Current Search: Radiotherapy (x)
View All Items
Pages
- Title
- A Comparative Analysis of Monte Carlo and Collapsed Cone Dose Calculation Algorithms for Monaco 3D Treatment Plans.
- Creator
- Pereira, Shakeel, Kyriacou, Andreas, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
The Monaco treatment planning system offers three different dose calculation algorithms for use in calculating 3D treatment plans. These include Monte Carlo (MC), Collapsed Cone (CC) and the pencil beam algorithms. The aim of this study is an in-depth analysis of Monte Carlo and Collapsed Cone dose calculation methods to find the optimal parameters for clinical use for both algorithms. An end-to-end phantom with inhomogeneities was scanned and the DICOM images were imported into Monaco for...
Show moreThe Monaco treatment planning system offers three different dose calculation algorithms for use in calculating 3D treatment plans. These include Monte Carlo (MC), Collapsed Cone (CC) and the pencil beam algorithms. The aim of this study is an in-depth analysis of Monte Carlo and Collapsed Cone dose calculation methods to find the optimal parameters for clinical use for both algorithms. An end-to-end phantom with inhomogeneities was scanned and the DICOM images were imported into Monaco for contouring and planning. Treatment plans were then created in Monaco for both MC and CC using different permutations of variables for approximately 400 plans. These variables include CT Slice thickness, grid size, statistical uncertainty, and beam energy. Following planning the end-to-end phantom was then irradiated on an Elekta Linac and plans for each beam energy were created. Clinical beam data was then compared to the computed plans for each dose calculation method.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014019
- Subject Headings
- Radiotherapy, Radiotherapy Dosage, Radiation dosimetry
- Format
- Document (PDF)
- Title
- Optimization algorithms for intensity modulated radiation treatment.
- Creator
- Doozan, Brian, Leventouri, Theodora, Graduate College
- Date Issued
- 2013-04-12
- PURL
- http://purl.flvc.org/fcla/dt/3361926
- Subject Headings
- Radiotherapy, Radiation dosimetry, Algorithms
- Format
- Document (PDF)
- Title
- Machined brass skin collimation with variable thickness for electron therapy.
- Creator
- Gomez, Facenda Alianna, Ouhib, Zoubir, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Skin collimation in electron therapy ensures sharper penumbra and maximal protection to adjacent critical structures. It also provides a better clinical dose to the target and avoids recurrences at the periphery. The thickness of the electron skin collimation must be adequate for shielding purposes, not too thick to cause discomfort to the patient and be conformal to the skin. This study assessed the clinical potential of machined brass skin collimation with variable thickness. Brass...
Show moreSkin collimation in electron therapy ensures sharper penumbra and maximal protection to adjacent critical structures. It also provides a better clinical dose to the target and avoids recurrences at the periphery. The thickness of the electron skin collimation must be adequate for shielding purposes, not too thick to cause discomfort to the patient and be conformal to the skin. This study assessed the clinical potential of machined brass skin collimation with variable thickness. Brass transmission factors for 6, 9, and 12 MeV electron beams were measured and used to determine the skin collimation clinically acceptable thickness. Dosimetric performance of the variable thickness skin collimation was evaluated for 9 MeV electrons within a rectilinear water-equivalent phantom and a water-filled head phantom. Results showed the variable thickness skin collimation is dosimetrically equivalent to the uniform thickness collimation. Favorable dosimetric advantages for brass skin collimation for small electron fields were achieved.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013731
- Subject Headings
- Skin, Radiotherapy, Electron beams
- Format
- Document (PDF)
- Title
- An Algorithm to Determine IMRT Optimization Parameters within the Elekta Monaco® Treatment Planning System that Increases Dose Homogeneity and Dose Conformity in the Planning Target Volume.
