 .0920 0 .8909 0 .7046 0 .3928 
PART 1 .6003 1 .4046 1 .2656 1 . 1663 1 .0223 
ONER 1 . 8038 1 .6148 1 .4773 1 .3574 1 . 1345 
JRIP 1 .4880 1 . 1915 1 .0074 0.8394 0.6632 
RDR 1 .3205 0 .9974 0 .7899 0 .6160 0 .4221 
J48 1 . 7215 1 .5970 1 .5434 1 .4836 1 .4538 
NBAYES 1 .5586 1 . 1960 0 .9226 0.6761 0.3554 
HPIPES 1 .3479 1 .0001 0 .7671 0.5959 0.3660 
LWLS 2.0206 1 .8580 1 .7732 1 .6353 1 .4362 
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Table 4.82: ECM Results for KC2-23C Models Applied to JMl datasets, c=20 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .3404 1 .0687 0.8869 0 .7441 0.5555 
TD 2.0215 1 .4605 1 .0708 0 .7829 0.4532 
LR 1 . 7042 1 .3844 1 . 1479 0 .9168 0.61 10 
LOC 1 .6697 1 .3172 1 .0502 0 .7845 0.4214 
GP 1 .9273 1 .6155 1 .3934 1 . 1731 0.8492 
ANN 3.6660 3.6920 3.7245 3.6942 3.6088 
LBOOST 1 . 7450 1 .5126 1 .2963 1 .0810 0.7597 
RBM 1 .5049 1 .2237 1 .0387 0.8629 0.6188 
BAG 1 .6827 1 .3659 1 . 1 189 0.9032 0.5739 
RSET 1 .4632 1 . 1237 0.8805 0.6669 0.3815 
MCOST 1 .3869 1 .0572 0.8239 0.6354 0 .3852 
ABOOST 1 .6233 1 .3439 1 . 1240 0.9478 0 .6830 
DTABLE 1 .6993 1 .3544 1 .0982 0 .8551 0.5089 
ADT 1 .6373 1 .3403 1 .0989 0 .8816 0.5751 
SMO 1 .4979 1 . 1268 0.8630 0.6366 0 .3394 
IB1 1 .6506 1 .3856 1 .3056 1 .2699 0.9666 
IBK 1 .5824 1 . 1250 0.9071 0 .7180 0.3487 
PART 1 .6777 1 .4193 1 .2471 1 .0716 0.8300 
ONER 1 .5020 1 . 1680 0.9189 0.7120 0.4282 
JRIP 1 .5020 1 . 1680 0.9189 0.7120 0.4282 
RDR 1 .5305 1 . 1902 0.9436 0.7327 0 .4394 
J48 1 .6777 1 .4193 1 .2471 1 .0716 0.8300 
NBAYES 1 .5541 1 . 1963 0 .9241 0 .6805 0.3409 
HPIPES 1 .5079 1 .1543 0.8929 0.6717 0.3729 
LWLS 1 .6699 1 .3630 1 .0862 0 .8999 0 .5282 
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Table 4.83: ECM Results for KC2-17C Models Applied to JMl datasets, c=20 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .3057 0.9753 0 .7530 0 .5834 0 .3702 
TD 2.2682 1 .6592 1 . 1836 0 .7845 0 .3908 
LR 1 .5903 1 .2535 0.9985 0 .7664 0 .4597 
LOC 1 .7051 1 .3573 1 .0926 0 .8292 0.4553 
GP 1 .6478 1 .3249 1 .0862 0 .8874 0.6005 
ANN 3.6313 3.6559 3 .6852 3.6520 3 .5623 
LBOOST 1 .4881 1 . 1548 0 .9093 0.6986 0.4199 
RBM 1 .4388 1 . 1008 0.8697 0 .6621 0.3759 
BAG 1 .4854 1 . 1409 0.8818 0 .6526 0 .3509 
RSET 1 . 7051 1 .3573 1 .0926 0 .8292 0 .4553 
MCOST 1 .5098 1 . 1690 0.9195 0 .6926 0.3865 
ABOOST 1 .5025 1 . 1681 0.9234 0 .7024 0.41 14 
DTABLE 1 .6191 1 .2907 1 .0486 0.8166 0 .5014 
ADT 1 .5751 1 .2249 0.9550 0 .7144 0.3818 
SMO 1 .4925 1 . 1289 0 .8898 0 .6729 0.3928 
IB1 1 .4533 1 .0724 0.8169 0 .6619 0.3907 
IBK 1 .5858 1 . 1335 0.9237 0 .7544 0.3853 
PART 1 .5880 1 .2536 1 .0087 0 .8044 0.5127 
ONER 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367 
JRIP 1 .4802 1 . 1403 0.8987 0.6811  0.3978 
RDR 1 .4649 1 . 1201 0.8555 0 .6211  0.3153 
