Current Search: Transcription factors. (x)
View All Items
- Title
- THE ROLE OF ENDOTHELIAL C-MYC IN CARDIAC DYSFUNCTION.
- Creator
- Rahbar, Homan, Rodrigues, Claudia, Florida Atlantic University, Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Abstract/Description
-
Cardiovascular disease is a broad term that encompasses a variety of disorders in which the heart and its associated blood vessels lose the capacity to deliver blood efficiently and effectively throughout the body. Cardiac endothelial cells play a vital role in maintaining the homeostatic balance of cardiac physiology. Research into c-Myc, a master regulator involved in the transcription of a large set of genes that regulate inflammation, has been the focus of new therapeutics aimed at...
Show moreCardiovascular disease is a broad term that encompasses a variety of disorders in which the heart and its associated blood vessels lose the capacity to deliver blood efficiently and effectively throughout the body. Cardiac endothelial cells play a vital role in maintaining the homeostatic balance of cardiac physiology. Research into c-Myc, a master regulator involved in the transcription of a large set of genes that regulate inflammation, has been the focus of new therapeutics aimed at treating or lessening the deleterious effects of cardiovascular disease. This project serves to explore how endothelial loss of c-Myc impacts cardiac function under normal and stress conditions, using ultrasound echocardiography image analysis to determine the key differences between all models.
Show less - Date Issued
- 2024
- PURL
- http://purl.flvc.org/fau/fd/FA00014488
- Subject Headings
- Cardiovascular Diseases, Transcription factors, Endothelial Cells, Echocardiography
- Format
- Document (PDF)
- Title
- A Novel Role of the Ankyrin-Binding Motif of L1-Type CAM Neuroglian in Nuclear Import and Transcriptional Regulation of Myc.
- Creator
- Kakad, Priyanka P., Godenschwege, Tanja A., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
L1-type cell adhesion molecule (L1CAM) plays an essential role in the development of nervous system and is also highly relevant for the progression of diseases such as Alzheimer’s disease, stroke and cancers, some of the leading causes of human mortality. In addition to its canonical role as a plasma membrane protein organizing the cytoskeleton, recent in vitro studies have revealed that transmembrane as well as cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to...
Show moreL1-type cell adhesion molecule (L1CAM) plays an essential role in the development of nervous system and is also highly relevant for the progression of diseases such as Alzheimer’s disease, stroke and cancers, some of the leading causes of human mortality. In addition to its canonical role as a plasma membrane protein organizing the cytoskeleton, recent in vitro studies have revealed that transmembrane as well as cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus and regulate expression of genes involved in DNA post-replication repair, cell cycle control, migration and differentiation. However, little is known about the in vivo function of L1CAM in the adult nervous system. This dissertation research focuses on studying in vivo nuclear translocation and function of L1CAM. Using the Drosophila model system, we first show that the sole Drosophila L1CAM homolog, Neuroglian (Nrg), is proteolytically cleaved by Alzheimer’s associated secretases, similar to L1CAM, and is also translocated to the nucleus in the adult nervous system. Subsequently, we have shown that the deletion of highly conserved Ankyrin binding domain or FIGQY motif disrupts nuclear import. Further experiments have revealed that the nuclear translocation of Nrg is in fact regulated by the phosphorylation of the FIGQY motif. Importantly, our studies also show transgenic expression of full-length Nrg or the intracellular domain of Nrg resulted in increased myc expression, which is associated with increased sensitivity to oxidative stress and reduced life span. On the other hand, deletion of the FIGQY motif or mutations preventing its phosphorylation led to decrease in myc expression. In summary, we have identified a novel role for the highly conserved Ankyrin binding domain in nuclear translocation and transcriptional regulation of the Drosophila myc oncogene, which is of high relevance to neurodegenerative diseases and cancer associated with oxidative stress.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013076
- Subject Headings
- Cell adhesion molecules., Myc proteins., Transcription, Genetic., Transcription factors, Gene expression., Ankyrins., Translocation, Genetic.
- Format
- Document (PDF)
- Title
- Characterization of Group B Sox genes in the development of Drosophila nervous system.
