Current Search: Seagrass restoration (x)
View All Items
- Title
- Transplanting and survival of the seagrass Halodule wrightii under controlled conditions.
- Creator
- Zimmermann, Carl F., French, T. D., Montgomery, John R., Harbor Branch Oceanographic Institute
- Date Issued
- 1981
- PURL
- http://purl.flvc.org/FCLA/DT/3340747
- Subject Headings
- Seagrasses, Seagrass restoration, Naphthaleneacetic acid, Transplanting (Plant culture)
- Format
- Document (PDF)
- Title
- Fragments of the seagrasses Halodule wrightii and Halophila johnsonii as potential recruits in Indian River Lagoon, Florida.
- Creator
- Hall, L. M., Hanisak, M. Dennis, Virnstein, Robert W.
- Date Issued
- 2006
- PURL
- http://purl.flvc.org/FCLA/DT/3350902
- Subject Headings
- Seagrasses, Halophila, Indian River (Fla. : Lagoon), Seagrass restoration, Vegetative propagation
- Format
- Document (PDF)
- Title
- The effects of the cyanobacterium Lyngbya majuscula and artificial shading on the seagrass Halodule wrightii.
- Creator
- Tiling, Kathryn A., Harriet L. Wilkes Honors College
- Abstract/Description
-
Extensive blooms of the marine cyanobacterium Lyngbya majuscula occurred during 2006 in Halodule wrightii seagrass beds. We examined the effects of L. majuscula blooms on seagrass by removal treatments and assessed if this was primarily an effect of shading by conducting artificial shade treatments. We tested the effects of L. majuscula removal and artificial shading on fifty individual 0.25 m2 experimental seagrass plots infested with L. majuscula in a fully crossed, two-way experiment....
Show moreExtensive blooms of the marine cyanobacterium Lyngbya majuscula occurred during 2006 in Halodule wrightii seagrass beds. We examined the effects of L. majuscula blooms on seagrass by removal treatments and assessed if this was primarily an effect of shading by conducting artificial shade treatments. We tested the effects of L. majuscula removal and artificial shading on fifty individual 0.25 m2 experimental seagrass plots infested with L. majuscula in a fully crossed, two-way experiment. Measurements included blade elongation, biomass, and stem density. Blade lengths of H. wrightii were significantly increased by the presence of artificial shading and L. majuscula. L. majuscula removal resulted in increased below ground biomass in shaded plots, suggesting an increase in stores, when possible, for accelerated recovery following a shading event. Adverse L. majuscula effects occurred after declines in bloom biomass indicating that L. majuscula can have a prolonged negative effect on H. wrightii production.
Show less - Date Issued
- 2007
- PURL
- http://purl.flvc.org/FAU/11597
- Subject Headings
- Cyanobacteria, Biological control, Seagrasses, Physiology, Seagrasses, Effect of salt on, Restoration ecology, Halodule wrightii, Morphology
- Format
- Document (PDF)
- Title
- Evaluating the Feasibility of Transplanting to Promote Seagrass Recovery in the Indian River Lagoon. Final Report for Contract No. 24676. Submitted to St. Johns River Water Management District.
- Creator
- Hanisak, M. Dennis, Virnstein, Robert W., Harbor Branch Oceanographic Institute
- Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00007522
- Subject Headings
- Seagrasses--Florida--Indian River (Lagoon), Seagrass restoration, Transplanting (Plant culture)
- Format
- Document (PDF)
- Title
- Examination of the Use of Floating Individuals of Halodule wrightii (Ascherson, 1868) for Restoration.
- Creator
- Berninger, Jacob J., Hanisak, M. Dennis, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The goal of this study was to develop an alternative approach to typical seagrass transplantation techniques that damage the donor bed. Floating individuals of Halodule wrightii were collected in the Indian River Lagoon (IRL), Florida, during fall of 2013 and spring of 2014, with the fall collection planted in outdoor tanks. Only 25% of individuals collected in the fall survived the winter in the tanks. Individuals from both collections were deployed onto biodegradable mats in a capped dredge...