J48 1 . 5271 1 .2101 0.9726 0 .7860 0.5160 
NBAYES 1 .5482 1 . 1842 0.9123 0.6693 0.3458 
HPIPES 1 .5179 1 . 1598 0.9011  0.6728 0 .3569 
LWLS 1 .3406 1 .0157 0.7830 0.5875 0.3484 
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Table 4.84: ECM Results for KC2-13C Models Applied to JMl datasets, c=20 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .3693 1 .0493 0.8295 0 .6613 0.4263 
TD 2 .2892 1 .7883 1 .3844 1 .0909 0.6717 
LR 1 .3606 1.0723 0.9117 0.7669 0.5807 
LOC 1 .6377 1 .2807 1 .0101 0.7512 0.3908 
GP 1 .6869 1.3562 1 . 1092 0.8637 0 .5418 
ANN 3.6840 3.7199 3.7554 3 .7274 3.6454 
LBOOST 1 .6082 1 .2848 1 .0447 0 .8271 0.5367 
RBM 1 .5332 1 .2019 0.9716 0 .7707 0.5036 
BAG 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367 
RSET 1 .6399 1 .2862 1.0250 0.7841 0.4361 
MCOST 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367 
ABOOST 1 .6082 1 .2848 1 .0447 0 .8271 0 .5367 
DTABLE 1 .6082 1.2848 1 .0447 0.8271 0.5367 
ADT 1 .6355 1 .3080 1 .0645 0.8423 0.5438 
SMO 1 .4910 1 . 1269 0.8842 0 .6692 0.3855 
IB1 1 .5856 1 .2254 1 .0138 0 .8346 0 .4938 
IBK 1 .6136 1 . 1531 0.9761 0.8347 0.4525 
PART 1 .6082 1 .2848 1 .0447 0 .8271 0.5367 
ONER 1 .6082 1 .2848 1 .0447 0 .8271 0.5367 
JRIP 1 .6082 1 .2848 1 .0447 0 .8271 0.5367 
RDR 1 .6082 1 .2848 1 .0447 0.8271 0.5367 
J48 1 .6082 1 .2848 1 .0447 0 .8271 0.5367 
NBAYES 1 .4510 1 .0870 0.8379 0 .6126 0.3519 
HPIPES 1 .4793 1 . 1213 0.8520 0.6157 0 .3090 
LWLS 1 .6223 1 .3003 1 .0573 0.8293 0 .5327 
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Table 4.85: ECM Results for KC2-520 Models Applied to JMl datasets, c=30 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .7682 1 .3616 1 .0901 0.8939 0.6453 
TD 2.8112 2.2212 1 .9152 1 .6707 1 .2268 
LR 2.0888 1 .5904 1 .2649 0 .9575 0.5601 
LOC 2.3805 1 .8909 1 .5210 1 . 1434 0.6177 
GP 2.4791 2.0040 1 .6541 1 .3038 0.8191 
ANN 4.3224 4.0521 3.9429 3 .7791 3.4941 
LBOOST 2.0132 1 .5908 1 .3054 1 .0808 0.8196 
RBM 2. 1882 1 . 7208 1 .3961 1 . 1013 0.6897 
BAG 2. 1990 1 . 7854 1 .4493 1 . 1567 0.7090 
RSET 2.4620 2 .1 127 1 .8260 1 .5822 1 . 1947 
MCOST 1 .9297 1 .5644 1 .3162 1 .0767 0.7670 
ABOOST 2.6260 2.3159 2.0909 1 .9047 1 .6586 
DTABLE 2.0964 1 .6224 1 .2673 0.9769 0.5498 
ADT 2.2607 1 .8141 1 .4824 1 . 1 729 0 .7585 
SMO 2. 1032 1 .6079 1 .2790 0.9714 0.5819 
IB1 2.2236 1 .9146 1 .7859 1 . 7891 1 .3100 
IBK 2 .1772 1 .5576 1 .3115 1 .0303 0 .5940 
PART 2.4507 2.0805 1 .7677 1 .4561 1 .0324 
ONER 2.2312 1 .7211 1 .3382 0.9750 0 .4748 
JRIP 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
RDR 2.2693 1 .8200 1 .4846 1 . 1754 0 .7562 
J48 2.2693 1 .8200 1 .4846 1 . 1754 0 .7562 
NBAYES 2. 1538 1 .6448 1 .2677 0.9273 0 .4445 
HPIPES 2.9097 2 .5174 2 .2399 1 .9769 1 . 5575 
LWLS 2.2998 1 .8764 1 .5280 1 .2363 0 .8250 

