Current Search: Sulindac (x)
-
-
Title
-
THERAPEUTIC STRATEGIES USING SULINDAC AND G-CSF GENE THERAPY FOR NEUROLOGICAL DISEASE.
-
Creator
-
Chen, Belinda, Prentice, Howard, Florida Atlantic University, Department of Biomedical Science, Charles E. Schmidt College of Medicine
-
Abstract/Description
-
Alzheimer’s disease is a neurodegenerative disease that causes cognitive dysfunction and leads to progressive memory loss and behavioral impairment. About 60% to 80% of dementia cases are attributed to Alzheimer’s disease and currently afflict about 50 million people worldwide. Although it primarily affects people over the age of 65, a person’s risk for developing Alzheimer’s disease earlier can depend on factors such as a family history (genetic inheritance) or experiencing an ischemic...
Show moreAlzheimer’s disease is a neurodegenerative disease that causes cognitive dysfunction and leads to progressive memory loss and behavioral impairment. About 60% to 80% of dementia cases are attributed to Alzheimer’s disease and currently afflict about 50 million people worldwide. Although it primarily affects people over the age of 65, a person’s risk for developing Alzheimer’s disease earlier can depend on factors such as a family history (genetic inheritance) or experiencing an ischemic stroke event. Current treatments for Alzheimer’s disease include behavioral therapy and drug treatment that can lessen the severity of symptoms but cannot stop progression indefinitely. Sulindac is a non-steroidal anti-inflammatory drug that, by a mechanism independent of its anti-inflammatory properties, has shown to express a preconditioning response to protect from oxidative damage. Granulocyte colony stimulating factor is a hematopoietic glycoprotein that can stimulate the production of granulocytes and stem cells that has proven to provide neuroprotection in models of ischemic stroke via mechanisms including anti-apoptosis and anti-inflammation. In this in vitro study, the potential neuroprotective effects of Sulindac is measured against the effects of oxidative stress when subjected to hypoxia and reperfusion. Regarding un-transfected SHSY-5Y cells, hypoxia was demonstrated to lower cell viability starting at a period of 12 hours. It was found that a low concentration of Sulindac (200 uM) was effective in protecting SHSY-5Y cells against oxidative stress and overall lowering the rate of cell death in the event of hypoxic and reperfusion injury. When SHSY-5Y cells were transfected with Swedish APP mutation, cell viability was also markedly decreased in hypoxic conditions. However when treated with a concentration of 600 uM of Sulindac, cell viability levels were near matched with its normoxic counterparts
Show less
-
Date Issued
-
2022
-
PURL
-
http://purl.flvc.org/fau/fd/FA00014021
-
Subject Headings
-
Sulindac, Granulocyte-colony stimulating factor, Genetic Therapy, Alzheimer Disease
-
Format
-
Document (PDF)
-
-
Title
-
Mechanism of neuroprotection in stroke-related models.
-
Creator
-
Pan, Chunliu., Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
-
Abstract/Description
-
Stroke is the third leading cause of mortality in the United States, and so far, no clinical interventions have been proved truly effective in stroke treatment. Stroke my result in hypoxia, glutamate release and oxidative stress, etc. The purpose of this dissertation study is to evaluate the neuroprotective effects of four drugs (taurine, G-CSF sulindac and DETC-MeSO) on PC12 cell line or primary cortical neuronal cell culture, and to understand the protective mechanisms underlying in three...
Show moreStroke is the third leading cause of mortality in the United States, and so far, no clinical interventions have been proved truly effective in stroke treatment. Stroke my result in hypoxia, glutamate release and oxidative stress, etc. The purpose of this dissertation study is to evaluate the neuroprotective effects of four drugs (taurine, G-CSF sulindac and DETC-MeSO) on PC12 cell line or primary cortical neuronal cell culture, and to understand the protective mechanisms underlying in three stroke-related models : hypoxia, excessive glutamtate and oxidative stress. In the first part of this dissertation, we studied the neuroprotection of taurine against oxidative stress induced by H2O2 in PC12 cells. Our results show that extracellular taurine exerts a neuroprotective function by restoring the expression of Bcl-2 and downregulation of the three Endoplasmic Reticulum (ER) stress markers : GRP78, Bim and CHOP/GADD153, suggesting that ER stress can be provoked by oxidative stress and can be suppressed by taurine. In the second part, glutamate excitotoxicity-induced ER stress was studied with dose and time as variables in primary cortical neurons. The results demonstrate that glutamate excitotoxicity leads to the activation of three ER stress pathways (PERK, ATF6 and IRE1) by initiating PERK first, ATF6 second and IRE1 pathway last. The third part of this dissertation studied the robust and beneficial protection of taurine in cortical neurons under hypoxia/reoxygenation or glutamate toxicity condition. We found that taurine suppresses the up-regulation of GRP778, Bim, caspase-12 and GADD153/CHOP induced by excessive glutamate or hypoxia/reoxygenation, suggesting that taurine may exert a protective function against hypoxia/regeneration by reducing the ER stress., Moreover, taurine can down-regulate the ratio of cleaved ATF6 and full length ATF6, and p-IRE1 expresssion, indicating that taurine inhibits the ER stress induced by hypoxia/reoxygenation or glutamate through suppressing ATF6 and IRE1 pathways. In the fourth part, the synergistic benefits of the combination of taurine and G-CSF, and the neuroprotective effects of G-CSF, sulindac or DETC-MeSO are studied in cortical neurons. Our results show that G-CSF, sulindac or DETC-MeSO can highly increase the neuron visibility by inhibiting ER stress induced by hypoxia/reoxygenation or glutamate toxicity. Furthermore, we proved that G-CSF or sulindac can significantly inhibit the activation of ATF6 or IRE1 pathway stimulated by hypoxia/reoxygenation, and DETC-MeSO can suppress the activation of both PERK and IRE1 pathways in primary neuron cultures. These findings provide promising and rational strategies for stroke therapy.
Show less
-
Date Issued
-
2012
-
PURL
-
http://purl.flvc.org/FAU/3352284
-
Subject Headings
-
Sulindac, Physiological effect, Taurine, Physiological effect, Cerebral ischemia, Prevention, Biochemical markers, Diagnostic use, Apoptosis, Oxidation reduction reaction
-
Format
-
Document (PDF)