Show moreThe goal of this study was to develop an alternative approach to typical seagrass transplantation techniques that damage the donor bed. Floating individuals of Halodule wrightii were collected in the Indian River Lagoon (IRL), Florida, during fall of 2013 and spring of 2014, with the fall collection planted in outdoor tanks. Only 25% of individuals collected in the fall survived the winter in the tanks. Individuals from both collections were deployed onto biodegradable mats in a capped dredge hole in the IRL in March, 2014. Approximately 66% of the mats survived the six-month experiment, and the area covered by seagrass quadrupled. Growth in shoot count, average height, horizontal spread, and biomass was similar for both fall and spring treatments. Thus, time and effort of overwintering had no benefit over spring harvesting. The use of floating individuals can provide a more practical, environmentally friendly alternative to traditional transplanting for seagrass re storation.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004482, http://purl.flvc.org/fau/fd/FA00004482
- Subject Headings
- Indian River (Fla. : Lagoon) -- Environmental conditions, Restoration ecology -- Florida -- Indian River (Lagoon), Seagrass restoration -- Florida -- Indian River (Lagoon), Seagrasses -- Conservation -- Florida -- Indian River (Lagoon)
- Format
- Document (PDF)
- Title
- The Role Of Disturbance In The Genotypic And Morphological Diversity Of Halodule Wrightii.
- Creator
- Tiling, Kathryn A., Proffitt, C. Edward, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Seagrasses are important foundation species in coastal ecosystems. Genetic diversity of seagrasses can influence a number of ecological factors including, but not limited to, disturbance resistance and resilience. Seagrasses in the Indian River Lagoon (IRL), Florida are considered to be highly disturbed due to frequent events, like algal blooms, that impair water quality, reducing available light for seagrass growth. Halodule wrightii is a dominant seagrass throughout the IRL, but its genetic...
Show moreSeagrasses are important foundation species in coastal ecosystems. Genetic diversity of seagrasses can influence a number of ecological factors including, but not limited to, disturbance resistance and resilience. Seagrasses in the Indian River Lagoon (IRL), Florida are considered to be highly disturbed due to frequent events, like algal blooms, that impair water quality, reducing available light for seagrass growth. Halodule wrightii is a dominant seagrass throughout the IRL, but its genetic diversity has only been quantified in a few Gulf of Mexico and Florida Bay populations and little is known about its potential ecological consequences. I quantified the genetic variation of H. wrightii using microsatellite markers in the southern IRL to determine: (i) how disturbance history influenced genetic diversity, (ii) if morphology of clones was, in part, genetically controlled and related to disturbance history, and (iii) if genotypes showed phenotypic plasticity in response to disturbances. In the IRL, H. wrightii populations exhibited moderate genetic diversity that varied with disturbance history. The disturbance history of a population was classified by the variance in the percent occurrence of H. wrightii over a 16-year period. Genotypic richness and clonal diversity of H. wrightii increased with increasing disturbance histories. Other genetic diversity measures (e.g., allelic richness, observed heterozygosity) did not change with disturbance history. These findings suggest that impacts to seagrass coverage over time can change the genotypic composition of populations. When different genotypes of H. wrightii were grown in a common garden, differences in leaf characteristics among genotypes provided evidence that morphological trait variation is, in part, explained by genetic variance. The disturbance history of genotypes did not directly affect morphological traits. However, significant genotype x site (within disturbance history) interactions found greater variation in shoot density and below ground traits of H. wrightii genotypes from sites of intermediate disturbance history. Traits of H. wrightii were shown to be phenotypically plastic. Significant genotype x environment interactions for shoot density and height demonstrated that genotypes responded differently by increasing, decreasing, and not changing sizes in response to light reduction. Genetic diversity of H. wrightii has strong implications for ecological function in coastal communities.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004661, http://purl.flvc.org/fau/fd/FA00004661
- Subject Headings
- Indian River (Fla. : Lagoon) -- Enviornmental conditions, Indian River Lagoon National Estuary Program (Fla.), Marine ecology -- Florida -- Indian River (Lagoon), Restoration ecology, Seagrasses -- Florida -- Indian River (Lagoon), Seagrasses -- Physiology
- Format
- Document (PDF)
- Title
- A Modeling Study on The Effects of Seagrass Beds on the Hydrodynamics in the Indian River Lagoon.