- Creator
- Gregorisch, David, Pella, Silvia, Kyriacou, Andreas, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
An algorithm to determine IMRT optimization parameters within the Elekta Monaco® treatment planning system that increases dose homogeneity and dose conformity in the planning target volume was developed. This algorithm determines IMRT optimization parameters by calculating the difference between two pairs of dose points along the target volume’s dose volume histogram: Dmax – Dmin, and D2 – D98. The algorithm was tested on the Elekta Monaco® Treatment Planning System at GenesisCare of Coconut...
Show moreAn algorithm to determine IMRT optimization parameters within the Elekta Monaco® treatment planning system that increases dose homogeneity and dose conformity in the planning target volume was developed. This algorithm determines IMRT optimization parameters by calculating the difference between two pairs of dose points along the target volume’s dose volume histogram: Dmax – Dmin, and D2 – D98. The algorithm was tested on the Elekta Monaco® Treatment Planning System at GenesisCare of Coconut Creek, Florida using CT data from 10 anonymized patients with non-small cell lung cancer of various tumor sizes and locations. Nine iterations of parameters were tested on each patient. Once the ideal parameters were found, the results were evaluated using the ICRU report 83 homogeneity index as well as the Paddick conformity index. As an outcome of this research, it is recommended that at least three iterations of IMRT optimization parameters should be calculated to find the ideal parameters.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013990
- Subject Headings
- Radiotherapy, Algorithm, Medical physics
- Format
- Document (PDF)
- Title
- Comparison of Measured and Computed Lateral Penumbra for a ProteusPlus Pencil Beam Scanning Proton Therapy System.
- Creator
- Leyva, Michael, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The lateral penumbra of a proton pencil beam scanning system (PBS) is of great importance in sparing of organs at risk and normal tissue when treating patients. The purpose of this current work is to measure the lateral penumbra of the Ion Beam Applications (Ion Beam Applications, Louvain‐la‐Neuve, Belgium) ProteusPLUS PBS Proton Therapy System and compare the measurements with the computed results from the RayStation proton treatment planning system. The lateral penumbra (80%-20%) was...
Show moreThe lateral penumbra of a proton pencil beam scanning system (PBS) is of great importance in sparing of organs at risk and normal tissue when treating patients. The purpose of this current work is to measure the lateral penumbra of the Ion Beam Applications (Ion Beam Applications, Louvain‐la‐Neuve, Belgium) ProteusPLUS PBS Proton Therapy System and compare the measurements with the computed results from the RayStation proton treatment planning system. The lateral penumbra (80%-20%) was measured using EBT-3 Gafchromic film in the water tank. The lateral penumbra was studied for various parameters such as range, depth, and air gap. The computed lateral penumbra was found to be higher than the measured lateral penumbra by up to 2.3 mm in the case of depth dependency at 30 cm, and lower by up to 1.18 mm in the case of an air gap of 15 cm.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013229
- Subject Headings
- Proton Therapy, Radiotherapy--Measurement, Radiotherapy Planning, Computer-Assisted
- Format
- Document (PDF)
- Title
- A method of verification of the total treatment time for the APBI (Accelerated Partial Breast Irradiation) devices: CONTURA Multilumen Balloon and SAVI Applicator.
- Creator
- Kyriacou, Andreas, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
A simple method to verify the total treatment time generated by the treatment planning system (TPS) when the CONTURA MLB or the SAVI applicator are used for APBI treatments has been developed. The method compares the time generated by the TPS to a predicted time, calculated by inserting parameters obtained from the TPS in equations generated in this Thesis. The equations were generated by linearly fitting data from clinical cases that had been treated using the Contura MLB or the SAVI...
