Current Search: Mitochondrial pathology. (x)
View All Items
- Title
- Sulindac enhances the killing of cancer cells exposed to oxidative stress.
- Creator
- Kreymerman, Alexander, Ayyanathan, Kasirajan, Kesaraju, Shailaja, Dawson-Scully, Ken, Weissbach, Herbert, Graduate College
- Date Issued
- 2011-04-08
- PURL
- http://purl.flvc.org/fcla/dt/3164545
- Subject Headings
- Nonsteroidal anti-inflammatory agents, Oxidative stress, Mitochondrial pathology
- Format
- Document (PDF)
- Title
- Tissue Protection and Cell Death Pathways in Myocardial Ischemia.
- Creator
- Rickaway, Zach T., Prentice, Howard, Florida Atlantic University
- Abstract/Description
-
The excess generation of Reactive oxygen species (ROS) can damage cell components and disrupt cellular functions. Methionine in proteins is easily oxidized by ROS and converted to methionine sulfoxide. The enzyme peptide Methionine Sulfoxide Reductase reduces methionine sulfoxide back to methionine. We report here that MsrA over expression in rat cardiac myocytes prevents damage from ROS and increases cell viability after hypoxic/reoxygenation events. The nonsteroidal anti-inflamatory drug ...
Show moreThe excess generation of Reactive oxygen species (ROS) can damage cell components and disrupt cellular functions. Methionine in proteins is easily oxidized by ROS and converted to methionine sulfoxide. The enzyme peptide Methionine Sulfoxide Reductase reduces methionine sulfoxide back to methionine. We report here that MsrA over expression in rat cardiac myocytes prevents damage from ROS and increases cell viability after hypoxic/reoxygenation events. The nonsteroidal anti-inflamatory drug (NSAID) sulindac contains a methyl sulfoxide moiety that can scavenge ROS. Sulindac can be reduced by MsrA and contribute as an antioxidant in the cell. Our results demonstrate that 1 OOuM sulindac can reduce cell death in rat cardiac myocytes during hypoxia/reoxygenation, and ischemia/reperfusion in Langendorf[ perfusions. The BNIP proteins are pro-apoptotic members of the Bcl-2 family of apoptosis regulating proteins. Hypoxia/acidosis stabilizes BNIP-3 and increases its association with the mitochondria, causing the release of cytochrome C and cell death. We report the retrograde perfusion Langendorffmodel is inconclusive in mouse hearts.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fau/fd/FA00000820
- Subject Headings
- Mitochondrial pathology, Heart--Pathophysiology, Apoptosis, Cell differentiation
- Format
- Document (PDF)
- Title
- Developmental delays in methionine sulfoxide reductase mutants in Drosophila Melanogaster.
- Creator
- Hausman, William, Binninger, David, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Aging is a biological process that has many detrimental effects due to the accumulation of oxidative damage to key biomolecules due to the action of free radicals. Methionine sulfoxide reductase (Msr) functions to repair oxidative damage to methionine residues. Msr comes in two forms, MsrA and MsrB, each form has been shown to reduce a specific enantiomer of bound and free oxidized methionine. Effects of Msr have yet to be studied in the major developmental stages of Drosophila melanogaster...
Show moreAging is a biological process that has many detrimental effects due to the accumulation of oxidative damage to key biomolecules due to the action of free radicals. Methionine sulfoxide reductase (Msr) functions to repair oxidative damage to methionine residues. Msr comes in two forms, MsrA and MsrB, each form has been shown to reduce a specific enantiomer of bound and free oxidized methionine. Effects of Msr have yet to be studied in the major developmental stages of Drosophila melanogaster despite the enzymes elevated expression during these stages. A developmental timeline was determined for MsrA mutant, MsrB mutant, and double null mutants against a wild type control. Results show that the Msr double mutant is delayed approximately 20 hours in the early/mid third instar stage while each of the single mutants showed no significant difference to the wild type. Data suggests that the reasoning of this phenomenon is due to an issue gaining mass.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004200, http://purl.flvc.org/fau/fd/FA00004200
- Subject Headings
- Aging -- Molecular aspects, Cellular signal transduction, Drosophila melanogaster -- Genetics, Mitochondrial pathology, Mutation (Biology), Oxidative stress
- Format
- Document (PDF)
- Title
- aB- crystallin/sHSP is required for mitochondrial function in human ocular tissue.