- Creator
- Singh, Shweta, Dawson-Scully, Ken, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Sox proteins all contain a single ~70 amino acid High Mobility Group (HMG) DNA-binding domain with strong homology to that of Sry, the mammalian testisdetermining factor. In Drosophila melanogaster, there are four closely related members of the B group, Dichaete (D), Sox Neuro (Sox N), Sox 21a, and Sox 21b that each exhibit ~90% sequence identity within the HMG domain.The previous study has shown that Dichaete plays a major role in embryonic nervous system development and is expressed in...
Show moreSox proteins all contain a single ~70 amino acid High Mobility Group (HMG) DNA-binding domain with strong homology to that of Sry, the mammalian testisdetermining factor. In Drosophila melanogaster, there are four closely related members of the B group, Dichaete (D), Sox Neuro (Sox N), Sox 21a, and Sox 21b that each exhibit ~90% sequence identity within the HMG domain.The previous study has shown that Dichaete plays a major role in embryonic nervous system development and is expressed in several clusters of neurons in the brain, including intermingled olfactory LNs and central-complex neurons strongly expressed in local interneuron of the olfactory system. However, little is known about the possible expression and functions of the related group B Sox genes in the larval and adult brain. In particular, it is unclear if Sox N may function along with Dichaete in controlling the development or physiology of the adult olfactory system. Our data suggests Sox N potential role in the elaboration of the olfactory circuit formation.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004907, http://purl.flvc.org/fau/fd/FA00004907
- Subject Headings
- Drosophila melanogaster--Physiology., Transcription factors., Gene expression., Genetic transcription., Cell cycle., Neural stem cells.
- Format
- Document (PDF)
- Title
- Activators and repressors of transcription: using bioinformatics approaches to analyze and group human transcription factors.
- Creator
- Savitskaya, Ala., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Transcription factors are macromolecules that are involved in transcriptional regulation by interacting with specific DNA regions, and they can cause activation or silencing of their target genes. Gene regulation by transcriptional control explains different biological processes such as development, function, and disease. Even though transcriptional control has been of great interest for molecular biology, much still remains unknown. This study was designed to generate the most current list...
Show moreTranscription factors are macromolecules that are involved in transcriptional regulation by interacting with specific DNA regions, and they can cause activation or silencing of their target genes. Gene regulation by transcriptional control explains different biological processes such as development, function, and disease. Even though transcriptional control has been of great interest for molecular biology, much still remains unknown. This study was designed to generate the most current list of human transcription factor genes. Unique entries of transcription factor genes were collected and entered into Microsoft Office 2007 Access Database along with information about each gene. Microsoft Office 2007 Access tools were used to analyze and group collected entries according to different properties such as activator or repressor record, or presence of certain protein domains. Furthermore, protein sequence alignments of members of different groups were performed, and phylogenetic trees were used to analyze relationship between different members of each group. This work contributes to the existing knowledge of transcriptional regulation in humans.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/1930495
- Subject Headings
- Transcription factors, Genetic transcription, Regulation, Cellular signal transduction, DNA microarrays, Bioinformatics
- Format
- Document (PDF)
- Title
- Synaptic Rearrangements and the Role of Netrin-Frazzled Signaling in Shaping the Drosophila Giant Fiber Circuit.
- Creator
- Lloyd, Brandon N., Murphey, Rodney K., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
In the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in...