Show moreA simple method to verify the total treatment time generated by the treatment planning system (TPS) when the CONTURA MLB or the SAVI applicator are used for APBI treatments has been developed. The method compares the time generated by the TPS to a predicted time, calculated by inserting parameters obtained from the TPS in equations generated in this Thesis. The equations were generated by linearly fitting data from clinical cases that had been treated using the Contura MLB or the SAVI applicator at the Lynn Cancer Institute of the Boca Raton Regional Hospital. The parameters used were the PTV coverage, Air Kerma Strength, Balloon Volume (Contura data fit) and Evaluation PTV (SAVI data fit). As an outcome of this research, it is recommended that the plan should be reevaluated when the percent difference between the generated and the predicted times exceeds 5% for the Contura MLB, or 10% for the SAVI.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3332254
- Subject Headings
- Cancer, Radiotherapy, Breast, Cancer, Radiotherapy, Breast, Cancer, Treatment
- Format
- Document (PDF)
- Title
- Improved Methodology of Static HDMLC Virtual Cone based Rapid Arcs for Stereotactic Ablative Radiotherapy.
- Creator
- Stevens, Ryan, Shang, Charles, Muhammad, Wazir, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Physical cones equipped on GammaKnife, Cyberknife, and C-arm linacs have been the standard practice in Stereotactic Ablative Radiotherapy (SART) for small intracranial lesions, such as treating trigeminal or glossopharyngeal neuralgia targets. The advancement of high-definition multi-leaf collimators (HDMLC), treatment planning systems, and small field dosimetry now allows for treatment without the need for an auxiliary mounted physical cone. This treatment type uses the “virtual cone”, a...
Show morePhysical cones equipped on GammaKnife, Cyberknife, and C-arm linacs have been the standard practice in Stereotactic Ablative Radiotherapy (SART) for small intracranial lesions, such as treating trigeminal or glossopharyngeal neuralgia targets. The advancement of high-definition multi-leaf collimators (HDMLC), treatment planning systems, and small field dosimetry now allows for treatment without the need for an auxiliary mounted physical cone. This treatment type uses the “virtual cone”, a permanent high-definition MLC, arrangement to deliver “very small fields” with comparable spherical dose distributions to physical cones. The virtual cone therapy, on a Varian Edge™ linac using multiple non-coplanar arcs with static HDMLCs, is a comparable technique that can be used to treat small intracranial neuralgia or other small lesions. In this investigation, two flattening filter free (FFF) photon beams, 6MV FFF and 10MV FFF, were tested for optimal delivery and safety conditions for treating intracranial lesions. The virtual cone method on a Varian Edge™ Linear accelerator using rapid arc stereotactic radiosurgery was used to treat cranial neuralgia for chronic pain for six patients. Absolute dose, relative dose measurements, and monitor units were the main characteristics that were examined to decide which energy was the best for treatment. Source-to-axis distances (SAD) of 100cm measurements were taken at depths of 10cm and 5cm, respectively.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013630
- Subject Headings
- Radiotherapy, Radiation dosimetry, Stereotaxic Techniques
- Format
- Document (PDF)
- Title
- Nuclear Halo Effect and Field Size Factor for Pencil-Beam Scanning Proton Therapy.
- Creator
- Beqiri, Atdhe, Shang, Charles, Muhammad, Wazir, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
In proton therapy systems with pencil-beam scanning, output of Halo effect is not necessarily included in Treatment Planning System (TPS). Halo effect (low-intensity tail) can significantly affect a patient’s dose distribution. The output of this dose depends on the field size being irradiated. Although much research has been made to investigate such relation to the field size, the number of reports on dose calculations including the halo effect is small. In this work we have investigated the...
Show moreIn proton therapy systems with pencil-beam scanning, output of Halo effect is not necessarily included in Treatment Planning System (TPS). Halo effect (low-intensity tail) can significantly affect a patient’s dose distribution. The output of this dose depends on the field size being irradiated. Although much research has been made to investigate such relation to the field size, the number of reports on dose calculations including the halo effect is small. In this work we have investigated the Halo effect, including field size factor, target depth factor, and air gaps with a range shifter for a Varian ProBeam. Dose calculations created on the Eclipse Treatment Planning System (vs15.6 TPS) are compared with plane-parallel ionization chambers (PTW Octavius 1500) measurements using PCS and AcurosPT MC model in different isocenters: 5cm, 10cm, and 20cm. We find that in AcurosPT algorithm deviations range between -7.53% (for 2cm field in 25cm air gap with range shifter) up to +7.40% (for 20cm field in 15cm air gap with range shifter). Whereas, in PCS algorithm the deviations are -2.07% (for 20x20cm field in open conditions) to -6.29% (for 20x20cm field in 25cm air gap with range shifter).