- Creator
- McGreal, Rebecca., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The central premise of this dissertation is that the small heat shock protein (sHSP), (Sa(BB-crystallin is essential for lens and retinal pigmented epithelial (RPE) cell function and oxidative stress defense. To date, the mechanism by which it confers protection is not known. We hypothesize that these functions could occur through its ability to protect mitochondrial function in lens and RPE cells. To test this hypothesis, we examined the expression of (Sa(BB-crystallin/sHSP in lens and RPE...
Show moreThe central premise of this dissertation is that the small heat shock protein (sHSP), (Sa(BB-crystallin is essential for lens and retinal pigmented epithelial (RPE) cell function and oxidative stress defense. To date, the mechanism by which it confers protection is not known. We hypothesize that these functions could occur through its ability to protect mitochondrial function in lens and RPE cells. To test this hypothesis, we examined the expression of (Sa(BB-crystallin/sHSP in lens and RPE cells, we observed its localization in the cells, we examined translocation to the mitochondria in these cells upon oxidative stress treatment, we determined its ability to form complexes with and protect cytochrome c (cyt c) against damage, and we observed its ability to preserve mitochondrial function under oxidative stress conditions in lens and RPE cells. In addition to these studies, we examined the effect of mutations of (Sa(BB-crystallin/sHSP on its cellular localization and translocation patterns under oxidative stress, its in vivo and in vitro chaperone activity, and its ability to protect cyt c against oxidation. Our data demonstrated that (Sa(BB-crystallin/sHSP is expressed at high levels in the mitochondria of lens and RPE cells and specifically translocates to the mitochondria under oxidative stress conditions. We demonstrate that (Sa(BB-crystallin/sHSP complexes with cyt c and protects it against oxidative inactivation. Finally, we demonstrate that (Sa(BB-crystallin/sHSP directly protects mitochondria against oxidative inactivation in lens and RPE cells. Since oxidative stress is a key component of lens cataract formation and age-related macular degeneration (AMD), these data provide a new paradigm for understanding the etiology of these diseases.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3342242
- Subject Headings
- Mitochondrial pathology, Chemical mutagenesis, Oxidative stress, Prevention, Cellular signal transduction, Eye, Diseases, Etiology, Molecular chaperones
- Format
- Document (PDF)
- Title
- Peroxiredoxin 3 and Methionine sulfoxide reductase A are Essential for Lens Cell Viability by Preserving Lens Cell Mitochondrial Function through Repair of Cytochrome c.
- Creator
- Lee, Wanda, Florida Atlantic University, Kantorow, Marc, Charles E. Schmidt College of Science, Department of Biomedical Science
- Abstract/Description
-
The central premise of this dissertation is that mitochondrial antioxidant enzymes are essential to lens cell viability by preserving lens cell mitochondria and protecting and/or repairing lens cell proteins, and two mitochondrial-specific antioxidant enzymes, Peroxiredoxin 3 (PRDX3) and Methionine sulfoxide reductase A (MsrA), are explored. In this dissertation, we will examine the expression ofPRDX3 in the human lens, its colocalization to the lens cell mitochondria, its ability to be...
Show moreThe central premise of this dissertation is that mitochondrial antioxidant enzymes are essential to lens cell viability by preserving lens cell mitochondria and protecting and/or repairing lens cell proteins, and two mitochondrial-specific antioxidant enzymes, Peroxiredoxin 3 (PRDX3) and Methionine sulfoxide reductase A (MsrA), are explored. In this dissertation, we will examine the expression ofPRDX3 in the human lens, its colocalization to the lens cell mitochondria, its ability to be induced by H20 2-oxidative stress, and speculate how PRDX3 function/sf could affect the lens. We will also examine the reduced levels of MsrA by targeted gene silencing and its effect on reactive oxygen species production and mitochondrial membrane potential in human lens cells to determine its role in mitochondrial function in the lens. Lastly, we will examine the ability of MsrA to repair and restore function to a critical mitochondrial protein, Cytochrome c. The collective evidence strongly indicates that the loss of mitochondrial-specific enzymes, such as PRDX3 and MsrA, are responsible for increased reactive oxygen species levels, decreased mitochondrial membrane potential, protein aggregation and lens cell death, and further indicates that mitochondrial repair, protective, and reducing systems play key roles in the progression of age-related cataract and other agerelated diseases.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/fau/fd/FA00000868
- Subject Headings
- Genetic regulation, Proteins--Chemical modification, Cellular signal transduction, Eye--Physiology, Mitochondrial pathology
- Format
- Document (PDF)
- Title
- Methionine sulfoxide reductase (Msr) deficiency leads to a reduction of dopamine levels in Drosophila.
