Current Search: Pattern perception -- Data processing (x)
View All Items
- Title
- An Empirical Study of Performance Metrics for Classifier Evaluation in Machine Learning.
- Creator
- Bruhns, Stefan, Khoshgoftaar, Taghi M., Florida Atlantic University
- Abstract/Description
-
A variety of classifiers for solving classification problems is available from the domain of machine learning. Commonly used classifiers include support vector machines, decision trees and neural networks. These classifiers can be configured by modifying internal parameters. The large number of available classifiers and the different configuration possibilities result in a large number of combinatiorrs of classifier and configuration settings, leaving the practitioner with the problem of...
Show moreA variety of classifiers for solving classification problems is available from the domain of machine learning. Commonly used classifiers include support vector machines, decision trees and neural networks. These classifiers can be configured by modifying internal parameters. The large number of available classifiers and the different configuration possibilities result in a large number of combinatiorrs of classifier and configuration settings, leaving the practitioner with the problem of evaluating the performance of different classifiers. This problem can be solved by using performance metrics. However, the large number of available metrics causes difficulty in deciding which metrics to use and when comparing classifiers on the basis of multiple metrics. This paper uses the statistical method of factor analysis in order to investigate the relationships between several performance metrics and introduces the concept of relative performance which has the potential to case the process of comparing several classifiers. The relative performance metric is also used to evaluate different support vector machine classifiers and to determine if the default settings in the Weka data mining tool are reasonable.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/fau/fd/FA00012508
- Subject Headings
- Machine learning, Computer algorithms, Pattern recognition systems, Data structures (Computer science), Kernel functions, Pattern perception--Data processing
- Format
- Document (PDF)
- Title
- Bioinformatics-inspired binary image correlation: application to bio-/medical-images, microsarrays, finger-prints and signature classifications.
- Creator
- Pappusetty, Deepti, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The efforts addressed in this thesis refer to assaying the extent of local features in 2D-images for the purpose of recognition and classification. It is based on comparing a test-image against a template in binary format. It is a bioinformatics-inspired approach pursued and presented as deliverables of this thesis as summarized below: 1. By applying the so-called 'Smith-Waterman (SW) local alignment' and 'Needleman-Wunsch (NW) global alignment' approaches of bioinformatics, a test 2D-image...
Show moreThe efforts addressed in this thesis refer to assaying the extent of local features in 2D-images for the purpose of recognition and classification. It is based on comparing a test-image against a template in binary format. It is a bioinformatics-inspired approach pursued and presented as deliverables of this thesis as summarized below: 1. By applying the so-called 'Smith-Waterman (SW) local alignment' and 'Needleman-Wunsch (NW) global alignment' approaches of bioinformatics, a test 2D-image in binary format is compared against a reference image so as to recognize the differential features that reside locally in the images being compared 2. SW and NW algorithms based binary comparison involves conversion of one-dimensional sequence alignment procedure (indicated traditionally for molecular sequence comparison adopted in bioinformatics) to 2D-image matrix 3. Relevant algorithms specific to computations are implemented as MatLabTM codes 4. Test-images considered are: Real-world bio-/medical-images, synthetic images, microarrays, biometric finger prints (thumb-impressions) and handwritten signatures. Based on the results, conclusions are enumerated and inferences are made with directions for future studies.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3333052
- Subject Headings
- Bioinformatics, Statistical methods, Diagnostic imaging, Digital techniques, Image processing, Digital techniques, Pattern perception, Data processing, DNA microarrays
- Format
- Document (PDF)