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013788
- Subject Headings
- Proton Therapy, Proton beams, Radiotherapy
- Format
- Document (PDF)
- Title
- Accurate verification of balloon rotation correction for the contura® multi-lumen device for accelerated partial breast irradiation.
- Creator
- Kyriacou, Andreas, Benda, R., Vargas, C., Lyden, M., Vicini , F., Leventouri, Theodora, Graduate College, Kasper, M.
- Date Issued
- 2011-04-08
- PURL
- http://purl.flvc.org/fcla/dt/3171046
- Subject Headings
- Breast --Cancer --Radiotherapy, Brachytherapy, Breast Neoplasms --surgery
- Format
- Document (PDF)
- Title
- Dose Validation for Partial Accelerated Breast Irradiation treated with the SAVI Applicator.
- Creator
- Pinder, Janeil K., Pella, Silvia, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this study is to verify and validate the dose at various points of interest in accelerated partial breast irradiation (APBI) treated with the Strut Adjusted Volume Implant (SAVI) applicator using Thermoluminescent Dosimeters (TLDs). A set of CT images were selected from a patient’s data who had received APBI using the SAVI applicator. The images were used to make 3D models. TLDs were calibrated for Brachytherapy. Various points of interest were marked out and slots were carved...
Show moreThe purpose of this study is to verify and validate the dose at various points of interest in accelerated partial breast irradiation (APBI) treated with the Strut Adjusted Volume Implant (SAVI) applicator using Thermoluminescent Dosimeters (TLDs). A set of CT images were selected from a patient’s data who had received APBI using the SAVI applicator. The images were used to make 3D models. TLDs were calibrated for Brachytherapy. Various points of interest were marked out and slots were carved in the 3D models to fit the TLDs. CT scans were taken of the 3D models with expanded SAVI applicator inserted. A plan was made following B-39 protocol. The TLDs were read and the absorbed doses were calculated and compared to the delivered doses. The results of this study show that the overall average reading of the TLDs is within expected value. The TPS shows overestimated dose calculations for brachytherapy.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00005942
- Subject Headings
- Dissertations, Academic -- Florida Atlantic University, Thermoluminescence dosimetry., Brachytherapy., Radiotherapy Dosage., Breast--Cancer--Radiotherapy.
- Format
- Document (PDF)
- Title
- Manufacturing of 3D Printed Boluses for Use In Electron Radiation Therapy.
- Creator
- Gibbard, Grant, Kalantzis, Georgios, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
This research demonstrates that a 3D printed bolus can be customized for electron radiation therapy. Both extruder and powder based printers were used, along with, paraffin wax, super stuff, and H20. The plan dose coverage and conformity for the planning target volume (PTV), was such that the distal side of the PTV was covered by the 90% isodose line. The structure is read, and converted into an STL file. The file is sent to a slicer to print. The object was filled with parafin wax,...
Show moreThis research demonstrates that a 3D printed bolus can be customized for electron radiation therapy. Both extruder and powder based printers were used, along with, paraffin wax, super stuff, and H20. The plan dose coverage and conformity for the planning target volume (PTV), was such that the distal side of the PTV was covered by the 90% isodose line. The structure is read, and converted into an STL file. The file is sent to a slicer to print. The object was filled with parafin wax, superstuff or water and sealed. Materials Hounsfield units were analyzed, along with the structure stability. This method is evaluated by scanning the 3D printed bolus. The dose conformity is improved compared to that with no bolus. By generating a patient specific 3D printed bolus there is an in improvement in conformity of the prescription isodose surface while sparing immediately adjacent normal tissues.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00005943
- Subject Headings
- Dissertations, Academic -- Florida Atlantic University, Radiotherapy Dosage., Skin--Cancer., Radiotherapy--methods
- Format
- Document (PDF)
- Title
- Radiation Induced Injury of Hepatocellular Carcinoma, IMRT vs SBRT.