Show moreIn the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in Drosophila melanogaster (the giant fiber circuit), we developed tools that enabled us to study the molecular development of this circuit; which consists of a bilaterally symmetrical pair of presynaptic interneurons and postsynaptic motorneurons. In the adult circuit, each presynaptic interneuron (giant fiber) forms a single connection with the ipsilateral, postsynaptic motorneuron (TTMn). Using new tools that we developed we labeled both giant fibers throughout their development and saw that these neurons overgrew their targets and formed overlapping connections. As the circuit matured, giant fibers pruned their terminals and refined their connectivity such that only a single postsynaptic connection remained with the ipsilateral target. Furthermore, if we ablated one of the two giant fibers during development in wildtype animals, the remaining giant fiber often retained excess connections with the contralateral target that persisted into adulthood. After demonstrating that the giant fiber circuit was suitable to study synaptic rearrangement, we investigated two proteins that might mediate this process. First, we were able to prevent giant fibers from refining their connectivity by knocking out highwire, a ubiquitin ligase that prevented pruning. Second, we investigated whether overexpressing Netrin (or Frazzled), part of a canonical axon guidance system, would affect the refinement of giant fiber connectivity. We found that overexpressing Netrin (or Frazzled) pre- & postsynaptically resulted in some giant fibers forming or retaining excess connections, while exclusively presynaptic (or postsynaptic) expression of either protein had no effect. We further showed that by simultaneously reducing (Slit-Robo) midline repulsion and elevating Netrin (or Frazzled) pre- & postsynaptically, we significantly enhanced the proportion of giant fibers that formed excess connections. Our findings suggest that Netrin-Frazzled and Slit-Robo signaling play a significant role in refining synaptic circuits and shaping giant fiber circuit connectivity.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004758, http://purl.flvc.org/fau/fd/FA00004758
- Subject Headings
- Drosophila melanogaster--Cytogenetics., Genetic transcription., Transcription factors., Cellular signal transduction., Cellular control mechanisms., Cell receptors.
- Format
- Document (PDF)
- Title
- Molecular characterization of ARID and DDT domain.
- Creator
- MacDonald, Emmanuel., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Transcriptional regulation of genes is vital to cell success making it an important aspect of research. Transcriptional regulation can occur in many ways; transcription factors bind to the promoter region and block transcription, disrupt an activator protein, or interact with histones to lead to higher order chromatin. Plant HomeoDomain can recognize and bind to different methylation states of histone tails. PHD proteins use other functional regions to carry out functions. Two associated...
Show moreTranscriptional regulation of genes is vital to cell success making it an important aspect of research. Transcriptional regulation can occur in many ways; transcription factors bind to the promoter region and block transcription, disrupt an activator protein, or interact with histones to lead to higher order chromatin. Plant HomeoDomain can recognize and bind to different methylation states of histone tails. PHD proteins use other functional regions to carry out functions. Two associated domains having DNA-binding capacity were characterized in this study; the ARID domains of JARID1A and JARID1C and the DDT domains of BAZ1A, BAZ1B and BAZ2A. These genes are important because of their roles in various diseases such as cancer. The consensus sequences for BAZ1A-DDT is GGACGGRnnGG, GnGAGRGCRnnGGnG, RAGGGGGRnG and CRYCGGT. Consensus sequences for BAZ1B-DDT were CGnCCAnCTTnTGGG and YGCCCCTCCCCnR. Consensus sequences for BAZ2A-DDT were TACnnAGCnY and CnnCCRGCnRTGnYY. Consensus sequence for JARID1A-ARID was GnYnGCGYRCYnCnG. Consensus sequences for JARID1C-ARID was RGGRGCCRGGY.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2705077
- Subject Headings
- Genetic transcription, Regulation, Transcription factors, Zinc-finger proteins, Synthesis, Cellular signal transduction, Gene expression
- Format
- Document (PDF)
- Title
- Netrin-Frazzled signaling instructs synaptogenesis and plasticity at an identified central synapse in Drosophila.
- Creator
- Orr, Brian, Murphey, Rodney K., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The classic guidance molecules, Netrin and its receptor Frazzled (Fra), dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the pre-synaptic terminal. In Netrin mutant animals the synaptic coupling between a giant interneuron and the jump motor neuron was weakened. Dye-coupling between these two neurons was severely compromised or absent. These mutants exhibited anatomically and physiologically...
