Current Search: Transport theory (x)
View All Items
- Title
- STEADY STATE TRANSPORT WITH ISOENERGETIC AND NEUTRINO-ELECTRON SCATTERING.
- Creator
- BALLESTER, JORGE LUIS., Florida Atlantic University, Bruenn, Stephen W.
- Abstract/Description
-
Steady state solutions to the Boltzmann transport equation were obtained for the transport of neutrinos across a finite, plane parallel slab using discrete ordinate methods. Semi-analytic solutions were obtained in the case of isoenergetic, isotropic scattering for one energy group and in the restricted case of isoenergetic and nonisoenergetic (Compton), isotropic scattering between two energy groups where the isoenergetic and the Compton scattering rates are the same for the two groups. For...
Show moreSteady state solutions to the Boltzmann transport equation were obtained for the transport of neutrinos across a finite, plane parallel slab using discrete ordinate methods. Semi-analytic solutions were obtained in the case of isoenergetic, isotropic scattering for one energy group and in the restricted case of isoenergetic and nonisoenergetic (Compton), isotropic scattering between two energy groups where the isoenergetic and the Compton scattering rates are the same for the two groups. For these two cases solutions were obtained for total optical thicknesses of 0.2, 2, and 20. When the Compton scattering rates of the two energy groups are allowed to be different, the transport equation becomes nonlinear due to the exclusion principle. For this case a numerical scheme was developed which yielded solutions for slabs having optical thicknesses up to unity.
Show less - Date Issued
- 1980
- PURL
- http://purl.flvc.org/fcla/dt/14014
- Subject Headings
- Electron transport, Neutron transport theory
- Format
- Document (PDF)
- Title
- Tidal and Wind-Driven Circulation Through Lignum Vitae Basin, Florida Bay.
- Creator
- Pitts, Patrick A., Harbor Branch Oceanographic Institute
- Date Issued
- 2002
- PURL
- http://purl.flvc.org/FCLA/DT/3172084
- Subject Headings
- Tides, Tidal currents, Winds, Fluid dynamics --Data processing, Transport theory --Mathematical models
- Format
- Document (PDF)
- Title
- Intelligent Supervisory Switching Control of Unmanned Surface Vehicles.
- Creator
- Bertaska, Ivan Rodrigues, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a...
Show morenovel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004671, http://purl.flvc.org/fau/fd/FA00004671
- Subject Headings
- Adaptive control systems, Artificial intelligence, Engineering mathematics, Intelligent control systems, Mechatronics, Nonlinear control theory, Transportation engineering
- Format
- Document (PDF)
- Title
- CFD Study of Pectoral Fins of Larval Zebrafish: Effect of Reynolds Number, Swimming Kinematics and Fin Bending on Fluid Structures and Transport.
- Creator
- Islam, Toukir, Curet, Oscar M., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Flow Structure and fluid transport via advection around pectoral fin of larval ZebraFish are studied numerically using Immersed Boundary Method, Lagrangian Coherent Structure, passive particle tracing, vortex core evolution and four statistically defined mixing numbers. Experimental fish kinematics for nominal swimming case are obtained from previous researchers and numerically manipulated to analyze the role of different body motion kinematics, Reynolds number and fin morphology on flow...
Show moreFlow Structure and fluid transport via advection around pectoral fin of larval ZebraFish are studied numerically using Immersed Boundary Method, Lagrangian Coherent Structure, passive particle tracing, vortex core evolution and four statistically defined mixing numbers. Experimental fish kinematics for nominal swimming case are obtained from previous researchers and numerically manipulated to analyze the role of different body motion kinematics, Reynolds number and fin morphology on flow structure and transport. Hyperbolic strain field and vortex cores are found to be effective particle transporter and their relative strength are driving force of varying flow structure and fluid transport. Translation and lateral undulation of fish; as a combination or individual entity, has coherent advantages and drawbacks significant enough to alter the nature of fluid advection. Reynolds number increase enhances overall fluid transport and mixing in varying order for different kinematics and nominal bending position of fin has average transport capability of other artificially induced fin morphology.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004606, http://purl.flvc.org/fau/fd/FA00004606
- Subject Headings
- Reynolds number., Aquatic animals (Physiology), Transport theory., Computational fluid dynamics., Dynamical systems., Continuum physics., Turbulence--Mathematical models.
- Format
- Document (PDF)
- Title
- Exploring appropriate offset values for pencil beam and Monte Carlo dose optimization in lung stereotactic body radiotherapy encompassing the effects of respiration and tumor location.
- Creator
- Evans, Grant, Shang, Charles, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Evaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using...
Show moreEvaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using the fast PB and compared with MC. This exact plan with the same beam Monitor Units (MUs) was recalculated over each respiratory phase. The results show that the PB algorithm has a 2.3-2.4% less overestimation at the maximum exhalation phase than the maximum inhalation phase when compared to MC. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus central lesions (12.7±0.8%)(p< 0.01).
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004105, http://purl.flvc.org/fau/fd/FA00004105
- Subject Headings
- Drug development -- Computer simulation, Image guided radiation therapy, Lung cancer -- Treatment, Monte Carlo method, Proton beams, Transport theory
- Format
- Document (PDF)