- Creator
- Hernandez, Caesar, Binninger, David, Weissbach, Herbert, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Biological homeostasis relies on protective mechanisms that respond to cellular oxidation caused primarily by free radical reactions. Methionine sulfoxide reductases (Msr) are a class of enzymes that reverse oxidative damage to methionine in proteins. The focus of this study is on the relationship between Msr and dopamine levels in Drosophila. Dopaminergic neurons in Drosophila have comparable roles to those found in humans. A deficit in dopamine leads to the onset of many neurological...
Show moreBiological homeostasis relies on protective mechanisms that respond to cellular oxidation caused primarily by free radical reactions. Methionine sulfoxide reductases (Msr) are a class of enzymes that reverse oxidative damage to methionine in proteins. The focus of this study is on the relationship between Msr and dopamine levels in Drosophila. Dopaminergic neurons in Drosophila have comparable roles to those found in humans. A deficit in dopamine leads to the onset of many neurological disorders including the loss of fine motor control—a neurodegenerative condition characteristic of Parkinson’s disease (PD). We found that dopamine levels in the heads of MsrAΔ/ΔBΔ/Δ mutants are significantly reduced in comparison to MsrA ⁺/⁺ B⁺/⁺ heads. In addition, wefound protein and expression levels are markedly reduced in an Msr-deficient system. Our findings suggest an important role for the Msr system in the CNS.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004202, http://purl.flvc.org/fau/fd/FA00004202
- Subject Headings
- Cellular signal transduction, Dopamine -- Receptors, Drosophila melanogaster -- Genetics, Mitochondrial pathology, Proteins -- Chemical modification
- Format
- Document (PDF)
- Title
- Hypoxia-regulated glial cell-specific gene therapy to treat retinal neovascularization.
- Creator
- Biswal, Manas Ranjan., Charles E. Schmidt College of Science, Center for Complex Systems and Brain Sciences
- Abstract/Description
-
Diabetic retinopathy is an ischemic retinal neovascular disease causing vision loss among adults. The studies presented involve the design and testing of a gene therapy vector to inhibit retinal revascularization, similar to that found in diabetic retinopathy. Gene therapy has proven to be an effective method to introduce therapeutic proteins to treat retinal diseases. Targeting a specific cell type and expression of therapeutic proteins according to the tissue microenvironment should have an...
Show moreDiabetic retinopathy is an ischemic retinal neovascular disease causing vision loss among adults. The studies presented involve the design and testing of a gene therapy vector to inhibit retinal revascularization, similar to that found in diabetic retinopathy. Gene therapy has proven to be an effective method to introduce therapeutic proteins to treat retinal diseases. Targeting a specific cell type and expression of therapeutic proteins according to the tissue microenvironment should have an advantage over traditional gene therapy by avoiding unwanted transgene expression. Hypoxia plays a significant role in the pathophysiology of many retinal ischemic diseases. Retinal Mèuller cells provide structural and functional support to retinal neurons, as well as playing a significant role in retinal neovascularization. Targeting Mèuller cells may be an effective strategy to prevent retinal neovascularization under pathological conditions. ... The hypoxia regulated, glial specific vector successfully reduced the abnormal neovascularization in the periphery by 93% and reduced the central vasobliterated area by 90%. A substantial amount of exogenous endostatin was produced in the retinas of P17 OIR mice. A significant increase in human endostatin protein and reduced vascular endothelial growth factor (VEGF) were identified by Western blot and ELISA, respectively. These findings suggest hypoxia-regulated, glial cell-specific scAAV mediated gene expression may be useful to prevent blindness found in devastating retinal diseases involving neovascularization.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3359290
- Subject Headings
- Diabetic retinopathy, Research, Methodology, Gene therapy, Retinal degeneration, Treatment, Neovascularization inhibitors, Mitochondrial pathology, Retina, Cytology, Gene mapping
- Format
- Document (PDF)
- Title
- Mitochondrial regulation pathways in the lens: pink1/parkin- and bnip3l-mediated mechanisms.
- Creator
- Aktan, Kerem, Kantorow, Marc, Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Biomedical Science
- Abstract/Description
-
The mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged...