Show moreThe classic guidance molecules, Netrin and its receptor Frazzled (Fra), dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the pre-synaptic terminal. In Netrin mutant animals the synaptic coupling between a giant interneuron and the jump motor neuron was weakened. Dye-coupling between these two neurons was severely compromised or absent. These mutants exhibited anatomically and physiologically defective synapses between the giant fiber (GF) and tergotrochanteral motor neuron (TTMn). In cases where Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses. Dye-coupling between the giant fiber and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B Innexin (ShakB), they were significantly decreased or absent in the pre-synaptic terminal of the mutant GF. This data is the first to show that Netrin and Frazzled regulate placement of gap junctions pre-synaptically at a central synapse. In the Drosophila Giant Fiber System, we demonstrate a mechanism that ensures the monoinnervation of two homologous motor neurons by two homologous interneurons. In a scenario where both interneurons could synapse with both motor neuron targets, each interneuron exclusively synapsed with only one target and the circuit functions at normal physiological levels. This innervation pattern depended on the ratio of netrin-to-frazzled expression. When Netrin was over expressed in the system, shifting the ratio in favor of Netrin, both interneurons synapsed with both target motor neurons and physiological function was reduced. This resulted in the polyinnervationof a single target. In contrast, when Frazzled was over expressed in the system, one interneuron innervated both targets and excluded the remaining interneuron from making any synaptic contact. This resulted in a single interneuron mono-innervating both motor neurons and physiological function was mutant. The orphaned interneuron made no synaptic contact with either motor neuron target. Physiological function was only normal when the Netrin-Frazzled ratio was at endogenous levels and each GF monoinnervated one motor neuron. When we examined the gap junctions at this synapse in experimental animals, there was a significant reduction of gap junction hemichannels in the presynaptic terminal of axons that deviated from normal innervation patterns. While the synapse dyecoupled, the reduction in gap junction hemichannels reduced function in the circuit.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004041
- Subject Headings
- Cellular control mechanisms, Cellular signal transduction, Drosophila melanogaster -- Cytogenetics, Genetic transcription, Transcription factors
- Format
- Document (PDF)
- Title
- SRSF1 IS AN RNA-BINDING PROTEIN THAT FUNCTIONS AS A TRANSCRIPTIONAL ACTIVATOR.
- Creator
- Paz, Sean, Caputi, Massimo, Florida Atlantic University, Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Abstract/Description
-
Serine/Arginine splicing factor 1 (SRSF1) is an RNA-binding protein (RBP) with multiple functions in RNA biogenesis. SRSF1 plays a prominent role in oncogenesis, immune function, and response to several physiological stimuli. To date, the role of SRSF1 as a regulator of mRNA splicing has been largely considered the main mechanism driving its biological functions and its role in disease. We have now characterized SRSF1’s role in Human Immunodeficiency Virus Type I (HIV-1) transcription. SRSF1...
Show moreSerine/Arginine splicing factor 1 (SRSF1) is an RNA-binding protein (RBP) with multiple functions in RNA biogenesis. SRSF1 plays a prominent role in oncogenesis, immune function, and response to several physiological stimuli. To date, the role of SRSF1 as a regulator of mRNA splicing has been largely considered the main mechanism driving its biological functions and its role in disease. We have now characterized SRSF1’s role in Human Immunodeficiency Virus Type I (HIV-1) transcription. SRSF1 interacts with the 7SK small nuclear ribonucleoprotein (snRNP) to mobilize and activate the positive transcription-elongation factor (P-TEFb), which is then positioned on the HIV-1 promoter to increase the processivity of RNA polymerase II (RNAPolII) and promote the release of the negative regulators of transcription DSIF/NELF. Next, we defined the role of SRSF1 in the transcription of cellular genes utilizing an RNA sequencing (RNASeq) time course approach was used to detect changes in the transcriptome in response to SRSF1 overexpression. RNASeq data analysis revealed a subset of genes that were upregulated in response to SRSF1 overexpression. Nuclear run-on and qPCR assays experimentally validated 28 of these genes.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014112
- Subject Headings
- Transcription Factors, Serine-Arginine Splicing Factors, RNA-Binding Proteins, HIV
- Format
- Document (PDF)
- Title
- Comprehensive study of the ZAD family of zinc finger transcription factors in Drosophila melanogaster.
- Creator
- Krystel, Joseph., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The zinc finger associated domain (ZAD) family of transcription factors from Drosophila melanogaster is not well described in the literature, in part because it is very difficult to study by traditional mutagenesis screens. Bioinformatic studies indicate this is due to overlapping functions remaining after a recent evolutionary divergence. I set out to use in vitro-binding techniques to identify the characteristics of the ZAD family and test this theory. I have constructed glutathione S...