4.8.9 NECM Results for KC2 Models Applied to the JMl Datasets, 

c=30 

In this subsection, the predictive performance of the classification models 

built on the KC2 datasets and evaluated on the on the JMl datasets are presented 

in Tables 4.85 to 4 .89 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=30. 

173 



Table 4.86: ECM Results for KC2-260 Models Applied to JMl datasets, c=30 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 . 7125 1 .3491 1 .0813 0.9069 0.6833 
TD 2.7389 1 .9616 1 .4524 1 .0507 0.5244 
LR 1 .9995 1 .5397 1 .2240 0.9466 0.5789 
LOC 2.3259 1 .8288 1 .4528 1 .0859 0.5654 
GP 2. 1258 1 .7795 1 .4953 1 .2678 0.9302 
ANN 5.3827 5.3876 5.4223 5.3649 5.2187 
LBOOST 1 .9019 1 .6166 1 .4555 1 .3176 1 . 1696 
RBM 2.0364 1 .5848 1 .2991 1 .0666 0 .7823 
BAG 2.0198 1 .6706 1 .3778 1 . 1 1 1 1  0.7409 
RSET 2.3233 1 .8456 1 .4952 1 . 1907 0.7357 
MCOST 2. 1408 1 .7691 1 .4839 1 .2440 0.8969 
ABOOST 2.5358 2.3042 2 . 1 106 1 .9329 1 .7031 
DTABLE 2. 1514 1 .7003 1 .4059 1 . 1726 0.8187 
ADT 2.4580 2 .1556 1 .8668 1 .6113 1 .2495 
SMO 2.3114 1 .8682 1 .5792 1 .3139 0.9656 
IB1 2.4357 2.0439 1 .9067 1 .8344 1 .4535 
IBK 2. 1484 1 .4809 1 .2226 0.9685 0.5092 
PART 2.2162 1 .9462 1 .7505 1 .6096 1 .4015 
ONER 2.5383 2.2822 2.0901 1 .9183 1 .5919 
JRIP 2.0473 1 .6318 1 .3757 1 . 1380 0.8894 
RDR 1 . 7826 1 .3273 1 .0387 0.7939 0.5219 
J48 2.3633 2 .1887 2 .1 154 2.0294 1 .9910 
NBAYES 2. 1858 1 .6773 1 .2950 0.9460 0.4868 
HPIPES 1 .8304 1 .3390 1 .0131 0.7738 0.4492 
LWLS 2.8759 2.6461 2.5307 2.3289 2.0383 
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Table 4.87: ECM Results for KC2-23C Models Applied to JMl datasets, c=30 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .7957 1 .4126 1 . 1595 0 .9597 0 .6935 
TD 2.9333 2.1049 1 .5318 1 . 1055 0.6195 
LR 2.4240 1 .9813 1 .6510 1 .3209 0 .8771 
LOC 2.3805 1 .8909 1 .5210 1 . 1434 0.6177 
GP 2.7906 2.3625 2.0540 1 . 7370 1 .2616 
ANN 5.4965 5.5377 5 .5868 5 .5413 5 .4133 
LBOOST 2.4727 2 .1595 1 .8585 1 . 5484 1 .0757 
RBM 2.0721 1 .6794 1 .4223 1 . 1720 0.8217  
BAG 2.3855 1 .9474 1 .6038 1 . 2967 0.8167 
RSET 2.0247 1 .5486 1 .2094 0.9082 0 .4996 
MCOST 1 .8920 1 .4282 1 . 1022 0.8375 0.4816 
ABOOST 2.2685 1 .8817 1 .5737 1 .3233 0.9391 
DTABLE 2.4236 1 .9448 1 .5888 1 .2426 0 .7401 
ADT 2.3017 1 .8909 1 .5543 1 .2450 0 .7996 
SMO 2.0877 1 .5658 1 . 1975 0 .8779 0.4542 
IB1 2.2856 1 .9234 1 .8059 1 .7690 1 .3142 
IBK 2.2219 1 .5627 1 .271 1 1 .021 1  0 .4785 
PART 2.3557 1 .9969 1 .7573 1 .5059 1 . 1560 
ONER 2.0851 1 .6173 1 .2689 0.9774 0.5713 
JRIP 2.0851 1 .6173 1 .2689 0 .9774 0.5713 
RDR 2. 1328 1 .6561 1 .3119 1 .0146 0.5940 
J48 2.3557 1 .9969 1 .7573 1 .5059 1 . 1560 
NBAYES 2. 1835 1 .6827 1 .3022 0.9564 0.4673 
HPIPES 2. 1090 1 .6138 1 .2485 0.9356 0 .5076 
LWLS 2.3626 1 .9354 1 .5528 1 .2889 0 .7494 
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Table 4.88: ECM Results for KC2-17C Models Applied to JMl datasets, c=30 