Show moreThe mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged mitochondria for degradation. While BNIP3L, an outer mitochondrial membrane protein, increases in expression in response to excess mitochondria and organelle degradation during cellular differentiation. We have shown that PARKIN is both induced and translocates from the cytoplasm to the mitochondria in human epithelial lens cells upon oxidative stress exposure. In addition, our findings also show that overexpression of BNIP3L causes premature clearance of mitochondria and other organelles, while loss of BNIP3L results in lack of clearance. Prior to this work, PARKIN mediated mitophagy had not been shown to act as a protective cellular response to oxidative stress in the lens. This project also resulted in the novel finding that BNIP3L-mediated mitophagy mechanisms are required for targeted organelle degradation in the lens.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004427, http://purl.flvc.org/fau/fd/FA00004427
- Subject Headings
- Cellular signal transduction, Eye -- Diseases -- Etiology, Mitochondrial pathology, Mitophagy, Molecular chaperones, Oxidative stress -- Prevention, Protein folding
- Format
- Document (PDF)
- Title
- Methionine sulfoxide reductase (MSR) modulates lifespan andLocomotion in drosophila melanogaster.
- Creator
- Bruce, Lindsay, Binninger, David, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Oxidative stress is considered a major factor in the etiology of age related diseases and the aging process itself. Organisms have developed mechanisms to protect against oxidative damage resulting from increased production of reactive oxygen species during aging. One of the major antioxidant systems is the methionine sulfoxide reductase (Msr) enzyme family. The two major Msr enzymes, MsrA and MsrB, can stereospecifically reduce the S and R epimers, respectively, of methionine sulfoxide in...
Show moreOxidative stress is considered a major factor in the etiology of age related diseases and the aging process itself. Organisms have developed mechanisms to protect against oxidative damage resulting from increased production of reactive oxygen species during aging. One of the major antioxidant systems is the methionine sulfoxide reductase (Msr) enzyme family. The two major Msr enzymes, MsrA and MsrB, can stereospecifically reduce the S and R epimers, respectively, of methionine sulfoxide in proteins back to methionine. This study, using Drosophila melanogaster, decribes the first animal system lacking both MsrA and MsrB. The loss of either MsrA or MsrB had no effect on lifespan in Drosophila, but loss of MsrB results in a slight decrease in locomotor activity from middle age onward. Double mutants lacking both forms of Msr have a significantly decreased lifespan and decreased locomotor activity at all ages examined. The double Msr mutants had no detectable increase in protein oxidation or decrease in mitochondrial function and were not more sensitive to oxidative stress. These results suggested that other cellular antioxidant systems were protecting the flies against oxidative damage and the decreased life span observed in the double knockouts was not due to widespread oxidative damage. However, one cannot exclude limited oxidative damage to a specific locus or cell type. In this regard, it was observed that older animals, lacking both MsrA and MsrB, have significantly reduced levels of dopamine, suggesting there might be oxidative damage to the dopaminergic neurons. Preliminary results also suggest that the ratio of F to G actin is skewed towards G actin in all mutants. The present results could have relevance to the loss of dopaminergic neurons in Parkinson’s disease.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004431, http://purl.flvc.org/fau/fd/FA00004431
- Subject Headings
- Aging -- Molecular aspects, Cellular signal transduction, Drosophila melanogaster -- Genetics, Mitochondrial pathology, Mutation (Biology), Oxidative stress, Proteins -- Chemical modification
- Format
- Document (PDF)
- Title
- Developmental and Protective Mechanisms of the Ocular Lens.
- Creator
- Chauss, Daniel C., Kantorow, Marc, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biomedical Science
- Abstract/Description
-
The vertebrate eye lens functions to focus light onto the retina to produce vision. The lens is composed of an anterior monolayer of cuboidal epithelial cells that overlie a core of organelle free fiber cells. The lens develops and grows throughout life by the successive layering of lens fiber cells via their differentiation from lens epithelial cells. Lens developmental defect and damage to the lens are associated with cataract formation, an opacity of the lens that is a leading cause of...