- Creator
- Habib, MD Ahsan, Jiang, Mingshun, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Seagrass is a key stone component for the Indian River Lagoon (IRL) ecosystem, and therefore it is an important topic for many studies in the lagoon. This study focuses on the effects of seagrass beds on the hydrodynamics in the IRL. A hydrodynamic model based on the Delft3D modeling system has been developed for the southern IRL including the St. Lucie estuary, Ft. Pierce and St. Lucie Inlets, and adjacent coastal waters. The model is driven by freshwater inputs from the watershed, tides,...
Show moreSeagrass is a key stone component for the Indian River Lagoon (IRL) ecosystem, and therefore it is an important topic for many studies in the lagoon. This study focuses on the effects of seagrass beds on the hydrodynamics in the IRL. A hydrodynamic model based on the Delft3D modeling system has been developed for the southern IRL including the St. Lucie estuary, Ft. Pierce and St. Lucie Inlets, and adjacent coastal waters. The model is driven by freshwater inputs from the watershed, tides, meteorological forcing, and oceanic boundary forcing. The model has been systematically calibrated through a series of numerical experiments for key parameters, particularly the bottom roughness, and configuration including heat flux formulation and bottom bathymetry. The model skills were evaluated with quantitative metrics (point-to-point correlation, root-mean-square difference, and mean bias) to gauge the agreements between model and data for key variables including temperature, salinity, and currents. A three-year (2013-2015) simulation has been performed, and the results have been validated with available data including observations at HBOI Land-Ocean Biogeochemistry Observatory (LOBO) stations and in situ measurements from various sources. The validated model is then used to investigate the effects of 1) model vertical resolution (total number of model vertical layers), 2) spatial variability of surface winds, and 3) seagrass beds on the simulated hydrodynamics. The study focuses on the vicinity of Ft. Pierce Inlet, where significant seagrass coverage can be found. A series of numerical experiments were performed with a combination of different configurations. Overall, the experiment with 2-dimensional (2-D) winds, ten vertical layers and incorporating seagrass provided the most satisfactory outcomes. Overall, both vertical resolution and spatial variability of surface winds affect significantly the model results. In particular, increasing vertical resolution improves model prediction of temperature, salinity and currents. Similarly, the model with 2-D winds yields more realistic results than the model forced by 0-D winds. The seagrass beds have significant effects on the model results, particularly the tidal and sub-tidal currents. In general, model results show that both tidal and sub-tidal currents are much weaker due to increase bottom friction from seagrass. For tidal currents, the strongest impacts lie in the main channel (inter-coastal waterway) and western part of the lagoon, where strong tidal currents can be found. Inclusion of seagrass in the model also improves the simulation of sub-tidal currents. Seagrass beds also affect model temperature and salinity including strengthening vertical stratification. In general, seagrass effects vary over time, particularly tidal cycle with stronger effects seen in flood and ebb tides, and seasonal cycle with stronger effects in the summer than in winter.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004774, http://purl.flvc.org/fau/fd/FA00004774
- Subject Headings
- Turtle grass--Environmental aspects., Seagrasses--Ecology., Grassed waterways., Wave resistance (Hydrodynamics), Wetland ecology., Estuarine ecology., Estuarine restoration., Coastal zone management.
- Format
- Document (PDF)