I Methods I Jl\11-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 . 7542 1 .2872 0.9765 0.7387 0.4384 
TD 3.3338 2 .4383 1 . 7345 1 . 1434 0.5654 
LR 2.2423 1 .7733 1 .4173 1.0876 0.6443 
LOC 2.4384 1 .9567 1 .5902 1 .2152 0 .6715 
GP 2.3337 1 .8858 1 .5528 1 .2704 0.8550 
ANN 5.4449 5 .4836 5.5278 5.4780 5.3434 
LBOOST 2.0633 1 .5963 1 .2537 0.9564 0.5580 
RBM 1 .9856 1 .5115 1 . 1902 0.8973 0.4873 
BAG 2.0617 1 .5786 1 .2163 0.8923 0.4607 
RSET 2.4384 1 .9567 1 .5902 1 .2152 0.6715 
MCOST 2 . 1064 1 .6298 1 .2821 0.9609 0.5212 
ABOOST 2.0934 1 .6264 1 .2860 0.9738 0.5578 
DTABLE 2.2959 1 .8414 1 .5068 1 . 1770 0.7193 
ADT 2.2260 1 .7383 1 .3626 1 .0220 0.5415 
SMO 2.0699 1 .5576 1 .2243 0.9172 0.5175 
IB1 2.0036 1 .4523 1 .0952 0.8896 0.4938 
IBK 2.2231 1 .5596 1 .2849 1 .0559 0.5151 
PART 2.2321 1 . 7658 1 .4247 1 . 1362 0.7156 
ONER 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
JRIP 2.0520 1 .5754 1 .2388 0.9314 0 .5259 
RDR 2.0366 1 .5540 1 . 1844 0.8533 0.4168 
J48 2. 1294 1 .6876 1 .3563 1 .0936 0.7056 
NBAYES 2 . 1765 1 .6668 1 .2876 0.9438 0.4805 
HPIPES 2. 1212 1 .6193 1 .2580 0.9352 0 .4816 
LWLS 1 .8197 1 .3648 1 .0444 0.7699 0.4299 
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Table 4.89: ECM Results for KC2-13C Models Applied to JMl datasets, c=30 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 1 .8585 1 .4074 1 . 1008 0.8649 0.5310 
TD 3.3626 2 .6303 2 .0323 1 .6006 0.9777 
LR 1 .8351 1 .4291 1 .2069 1 .0021 0.7387 
LOC 2.3259 1 .8288 1 .4528 1 .0859 0.5654 
GP 2.4010 1 .9428 1 .5983 1 .2482 0.7813 
ANN 5.5246 5.5798 5.6332 5.5911 5.4682 
LBOOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
RBM 2. 1366 1 .6730 1 .351 1  1 .0662 0.6832 
BAG 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
RSET 2.3269 1 .8343 1 .4706 1 . 1279 0.6240 
MCOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
ABOOST 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
DTABLE 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
ADT 2.3123 1 .8574 1 .5171 1 .201 1  0 .7700 
SMO 2.0695 1 .5569 1 .2187 0.9150 0 .5102 
IB1 2.2297 1 .7183 1 .4284 1 . 1829 0.6867 
IBK 2.2644 1 .5780 1 .3612 1 . 1755 0.6122 
PART 2.2693 1 .8200 1 .4846 1 . 1 754 0.7562 
ONER 2.2693 1 .8200 1 .4846 1 . 1754 0. 7562 
JRIP 2.2693 1 .8200 1 .4846 1 .1 754 0.7562 
RDR 2.2693 1 .8200 1 .4846 1 . 1754 0. 7562 
J48 2.2693 1 .8200 1 .4846 1 . 1754 0.7562 
NBAYES 2.0058 1 .4926 1 . 1443 0.8252 0 .4567 
HPIPES 2.0624 1 .5603 1 . 1837 0.8494 0.4104 
LWLS 2.2934 1 .8484 1 .5085 1 . 1852 0.7555 
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Table 4.90:  ECM Results for KC2-520 Models Applied to JMl datasets, c=50 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 2.6677 2.0239 1 .5989 1 .2919 0.9014 
TD 4.5197 3.5458 3 .0424 2 .6448 1 .9020 
LR 3.2640 2 .4786 1 .9705 1 .4822 0.8462 
LOC 3.8019 3.0384 2 .4627 1 .861 1  1 .0101 
GP 3.9684 3.2285 2.6829 2 . 1241 1 .3379 
ANN 7.1608 6.7321 6.5599 6.2912 5.8191 
LBOOST 3 . 1115  2 .4456 1 .9997 1 .6448 1 .2320 
RBM 3.4402 2 .7066 2 . 1972 1 . 7286 1 .0655 
BAG 3.4532 2.8097 2.2842 1 .8201 1 .0948 
RSET 3.8925 3.3500 2.8970 2.5050 1 .8766 
MCOST 2.9489 2 .3781 1 .9909 1 .6105 1 . 1 129 
ABOOST 4 .1763 3.6970 3 .3418 3 .0416 2.6431 
DTABLE 3.2828 2.5388 1 .9813 1 .5228 0.8359 
ADT 3.5759 2.8795 2 .3594 1 .8666 1 . 1976 
SMO 3.2783 2 .4961 1 .9817  1 .4931 0 .8713 
IB1 3.4553 2 .9569 2.7670 2.7933 1 .9952 
IBK 3.4066 2 .4098 2 .0423 1 .6123 0.8967 
PART 3.8880 3.3152 2 .8246 2.3277 1 .6411  
ONER 3.5306 2 .7299 2 . 1309 1 .5540 0 .7509 
JRIP 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
RDR 3.5913 2 .8905 2.3644 1 .8720 1 . 1952 
J48 3.5913 2.8905 2 .3644 1 .8720 1 . 1952 
NBAYES 3.3945 2.5947 2.0042 1 .4641 0.6873 
HPIPES 4.7154 4.1090 3.6735 3.2495 2 .5619 
LWLS 3.6195 2 .9597 2 .4079 1 .9480 1 .2774 