- Creator
- Feghhi, Touhid, Pella, Silvia, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Hepatocellular carcinoma is currently one of the most fatal cancers in the world. The routine treatment for this type of cancer consists of surgery, chemotherapy, and finally radiation therapy. Recent advancements in technology have enabled us to deliver highly conformed dose to planning target volume. Two of these methods are Intensity modulated Radiation Therapy (IMRT) and Stereotactic Body Radiation Therapy (SBRT). The difference between these two methods is that in the SBRT high radiation...
Show moreHepatocellular carcinoma is currently one of the most fatal cancers in the world. The routine treatment for this type of cancer consists of surgery, chemotherapy, and finally radiation therapy. Recent advancements in technology have enabled us to deliver highly conformed dose to planning target volume. Two of these methods are Intensity modulated Radiation Therapy (IMRT) and Stereotactic Body Radiation Therapy (SBRT). The difference between these two methods is that in the SBRT high radiation dose per fraction is delivered, but smaller number of fractions which renders better tumor control probability. However, better tumor control comes at the price of complications and radiation induced liver damage. In this work, we compare the outcome of radiation with regards to the probability of radiation damage to the liver after IMRT and SBRT. For this purpose, we analyzed 10 anonymized patients’ data with liver cancer, and we made two similar treatment plans for them. The difference in two plans is dose per fraction and total dose. After optimizing the treatments and calculating the dose volume histogram, we found the effective volume of the liver being irradiated. Finally, this effective volume and the corresponding dose were used to show that SBRT has the advantage of better tumor control probability at the cost of higher probability of complications.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014070
- Subject Headings
- Carcinoma, Hepatocellular, Radiotherapy--Adverse effects, Radiotherapy, Intensity-Modulated, Stereotactic Body Radiation Therapy
- Format
- Document (PDF)
- Title
- Development of an Arduino-based 3D printed 6DOF robotic phantom and a MATLAB-based software for Radiation Therapy Quality Assurance.
- Creator
- Rahman, Md Mushfiqur, Leventouri, Theodora, Shang, Charles, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Quality Assurance (QA) for medical linear accelerators (linac) is the primary concern in external beam radiation therapy. In this research, we have developed a MATLAB-based software named Quality Assurance for Linacs (QALMA), which is unique, due to cost-effectiveness, user friendly interface, and customizability. It includes five modules to perform different QA tests: Star Shot analysis, Picket Fence test, Winston-Lutz test, MLC log file analysis, and verification of light & radiation field...
Show moreQuality Assurance (QA) for medical linear accelerators (linac) is the primary concern in external beam radiation therapy. In this research, we have developed a MATLAB-based software named Quality Assurance for Linacs (QALMA), which is unique, due to cost-effectiveness, user friendly interface, and customizability. It includes five modules to perform different QA tests: Star Shot analysis, Picket Fence test, Winston-Lutz test, MLC log file analysis, and verification of light & radiation field coincidence. We also pay attention to quality assurance of 6DOF treatment couch that plays a very important role in radiation therapy. We developed an Arduino based 3D printed 6DOF robotic phantom to check the accuracy of the treatment couch. This robotic phantom was experimentally validated under clinical standards, and customizable upon requirements of the quality assurance Task. The current features of this robotic phantom open development opportunities beyond the specific couch application, such as organs motion simulation.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013165
- Subject Headings
- Radiation therapy, Radiotherapy--Quality control, Arduino (Computer language), MATLAB
- Format
- Document (PDF)
- Title
- Development of a Monte Carlo Simulation Model for Varian ProBeam Compact Single-Room Proton Therapy System using GEANT4.