Show moreThe vertebrate eye lens functions to focus light onto the retina to produce vision. The lens is composed of an anterior monolayer of cuboidal epithelial cells that overlie a core of organelle free fiber cells. The lens develops and grows throughout life by the successive layering of lens fiber cells via their differentiation from lens epithelial cells. Lens developmental defect and damage to the lens are associated with cataract formation, an opacity of the lens that is a leading cause of visual impairment worldwide. The only treatment to date for cataract is by surgery. Elucidating those molecules and mechanisms that regulate the development and lifelong protection of the lens is critical toward the development of future therapies to prevent or treat cataract. To determine those molecules and mechanisms that may be important for these lens requirements we employed high-throughput RNA sequencing of microdissected differentiation statespecific lens cells to identify an extensive range of transcripts encoding proteins expressed by these functionally distinct cell types. Using this data, we identified differentiation state-specific molecules that regulate mitochondrial populations between lens epithelial cells that require the maintenance of a functional population of mitochondria and lens fiber cells that must eliminate their mitochondria for their maturation. In addition, we discovered a novel mechanism for how lens epithelial cells clear apoptotic cell debris that could arise from damage to the lens and found that UVlight likely compromises this system. Moreover, the data herein provide a framework to determine novel lens cell differentiation state-specific mechanisms. Future studies are required to determine the requirements of the identified molecules and mechanisms during lens development, lens defense against damage, and cataract formation.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004577
- Subject Headings
- Eye--Diseases--Etiology., Cell differentiation., Cellular signal transduction., Protein folding., Mitochondrial pathology., Cellular control mechanisms., Apoptosis., Oxidative stress--Prevention.
- Format
- Document (PDF)
- Title
- Phenotypic and behavioral effects of methionine sulfoxide reductase deficiency and oxidative stress in Drosophila melanogaster.
- Creator
- Mulholland, Kori., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Harman's theory of aging proposes that a buildup of damaging reactive oxygen species (ROS) is one of the primary causes of the deleterious symptoms attributed to aging. Cellular defenses in the form of antioxidants have evolved to combat ROS and reverse damage; one such group is the methionine sulfoxide reductases (Msr), which function to reduce oxidized methionine. MsrA reduces the S enantiomer of methionine sulfoxide, Met-S-(o), while MsrB reduces the R enantiomer, Met-R-(o). The focus of...
Show moreHarman's theory of aging proposes that a buildup of damaging reactive oxygen species (ROS) is one of the primary causes of the deleterious symptoms attributed to aging. Cellular defenses in the form of antioxidants have evolved to combat ROS and reverse damage; one such group is the methionine sulfoxide reductases (Msr), which function to reduce oxidized methionine. MsrA reduces the S enantiomer of methionine sulfoxide, Met-S-(o), while MsrB reduces the R enantiomer, Met-R-(o). The focus of this study was to investigate how the absence of one or both forms of Msr affects locomotion in Drosophila using both traditional genetic mutants and more recently developed RNA interference (RNAi) strains. Results indicate that lack of MsrA does not affect locomotion. However, lack of MsrB drastically reduces rates of locomotion in all age classes. Furthermore, creation of an RNAi line capable of knocking down both MsrA and MsrB in progeny was completed.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362558
- Subject Headings
- Drosophila melanogaster, Genetics, Aging, Molecular aspects, Oxidative stress, Mitochondrial pathology, Cellular signal transduction, Oxidation-reduction reaction, Biochemical markers, Mutation (Biology)
- Format
- Document (PDF)
- Title
- Reduced Reproductivity and Larval Locomotion in the Absence of Methionine Sulfoxide Reductase in Drosophila.
- Creator
- Singkornrat, Diana, Binninger, David, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The inevitable aging process can be partially attributed to the accumulation of oxidative damage that results from the action of free radicals. Methionine sulfoxide reductases (Msr) are a class of enzymes that repair oxidized methionine residues. The two known forms of Msr are MsrA and MsrB which reduce the R- and S- enantiomers of methionine sulfoxide, respectively. Our lab has created the first genetic animal model that is fully deficient for any Msr activity. Previously our lab showed that...
Show moreThe inevitable aging process can be partially attributed to the accumulation of oxidative damage that results from the action of free radicals. Methionine sulfoxide reductases (Msr) are a class of enzymes that repair oxidized methionine residues. The two known forms of Msr are MsrA and MsrB which reduce the R- and S- enantiomers of methionine sulfoxide, respectively. Our lab has created the first genetic animal model that is fully deficient for any Msr activity. Previously our lab showed that these animals exhibit a 20 hour delay in development of the third instar larvae (unpublished data). My studies have further shown that the prolonged third-instar stage is due to a reduced growth rate associated with slower food intake and a markedly slower motility. These Msr-deficient animals also exhibit decreased egg-laying that can be attributed to a lack of female receptivity to mating.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004777, http://purl.flvc.org/fau/fd/FA00004777
- Subject Headings
- Proteins--Chemical modification., Oxidative stress., Oxidation-reduction reaction., Drosophila melanogaster--Genetics., Mitochondrial pathology., Cellular signal transduction., Mutation (Biology), Aging--Molecular aspects.
- Format
- Document (PDF)