4.8.10 NECM Results for KC2 Models Applied to the JMl Datasets, 

c=50 

In this subsection, the predictive performance of the classification models 

built on the KC2 datasets and evaluated on the on the JM1 datasets are presented 

in Tables 4. 90 to 4. 94 in terms of the Normalized Expected Cost of Misclassification 

(NECM) measure, at c=50. 
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Table 4.91: ECM Results for KC2-260 Models Applied to JMl datasets, c=50 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 2.5555 1 .9807 1 .5591 1 .2869 0.9361 
TD 4.4225 3. 1450 2.3098 1 .6478 0.7805 
LR 3. 1069 2.3843 1 .8902 1 .4502 0.8616 
LOC 3.7021 2.9249 2.3383 1 .7554 0.9147 
GP 3.3009 2.7627 2.3161 1 .9554 1 .4091 
ANN 8.9669 8.9790 9.0372 8.9415 8.6978 
LBOOST 2.8669 2.4175 2. 1667 1 .9478 1 .7184 
RBM 3. 1573 2.4447 1 .9962 1 .6276 1 . 1748 
BAG 3 .1113 2 .5691 2 . 1 1 15 1 .6871 1 .0868 
RSET 3.6860 2.9392 2.3918 1 .9085 1 . 1715 
MCOST 3.3340 2.7548 2.3075 1 .9255 1 .3659 
ABOOST 3.9844 3.6262 3.3221 3.0366 2.6677 
DTABLE 3.3559 2.6424 2. 1817 1 .8150 1 .2478 
ADT 3.8885 3.4263 2.9715 2 .5612 1 .9712 
SMO 3.6334 2.9335 2.4815 2.0618 1 .5077 
IB1 3.8188 3.1862 2.9861 2.8748 2.2551 
IBK 3.3551 2.2588 1 .8860 1 .4962 0.7421 
PART 3.4478 3.0295 2.7203 2.4962 2.1598 
ONER 4.0072 3.6171 3.3157 3.0401 2 .5066 
JRIP 3. 1660 2.5123 2 .1 122 1 .7351 1 .3418 
RDR 2.7069 1 .9870 1 .5362 1 . 1497 0.7214 
J48 3.6469 3.3721 3.2595 3.1211 3.0654 
NBAYES 3.4400 2.6400 2.0399 1 .4858 0.7495 
HPIPES 2.7954 2.0167 1 .5050 1 . 1297 0.6155 
LWLS 4.5867 4.2223 4.0458 3.7161 3.2423 
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Table 4.92: ECM Results for KC2-23C Models Applied to JMl datasets, c=50 

