Current Search: Intelligent control systems. (x)
View All Items
- Title
- Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag.
- Creator
- Klinger, Wilhelm B., von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping...
Show moreThe design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004130, http://purl.flvc.org/fau/fd/FA00004130
- Subject Headings
- Adaptive control systems, Drag (Aerodynamics), Intelligent control systems, Intelligent control systems, Vehicles, Remotely piloted
- Format
- Document (PDF)
- Title
- Intelligent Supervisory Switching Control of Unmanned Surface Vehicles.
- Creator
- Bertaska, Ivan Rodrigues, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a...
Show morenovel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004671, http://purl.flvc.org/fau/fd/FA00004671
- Subject Headings
- Adaptive control systems, Artificial intelligence, Engineering mathematics, Intelligent control systems, Mechatronics, Nonlinear control theory, Transportation engineering
- Format
- Document (PDF)
- Title
- Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control.
- Creator
- Frame, Jennifer, Engeberg, Erik, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated...
Show moreThis thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004656, http://purl.flvc.org/fau/fd/FA00004656
- Subject Headings
- Adaptive control systems, Artificial intelligence, Autonomous robots, Computational intelligence, Robotics
- Format
- Document (PDF)
- Title
- Design and tuning of fuzzy control surface with Bezier functions.
- Creator
- Wongsoontorn, Songwut., Florida Atlantic University, Zhuang, Hanqi, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Design and Tuning a fuzzy logic controller (FLCs) are usually done in two stages. In the first stage, the structure of a FLC is determined based on physical characteristics of the system. In the second stage, the parameters of the FLC are selected to optimize the performance of the system. The task of tuning FLCs can be performed by a number of methods such as adjusting control gains, changing membership functions, modifying control rules and varying control surfaces. A method for the design...
Show moreDesign and Tuning a fuzzy logic controller (FLCs) are usually done in two stages. In the first stage, the structure of a FLC is determined based on physical characteristics of the system. In the second stage, the parameters of the FLC are selected to optimize the performance of the system. The task of tuning FLCs can be performed by a number of methods such as adjusting control gains, changing membership functions, modifying control rules and varying control surfaces. A method for the design and tuning of FLCs through modifying their control surfaces is presented in this dissertation. The method can be summarized as follows. First, fuzzy control surfaces are modeled with Bezier functions. Shapes of the control surface are then adjusted through varying Bezier parameters. A Genetic Algorithm (GA) is used to search for the optimal set of parameters based on the control performance criteria. Then, tuned control surfaces are sampled to create rule-based FLCs. To further improve the system performance, continuity constraints of the curves are imposed. Under the continuity constraints with the same number of tunable parameters, one can obtain more flexible curves that have the potential to improve the overall system performance. An important issue is to develop a new method to self-tune a fuzzy PD controller. The method is based on two building blocks: (I) Bezier functions used to model the control surfaces of the fuzzy PD controller; and, shapes of control surfaces are then adjusted by varying Bezier parameters. (II) The next step involves using a gradient-based optimization algorithm with which the input scaling factors and Bezier parameters are on-line tuned until the controller drives the output of the process as close as possible to the reference position. To protect vendors and consumers from being victimized, various trust models have been used in e-commerce practices. However, a strict verification and authentication process may pose unnecessary heavy cost to the vendor. As an application of the control strategy proposed, this dissertation presents a solution to the reduction of costs of a vendor. With two fuzzy variables (price, credit-history), a trust-surface can be tuned to achieve an optimal solution in terms of profit margin of the vendor. With this new approach, more realistic trust decisions can be reached.
Show less - Date Issued
- 2005
- PURL
- http://purl.flvc.org/fcla/dt/12172
- Subject Headings
- Fuzzy systems, Nonlinear control theory, Process control--Data processing, Fuzzy logic, Intelligent control systems
- Format
- Document (PDF)
- Title
- Wind Feedforward Control of a USV.
- Creator
- Qu, Huajin, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this research, a wind feedforward (FF) controller has been developed to augment closed loop feedback controllers for the position and heading station keeping control of Unmanned Surface Vehicles (USVs). The performance of the controllers was experimentally tested using a 16 foot USV in an outdoor marine environment. The FF controller was combined with three nonlinear feedback controllers, a Proportional–Derivative (PD) controller, a Backstepping (BS) controller, and a Sliding mode (SM)...