- Creator
- String, Shawn, Muhammad, Wazir, Shang, Charles, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Proton therapy with pencil beam scanning technique is a novel technique to treat cancer patients due to its unique biophysical properties. However, a small error in dose calculation may lead towards undesired greater uncertainties in planed doses. This project aims to create a simulation model of Varian ProBeam Compact using the GEANT4 Monte Carlo simulation tool kit. Experimental data from the first clinical ProBeam Compact system at South Florida Proton Therapy Institute was used to...
Show moreProton therapy with pencil beam scanning technique is a novel technique to treat cancer patients due to its unique biophysical properties. However, a small error in dose calculation may lead towards undesired greater uncertainties in planed doses. This project aims to create a simulation model of Varian ProBeam Compact using the GEANT4 Monte Carlo simulation tool kit. Experimental data from the first clinical ProBeam Compact system at South Florida Proton Therapy Institute was used to validate the simulation model. A comparison was made between the experimental and simulated Integrated Depth-Dose curves using a 2%/2mm gamma index test with 100% of points passing. The beam spot standard deviation sizes (s!) were compared using percent deviation. All simulated s! matched the experimental s! within 2.5%, except 70 and 80 MeV. The model can be used to develop a more comprehensive model as an independent dose verification tool and further investigate dose distribution.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013547
- Subject Headings
- Proton Therapy, Monte-Carlo-Simulation, Radiotherapy Dosage
- Format
- Document (PDF)
- Title
- Prediction of Radiobiological Indices and Equivalent Uniform Dose in Lung Cancer Radiation Therapy using an Artificial Neural Network.
- Creator
- Pudasaini, Mukunda Prasad, Leventouri, Theodora, Muhammad, Wazir, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
In radiotherapy, radiobiological indices tumor control probability (TCP), normal tissue complication probability (NTCP), and equivalent uniform dose (EUD) are computed by analytical models. These models are rarely employed to rank and optimize treatment plans even though radiobiological indices weights more compared to dosimetric indices to reflect treatment goal. The objective of this study is to predict TCP, NTCP and EUDs for lung cancer radiotherapy treatment plans using an artificial...
Show moreIn radiotherapy, radiobiological indices tumor control probability (TCP), normal tissue complication probability (NTCP), and equivalent uniform dose (EUD) are computed by analytical models. These models are rarely employed to rank and optimize treatment plans even though radiobiological indices weights more compared to dosimetric indices to reflect treatment goal. The objective of this study is to predict TCP, NTCP and EUDs for lung cancer radiotherapy treatment plans using an artificial neural network (ANN). A total of 100 lung cancer patients’ treatment plans were selected for this study. Normal tissue complication probability (NTCP) of organs at risk (OARs) i.e., esophagus, spinal cord, heart and contralateral lung and tumor control probability (TCP) of treatment target volume (i.e., tumor) were calculated by the equivalent uniform dose (EUD) model. TCP/NTCP pairing with corresponding EUD are used individually as outputs for the neural network. The inputs for ANN are planning target volume (PTV), treatment modality, tumor location, prescribed dose, number of fractions, mean dose to PTV, gender, age, and mean doses to the OARs. The ANN is based on Levenberg-Marquardt algorithm with one hidden layer having 13 inputs and 2 outputs. 70% of the data was used for training, 15% for validation and 15% for testing the ANN. Our ANN model predicted TCP and EUD with correlation coefficient of 0.99 for training, 0.96 for validation, and 0.94 for testing. In NTCP and EUD prediction, averages of correlation coefficients are 0.94 for training, 0.89 for validation and 0.84 for testing. The maximum mean squared error (MSE) for the ANN is 0.025 in predicting the NTCP and EUD of heart. Our results show that an ANN model can be used with high discriminatory power to predict the radiobiological indices for lung cancer treatment plans.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014064
- Subject Headings
- Lungs--Cancer--Radiotherapy, Radiobiology, Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- Validation of a Monte Carlo dose calculation algorithm for clinical electron beams in the presence of phantoms with complex heterogeneities.