I Methods I JMl-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 2.7065 2 . 1006 1 .7049 1 .3910 0.9696 
TD 4.7571 3.3935 2 .4538 1 .7509 0.9521 
LR 3.8635 3 .1749 2 .6573 2 . 1291 1 .4093 
LOC 3.8019 3.0384 2 .4627 1 .861 1  1 .0101 
GP 4.5172 3.8565 3 .3751 2 .8649 2.0865 
ANN 9. 1575 9.2291 9 .31 13 9.2355 9.0221 
LBOOST 3.9280 3.4533 2 .9829 2 .4833 1 .7076 
RBM 3.2066 2 .5907 2 . 1897 1 .7903 1 .2275 
BAG 3.7912 3 .1 103 2 .5736 2 .0838 1 .3023 
RSET 3. 1479 2.3983 1 .8672 1 .3907 0.7357 
MCOST 2.9021 2. 1 701 1 .6587 1 .2416 0.6745 
ABOOST 3.5589 2.9573 2 .4732 2.0742 1 .4514 
DTABLE 3.8722 3. 1257 2 .5698 2.0176 1 .2024 
ADT 3.6305 2.9922 2 .4651 1 .9718 1 .2486 
SMO 3.2673 2.4437 1 .8665 1 .3604 0 .6837 
IB1 3 .5557 2 .9990 2 .8066 2 .7672 2 .0093 
IBK 3.5010 2 .4381 1 .9992 1 .6273 0.7379 
PART 3.7116 3 . 1521 2 . 7777 2 .3744 1 .8079 
ONER 3.2512 2.5157 1 .9688 1 .5081 0.8573 
JRIP 3.2512 2.5157 1 .9688 1 . 5081 0.8573 
RDR 3.3373 2 .5880 2 .0483 1 .5786 0.9034 
J48 3.7116 3. 1521 2 .7777 2 .3744 1 .8079 
NBAYES 3.4423 2.6556 2 .0583 1 .5083 0.7201 
HPIPES 3.3113 2.5328 1 .9597 1 .4634 0.7770 
LWLS 3.7479 3.0803 2 .4860 2 .0669 1 . 1918 
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Table 4.93: ECM Results for KC2-17C Models Applied to JM1 datasets, c=50 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 2.6514 1 .9110 1 .4234 1 .0493 0.5748 
TD 5.4649 3.9965 2.8364 1 .861 1  0 .9147 
LR 3.5462 2.8130 2.2550 1 .7299 1 .0135 
LOC 3.9051 3 .1556 2.5852 1 .9872 1 . 1039 
GP 3 .7054 3.0076 2.4860 2.0363 1 .3639 
ANN 9.0720 9. 1391 9.2129 9 . 1300 8.9057 
LBOOST 3.2136 2.4794 1 .9424 1 .4721 0 .8340 
RBM 3.0794 2.3329 1 .8311  1 .3678 0 .7101 
BAG 3.2142 2.4540 1 .8853 1 .3718 0.6802 
RSET 3.9051 3 .1556 2.5852 1 .9872 1 . 1039 
MCOST 3.2997 2.5514 2.0073 1 .4977 0 .7906 
ABOOST 3.2754 2.5428 2.0112 1 .5166 0 .8505 
DTABLE 3.6496 2.9426 2.4232 1 .8978 1 . 1550 
ADT 3.5277 2.7651 2 .1778 1 .6372 0.8608 
SMO 3.2247 2.4150 1 .8933 1 .4058 0 .7670 
IB1 3.1042 2.2122 1 .6517 1 .3450 0 .7000 
IBK 3.4976 2.4119 2 .0073 1 .6591 0 .7745 
PART 3.5202 2.7900 2.2568 1 .7996 1 . 1214 
ONER 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
JRIP 3. 1955 2.4456 1 .9190 1 .4320 0 .7820 