Show moreThe zinc finger associated domain (ZAD) family of transcription factors from Drosophila melanogaster is not well described in the literature, in part because it is very difficult to study by traditional mutagenesis screens. Bioinformatic studies indicate this is due to overlapping functions remaining after a recent evolutionary divergence. I set out to use in vitro-binding techniques to identify the characteristics of the ZAD family and test this theory. I have constructed glutathione S-transferase (GST)-ZAD domain chimeric proteins for use in pull down protein binding assays,and GST-Zinc finger (ZnF) array domain chimera for electrophoretic mobility shift assays (EMSA). Protein binding assays indicated two putative conserved interactors, similar to the analogous KRAB system in mammals. ... Competitive bindings were carried out to show a specificity of binding conferred by the identified conserved positions. While the consensus binding sites show relatively few similarities, the predicted target genes identified by the consensus binding sites show significant overlap. The nature of this overlap conforms to the known characteristics of the ZAD family but points to a more positive selection to maintain conservation of function.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3355627
- Subject Headings
- Cellular signal transduction, Drosophila melanogaster, Cytogenetics, Transcription factors, Zinc-finger proteins, Synthesis, Genetic transcription, Regulation, Gene expression
- Format
- Document (PDF)
- Title
- Elucidation of the features of the zinc finger associated domain (ZAD) family of transportation factors in Drosophila melanogaster.
- Creator
- Krystel, Joseph., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The zinc finger associated domain (ZAD) containing family of transcription factors is not well described in the literature, in part because it is very difficult to study by mutagenesis. We used in vitro-binding techniques to identify characteristics of the ZAD family, by constructing glutathione Stransferase (GST)-ZAD domain chimeric proteins for use in protein binding assays, and GST-Zinc finger array domain chimera for binding site selections. Protein binding assays indicated a possible...
Show moreThe zinc finger associated domain (ZAD) containing family of transcription factors is not well described in the literature, in part because it is very difficult to study by mutagenesis. We used in vitro-binding techniques to identify characteristics of the ZAD family, by constructing glutathione Stransferase (GST)-ZAD domain chimeric proteins for use in protein binding assays, and GST-Zinc finger array domain chimera for binding site selections. Protein binding assays indicated a possible shared cofactor, as seen in the analogous KRAB system in mammals. DNA binding assays have provided a consensus binding sequence for five of the ZAD proteins, consistent with previously reported work on ZAD and unpublished work on mammalian transcription factors. Research is ongoing with an additional ~50 ZAD proteins to more fully map the binding characters of ZAD proteins.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/186768
- Subject Headings
- Cellular signal transduction, Drosophila melanogaster, Cytogenetics, Transcription factors, Zinc-finger proteins, Synthesis, Genetic transcription, Regulation, Gene expression
- Format
- Document (PDF)
- Title
- Identification of longitudinals lacking (LOLA) target genes in Drosophila melanogaster.
- Creator
- Qureshi, Bazila., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Longitudinals lacking gene (LOLA) is a transcription factor that is involved in a variety of axon guidance decisions in Drosophila melanogaster nervous system. Besides having a role as an epigenetic silencer and in the programmed cell death in Drosophila's ovary, this gene is also an example of complex transcription unit. LOLA is a transcription repressor and can generate 17 DNA - binding isoforms, through alternative splicing, each containing distinct zinc-finger proteins. This unique...
Show moreLongitudinals lacking gene (LOLA) is a transcription factor that is involved in a variety of axon guidance decisions in Drosophila melanogaster nervous system. Besides having a role as an epigenetic silencer and in the programmed cell death in Drosophila's ovary, this gene is also an example of complex transcription unit. LOLA is a transcription repressor and can generate 17 DNA - binding isoforms, through alternative splicing, each containing distinct zinc-finger proteins. This unique DNAbinding binding sequence to which LOLA-ZFP binds has been determined for four of the lola isoforms F, J, P and K. Also, bioinformatics' tool approach has been taken to identify the target genes that are regulated by these four LOLA splice variants. Future work will be done for the five other LOLA isoforms to categorize their putative DNA-binding sequences and subsequently their protein interactions.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2684893
- Subject Headings
- Transcription factors, Cellular signal transduction, Zinc-finger proteins, Synthesis, Genetic transcription, Regulation, Drosophila melanogaster, Cytogenetics, Gene expression
- Format
- Document (PDF)
- Title
- Highwire's characterization and signaling roles in Drosophila central synapse formation.