- Creator
- Enright, Shayla Landfair, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this thesis is to validate the Monte Carlo algorithm for electron radiotherapy in the Eclipse™ treatment planning system (TPS), and to compare the accuracy of the Electron Monte Carlo algorithm (eMC) to the Pencil Beam algorithm (PB) in Eclipse™. Dose distributions from GafChromic™ EBT3 film measurements were compared to dose distributions from eMC and PB treatment plans. Measurements were obtained with 6MeV, 9MeV, and 12MeV electron beams at various depths. A 1 cm thick solid...
Show moreThe purpose of this thesis is to validate the Monte Carlo algorithm for electron radiotherapy in the Eclipse™ treatment planning system (TPS), and to compare the accuracy of the Electron Monte Carlo algorithm (eMC) to the Pencil Beam algorithm (PB) in Eclipse™. Dose distributions from GafChromic™ EBT3 film measurements were compared to dose distributions from eMC and PB treatment plans. Measurements were obtained with 6MeV, 9MeV, and 12MeV electron beams at various depths. A 1 cm thick solid water template with holes for bone-like and lung-like plugs was used to create assorted configurations and heterogeneities. Dose distributions from eMC plans agreed better with the film measurements based on gamma analysis. Gamma values for eMC were between 83%-99%, whereas gamma values for PB treatment plans were as low as 38.66%. Our results show that using the eMC algorithm will improve dose accuracy in regions with heterogeneities and should be considered over PB.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004192
- Subject Headings
- Electron beams -- Therapeutic use, Image guided radiotherapy, Monte Carlo method, Proton beams -- Therapeutic use, Radiation dosimetry, Radiotherapy, High energy
- Format
- Document (PDF)
- Title
- Dosimetry comparison between treatment plans computed with Finite size pencil beam algorithm and Monte Carlo algorithm using InCise™ Multileaf collimator equipped CyberKnife® System.
- Creator
- Galpayage Dona, Kalpani Nisansala Udeni, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Since the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant concern on the realistic dose differences computed with its early-available Finite Size Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans were quantified. The dosimetry for planning target volume (PTV) and...
Show moreSince the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant concern on the realistic dose differences computed with its early-available Finite Size Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans were quantified. The dosimetry for planning target volume (PTV) and major organs at risks (OAR) was compared by calculating normalized percentage deviations (Ndev) between the two algorithms. It is found that the FSPB algorithm overestimates D95 of PTV when compared with the MC algorithm by averaging 24.0% in detached lung cases, and 15.0% in non-detached lung cases which is attributed to the absence of heterogeneity correction in the FSPB algorithm. Average dose differences are 0.3% in intracranial and 0.9% in pancreas cases. Ndev for the D95 of PTV range from 8.8% to 14.1% for the CK-MLC lung treatment plans with small field (SF ≤ 2x2cm2). Ndev is ranged from 0.5-7.0% for OARs.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013123
- Subject Headings
- Radiosurgery, Radiation dosimetry, Monte Carlo method, Algorithms, Lung Neoplasms--radiotherapy
- Format
- Document (PDF)
- Title
- A GPU- BASED SIMULATED ANNEALING ALGORITHM FOR INTENSITY-MODULATED RADIATION THERAPY.
- Creator
- Galanakou, Panagiota, Leventouri, Theodora, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Simulating Annealing Algorithm (SAA) has been proposed for optimization of the Intensity-Modulated Radiation Therapy (IMRT). Despite the advantage of the SAA to be a global optimizer, the SAA optimization of IMRT is an extensive computational task due to the large scale of the optimization variables, and therefore it requires significant computational resources. In this research we introduce a parallel graphics processing unit (GPU)-based SAA developed in MATLAB platform and compliant with...