RDR 3 .1801 2.4216 1 .8422 1 .3177 0.6197 
J48 3 .3339 2.6425 2. 1237 1 .7088 1 .0848 
NBAYES 3.4330 2.6320 2.0381 1 .4926 0 .7499 
HPIPES 3.3280 2.5383 1 .9720 1 .4599 0 .7311  
LWLS 2.7779 2.0630 1 .5673 1 . 1348 0 .5929 
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Table 4.94: ECM Results for KC2-13C Models Applied to JMl datasets, c=50 

I Methods I JM1-8850 I JM1-23C I JM1-20C I JM1-17C I JM1-13C I 
CBR 2.8371 2 .1236 1 .6433 1 .2720 0 .7406 
TD 5.5095 4.3143 3.3282 2 .6199 1 .5897 
LR 2 .7843 2 . 1427 1 .7972 1 .4726 1 .0547 
LOC 3.7021 2.9249 2 .3383 1 .7554 0 .9147 
GP 3.8293 3 .1 159 2.5765 2 .0172 1 .2603 
ANN 9.2060 9.2994 9.3886 9.3185 9 .1 136 
LBOOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
RBM 3.3434 2.6151 2 . 1 100 1 .6573 1 .0424 
BAG 3.5913 2.8905 2 .3644 1 .8720 1 . 1952 
RSET 3.7009 2 .9304 2 .3616 1 .8154 0.9998 
MCOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
ABOOST 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
DTABLE 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
ADT 3.6660 2.9561 2 .4222 1 .9189 1 .2224 
SMO 3.2266 2.4169 1 .8877 1 .4065 0 .7597 
IB1 3.5179 2.7040 2 .2576 1 .8795 1 .0725 
IBK 3.5661 2.4277 2 . 1314 1 .8571 0 .9315 
PART 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
ONER 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
JRIP 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
RDR 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
J48 3.5913 2.8905 2.3644 1 .8720 1 . 1952 
NBAYES 3 .1 154 2.3038 1 .7571 1 . 2505 0.6662 
HPIPES 3.2285 2.4382 1 .8471 1 .3168 0 .6133 
LWLS 3.6358 2.9446 2.4108 1 .8969 1 .2012 
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4.8.11 Discussion 

One obvious pattern that can be seen in the results presented in this section 

is the improvement in the predictive accuracy as the quality of training dataset 

improves ,  for a given classification model. This is an indication that one needs to 

be vigilant of the quality of evaluation dataset when evaluating the classification 

models built . While it was hoped that as the quality of fit improves ,  for a given 

dataset , the predictive accuracy would improve, it was not the case. 
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Chapter 5 