- Creator
- Rowland, Kimberly Diane., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The assembly and maintenance of central synapses is a complex process, requiring myriad genes and their products. Highwire is a large gene containing a RING domain, characteristic of ubiquitin E3 ligases. Highwire has been shown to restrain axon growth and control synaptogenesis at a peripheral synapse. Here I examine the roles of Highwire at a central synapse in the adult Drosophila Giant Fiber System (GFS). Highwire is indeed necessary for proper axonal growth as well as synaptic...
Show moreThe assembly and maintenance of central synapses is a complex process, requiring myriad genes and their products. Highwire is a large gene containing a RING domain, characteristic of ubiquitin E3 ligases. Highwire has been shown to restrain axon growth and control synaptogenesis at a peripheral synapse. Here I examine the roles of Highwire at a central synapse in the adult Drosophila Giant Fiber System (GFS). Highwire is indeed necessary for proper axonal growth as well as synaptic transmission in the GFS. Differences arise between the central synapse and the neuromuscular junction (NMJ), where highwire was initially characterized : expresion from the postsynaptic cell can rescue highwire synaptic defects, which is not seen at the NMJ. In addition, a MAP kinase signaling pathway regulated by highwire at the NMJ has differing roles at a central synapse. Wallenda MAPK can rescue not only the highwire anatomical phenotype but also the defects seen in transmission. Another distinction is seen here : loss of function basket and Dfos enhance the highwire anatomical phenotype while expression of dominant negative basket and Dfos suppress the highwire phenotype. As a result we have compared the signaling pathway in flies and worms and found that the NMJ in the two organisms use a parallel pathway while the central synapse uses a distinct pathway.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3352826
- Subject Headings
- Cellular control mechanisms, Cellular signal transduction, Cell differentiation, Gene expression, Genetic transcription, Transcription factors, Drosophila melanogaster, Cytogenetics
- Format
- Document (PDF)
- Title
- The RNA Binding Protein SRSF1 modulates Immune and Cancer pathways by regulating MyD88 transcription.
- Creator
- Ritchie, Anastasia, Caputi, Massimo, Florida Atlantic University, Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Abstract/Description
-
Serine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated...
Show moreSerine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated following SRSF1 overexpression. Pathway analysis showed that genes in the TNF/IL17 pathways were enriched in this dataset. Furthermore, we showed that MyD88, a strong activator of TNF transcription through transcription factors NF-κB and AP-1, is a primary target of SRSF1’s transcriptional activity. We propose that SRSF1 activates the transcription factors NF-κB and AP-1 through MyD88 pathway. SRSF1 overexpression regulates several genes that are deregulated in malignancies and immune disease, suggesting a role for SRSF1’s transcriptional activity in oncogenesis and immune response regulation.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013569
- Subject Headings
- RNA-Binding Proteins, Serine-Arginine Splicing Factors, Cancer, Autoimmune diseases, Transcription, Genetic, RNA, Messenger, Myeloid Differentiation Factor 88.
- Format
- Document (PDF)
- Title
- Presynaptic Determinants of Synaptic Strength and Energy Efficiency at Drosophila Neuromuscular Junctions.
- Creator
- Lu, Zhongmin, Macleod, Gregory, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Changes in synaptic strength underlie synaptic plasticity, the cellular substrate for learning and memory. Disruptions in the mechanisms that regulate synaptic strength closely link to many developmental, neurodegenerative and neurological disorders. Release site probability (PAZ) and active zone number (N) are two important presynaptic determinants of synaptic strength; yet, little is known about the processes that establish the balance between N and PAZ at any synapse. Furthermore, it is...