Show moreSimulating Annealing Algorithm (SAA) has been proposed for optimization of the Intensity-Modulated Radiation Therapy (IMRT). Despite the advantage of the SAA to be a global optimizer, the SAA optimization of IMRT is an extensive computational task due to the large scale of the optimization variables, and therefore it requires significant computational resources. In this research we introduce a parallel graphics processing unit (GPU)-based SAA developed in MATLAB platform and compliant with the computational environment for radiotherapy research (CERR) for IMRT treatment planning in order elucidate the performance improvement of the SAA in IMRT optimization. First, we identify the “bottlenecks” of our code, and then we parallelize those on the GPU accordingly. Performance tests were conducted on four different GPU cards in comparison to a serial version of the algorithm executed on a CPU. A gradual increase of the speedup factor as a function of the number of beamlets was found for all four GPUs. A maximum speedup factor of 33.48 was achieved for a prostate case, and 30.51 for a lung cancer case when the K40m card and the maximum number of beams was utilized for each case. At the same time, the two optimized IMRT plans that were created (prostate and lung cancer plans) were met the IMRT optimization goals.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013372
- Subject Headings
- Radiotherapy, Intensity-Modulated, Annealing algorithm, Simulated annealing (Mathematics), Graphics processing units
- Format
- Document (PDF)
- Title
- A novel method to evaluate local control of lung cancer in stereotactic body radiation therapy (SBRT) treatment using 18f-Fdg positron emission tomography (PET).
- Creator
- Kathriarachchi, Vindu, Shang, Charles, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations...
Show moreAn improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004029
- Subject Headings
- Cancer -- Radiotherapy, Image guided radiation therapy, Lung cancer -- Treatment, Radiopharmaceuticals, Tomography, Emission
- Format
- Document (PDF)
- Title
- Variations of Pericardial Dose at Different Respiratory Status in Accelerated Partial Breast Irradiation (APBI) Using Cyberknife M6™ Multileaf Collimators (CKMLC).
- Creator
- Long, Samanthia C., Shang, Charles, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this study is to investigate the changes of the pericardial dose at different respiratory phases and statuses in accelerated partial breast irradiation (APBI) using Cyberknife M6™ multileaf collimators (CK-MLC). Anonymous 6 female patient files with respiration gated four-dimensional computed tomography (4DCT) sets, and 6 left breast cancer cases with CT images in free-breathing (FB) and deep inhalation breath-hold (BH) were selected. One CT image set from each patient was...
Show moreThe purpose of this study is to investigate the changes of the pericardial dose at different respiratory phases and statuses in accelerated partial breast irradiation (APBI) using Cyberknife M6™ multileaf collimators (CK-MLC). Anonymous 6 female patient files with respiration gated four-dimensional computed tomography (4DCT) sets, and 6 left breast cancer cases with CT images in free-breathing (FB) and deep inhalation breath-hold (BH) were selected. One CT image set from each patient was planned for APBI in Accuray Multiplan™ 5.2, and respectively compared its pericardial dose with those from CT sets of other respiratory phases. All the comparable CT images were fused in the planning system according to the left chest wall, among which the lung gap anterior to the pericardium varies by the lung expansion. For the purpose of this study, the tumor volume was outlined in the media-lower quadrant of the left breast where this lung gap is relatively small. All the plans in this study met the requirements set by the National Surgical Adjuvant Breast and Bowel Project/Radiation Therapy Oncology Group (NSABP/RTOG), specifically protocol B-39/RTOG 0413. From the comparisons in this investigation, the mean relative pericardial dose of the BH CT group showed significant or 45% (p < 0.01) lower value than that of FB CT group. However, in FB 4DCT group, 3 of 6 cases indicated a meaningful reduction (p < 0.05) in 100% inhalation phase when compared with the mean dose over other phases. The inconsistent pericardial doses were displayed in FB 4DCT group due to minimal changes in the anterior lung gap of the pericardium, when the diaphragmatic breathing was dominant in those patients.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004518, http://purl.flvc.org/fau/fd/FA00004518
- Subject Headings
- Breast--Cancer--Radiotherapy., Breast--Cancer--Treatment., Radiation--Measurement--Methodology., Medical physics.
- Format
- Document (PDF)