CONCLUSIONS 

The empirical investigation reveals that the predictive performance of clas­

sification techniques improves as more and more (inherent) noise is removed. Use 

of relatively large number of classifiers, i .e . ,  25, provides certain degree of freedom 

and flexibility to explore different levels of filtering from most conservative to the 

least conservative to achieve the desired level of conservativeness while removing 

the instances suspect of being noisy. With twenty five base-level classifiers, it is 

highly unlikely for the noise elimination process to get influenced by predictions of 

a few classifiers which may not have the appropriate inductive bias for the dataset 

at hand. Thus, experimenting with relatively large number of classifiers to base the 

noise elimination process gives a higher level of confidence in the process. 

The two case studies in Software Quality Classification presented here very 

closely approximate a real-world scenario, where appropriate noise-handling tech­

nique(s) need to be employed on a dataset with inherent noise. Normalized Expected 

Cost of Misclassification is used as a practical performance evaluation measure, tak­

ing the disparity between the two types of misclassification (very common in software 
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quality classification and many other domains) into account. Also, the datasets on 

which performance of different classifiers is evaluated are noise-free, as they are gen­

erated by impartially splitting the given dataset after noise removal. This gives a 

better insight into the true predictive performance. 

Two-way ANOVA: Randomized Complete Block Design revealed that at sig­

nificance level a = 5%, predictive performance of all the classification techniques 

is significantly different on the datasets for the JM1 system, but not for the KC2 

system, which is a little surprising. The other finding that there was significant 

difference (a = 1%) between the datasets with different levels of noise filtering 

statistically confirmed our intuitive assumption that the classification performance 

would improve as more and more noise is eliminated. 

It is evident from the Multiple Pairwise Comparison results that there is a lot 

of overlap between different clusters, and that classification methods performing well 

on a particular dataset may not necessarily perform as well on some other dataset (s) , 

even if the datasets are from the same domain. And hence, in our opinion, basing the 

noise elimination procedure on a few selected (base-level) classification techniques 

may not be the most appropriate strategy. 

Secondly, there may not be much to choose between different classifiers in 

terms of their performance, evinced by the big overlaps of clusters of classifiers 

for JM1 and (in most cases) no significant difference in predictive performance of 

classifiers for KC2. Trying to explore new classification techniques that may (not 
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necessarily) marginally improve the classification accuracy may not be worth the 

effort if the training data are noisy to begin with. 

We also found that for the JM1 Software System, there is significant difference 

(p < 0.01) in the proportion of the noise removed by consensus filtering with 25 

classifiers and consensus filtering with only 5 classifiers, suggesting that consensus 

filtering with relatively large number of classifier is more conservative than with a 

few classifiers. Similarly, the proportion of the noisy instances removed by consensus 

filter with 5 base-classifiers was significantly less than that with 3 base-classifiers . 

Similar observations were also made for the KC2 system. This indicates the change 

in the conservativeness at the consensus level of filtering as the number of base­

classifiers changes. 

While it was not the focus of our study to address the issue of exceptions, 

we feel that our most conservative level of filtering provides for handling exceptions 

to a certain degree, as it is likely that at least three out of the twenty five base­

level classifiers can correctly classify the instances that are "hard-to-classify" , or 

are "exceptions" . However, further research is necessary to address this issue more 

directly in the context of noise elimination with the ensemble-classifier approach. 

When the classification models build on the JM1 datasets were applied to 

KC2 datasets and vice versa, it was clear that for a given model, as the quality of 

test dataset improves, classification (predictive) accuracy improves. 
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Future work can address how to come up with a few representative base­

classifiers to perform noise elimination based on the ensemble-classifier approach, 

maintaining the same degree of confidence in the noise elimination procedure. Use of 

Partition-based filtering Scheme can also be explored in conjunction with Ensemble­

classifier filtering approach to reduce the number of base-classifiers required. A 

comprehensive comparative study of different noise handling techniques can also be 

carried out to facilitate selection of appropriate noise handling procedure. 
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