Show moreChanges in synaptic strength underlie synaptic plasticity, the cellular substrate for learning and memory. Disruptions in the mechanisms that regulate synaptic strength closely link to many developmental, neurodegenerative and neurological disorders. Release site probability (PAZ) and active zone number (N) are two important presynaptic determinants of synaptic strength; yet, little is known about the processes that establish the balance between N and PAZ at any synapse. Furthermore, it is not known how PAZ and N are rebalanced during synaptic homeostasis to accomplish circuit stability. To address this knowledge gap, we adapted a neurophysiological experimental system consisting of two functionally differentiated glutamatergic motor neurons (MNs) innervating the same target. Average PAZ varied between nerve terminals, motivating us to explore benefits for high and low PAZ, respectively. We speculated that high PAZ confers high-energy efficiency. To test the hypothesis, electrophysiological and ultrastructural measurements were made. The terminal with the highest PAZ released more neurotransmitter but it did so with the least total energetic cost. An analytical model was built to further explore functional and structural aspects in optimizing energy efficiency. The model supported that energy efficiency optimization requires high PAZ. However, terminals with low PAZ were better able to sustain neurotransmitter release. We suggest that tension between energy efficiency and stamina sets PAZ and thus determines synaptic strength. To test the hypothesis that nerve terminals regulate PAZ rather than N to maintain synaptic strength, we induced sustained synaptic homeostasis at the nerve terminals. Ca2+ imaging revealed that terminals of the MN innervating only one muscle fiber utilized greater Ca2+ influx to achieve compensatory neurotransmitter release. In contrast, morphological measurements revealed that terminals of the MN inner vating multiple postsynaptic targets utilized an increase in N to achieve compensatory neurotransmitter release, but this only occurred at the terminal of the affected postsynaptic target. In conclusion, this dissertation provides several novel insights into a prominent question in neuroscience: how is synaptic strength established and maintained. The work indicates that tension exists between energy efficiency and stamina in neurotransmitter release likely influences PAZ. Furthermore, PAZ and N are rebalanced differently between terminals during synaptic homeostasis.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004519, http://purl.flvc.org/fau/fd/FA00004519
- Subject Headings
- Drosophila melanogaster--Nervous system., Drosophila melanogaster--Cytogenetics., Fruit-flies--Development., Fruit-flies--Nervous system., Genetic transcription., Transcription factors., Cellular signal transduction., Cellular control mechanisms., Myoneural junction.
- Format
- Document (PDF)
- Title
- Characterization of receptor protein tyrosine phosphatase PTP69D in the giant fiber circuit.
- Creator
- Lee, LaTasha Hoskins, Godenschwege, Tanja A., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
PTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In...
Show morePTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In addition to guidance and targeting functions, our studies reveal an additional role for PTP69D in synaptic terminal growth in the CNS. We found that inhibition of phosphatase activity in catalytic domain (Cat1) proximal to the transmembrane domain did not affect axon guidance or targeting but resulted in stunted terminal growth of the GFs. Cell autonomous rescue and knockdown experiments demonstrated a function for PTP69D in the GFs, but not its postsynaptic target neurons. In addition,complementation studies and structure-function analyses revealed that for GF terminal growth, Cat1 function of PTP69D requires the immunoglobulin and the Cat2 domain but not the fibronectin type III repeats nor the membrane proximal region. In contrast, the fibronectin type III repeats, but not the immunoglobulin domains, were previously shown to be essential for axon targeting of photoreceptor neurons. Thus, our studies uncover a novel role for PTP69D in synaptic terminal growth in the CNS that is mechanistically distinct from its function during earlier developmental processes.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004301, http://purl.flvc.org/fau/fd/FA00004301
- Subject Headings
- Drosophila melanogaster., Protein-tyrosine phosphatase--Metabolism., Protein-tyrosine kinase., Protein kinases--Inhibitors., Phosphoprotein phosphatases., Transcription factors., Cell receptors., Cellular signal transduction.
- Format
- Document (PDF)
- Title
- Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress.
- Creator
- Pan, Chunliu, Giraldo, Grace S., Prentice, Howard, Wu, Jang-Yen
- Date Issued
- 2010-08-24
- PURL
- http://purl.flvc.org/fcla/dt/3327276
- Subject Headings
- Oxidative Stress, Oxidative Stress --drug effects, Oxidative Stress --physiology, Antioxidants --pharmacology, Apoptosis Regulatory Proteins, Proto-Oncogene Proteins c-bcl-2, PC12 Cells --drug effects, Endoplasmic Reticulum --drug effects, Transcription Factor CHOP, Taurine
- Format
- Document (PDF)