Show moreIn this research, a wind feedforward (FF) controller has been developed to augment closed loop feedback controllers for the position and heading station keeping control of Unmanned Surface Vehicles (USVs). The performance of the controllers was experimentally tested using a 16 foot USV in an outdoor marine environment. The FF controller was combined with three nonlinear feedback controllers, a Proportional–Derivative (PD) controller, a Backstepping (BS) controller, and a Sliding mode (SM) controller, to improve the station-keeping performance of the USV. To address the problem of wind model uncertainties, adaptive wind feedforward (AFF) control schemes are also applied to the FF controller, and implemented together with the BS and SM feedback controllers. The adaptive law is derived using Lyapunov Theory to ensure stability. On-water station keeping tests of each combination of FF and feedback controllers were conducted in the U.S. Intracoastal Waterway in Dania Beach, FL USA. Five runs of each test condition were performed; each run lasted at least 10 minutes. The experiments were conducted in Sea State 1 with an average wind speed of between 1 to 4 meters per second and significant wave heights of less than 0.2 meters. When the performance of the controllers is compared using the Integral of the Absolute Error (IAE) of position criterion, the experimental results indicate that the BS and SM feedback controllers significantly outperform the PD feedback controller (e.g. a 33% and a 44% decreases in the IAE, respectively). It is also found that FF is beneficial for all three feedback controllers and that AFF can further improve the station keeping performance. For example, a BS feedback control combined with AFF control reduces the IAE by 25% when compared with a BS feedback controller combined with a non-adaptive FF controller. Among the eight combinations of controllers tested, SM feedback control combined with AFF control gives the best station keeping performance with an average position and heading error of 0.32 meters and 4.76 degrees, respectively.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004623, http://purl.flvc.org/fau/fd/FA00004623
- Subject Headings
- Wind turbines--Control., Adaptive control systems., Adaptive signal processing., Intelligent control systems., Wind-pressure., Intelligent sensors.
- Format
- Document (PDF)
- Title
- Design and implementation of intelligent control methodologies for reverse osmosis plants.
- Creator
- Jafar, Mutaz M., Florida Atlantic University, Zilouchian, Ali, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This dissertation presents the design, implementation and application of soft computing methodologies to Reverse Osmosis (RO) desalination technology. A novel intelligent control scheme based on the integration of Neural Network (NN) and Fuzzy Logic (FL) is presented to optimize plants' performance. In the first part of the research work, two optimal NN predictive models, based on backpropagation and Radial Basis Function Networks (RBFN), were developed for three types of RO feed intakes. The...
Show moreThis dissertation presents the design, implementation and application of soft computing methodologies to Reverse Osmosis (RO) desalination technology. A novel intelligent control scheme based on the integration of Neural Network (NN) and Fuzzy Logic (FL) is presented to optimize plants' performance. In the first part of the research work, two optimal NN predictive models, based on backpropagation and Radial Basis Function Networks (RBFN), were developed for three types of RO feed intakes. The predictive models utilized actual operating data for the three RO plants in order to predict system recovery, total dissolved solids and ion product concentration in brine stream A predictive model is proposed based on redistributed receptive fields of RBFN. The proposed algorithm utilizes integration of supervised learning of centers and unsupervised learning of output layer weights. Extensive simulations are presented to demonstrate the effectiveness of the proposed method for generalization on prediction of nonlinear input-output mappings. In the second part of the study, the design of FL control strategy for direct seawater RO system is carried out. The real-time controller design is based on integration of sensory information, predicted outputs, mathematical calculations, and expert knowledge of the process to yield a constant recovery, constant salt rejection and minimum scaling under variable operating conditions. To implement the designed methodology, a 250/800 Gallon per Day (GPD) prototype RO plant with direct Atlantic Ocean intake is constructed at FAU Gumbo Limbo research laboratory. Two types of membrane modules were used for this study: Spiral Wound (SW) and Hollow Fine Fiber (HFF). The prototype plant indeed demonstrated the effectiveness and optimum performance of the proposed design under variable operating conditions. The system achieved a constant recovery of 30% and salt passage of 1.026% while ion product concentration for six major salts were kept below their solubility limits at all time. The implementation of the proposed intelligent control methodology achieved a 4% increase in availability and a 50% reduction in manpower requirements, as well as reduction in overall chemical consumption of the plant. Therefore, it is expected that the cost of producing fresh water from seawater desalination will be decreased using the proposed intelligent control strategy.
Show less - Date Issued
- 2000
- PURL
- http://purl.flvc.org/fcla/dt/12650
- Subject Headings
- Saline water conversion--Reverse osmosis process, Intelligent control systems
- Format
- Document (PDF)
- Title
- Hardware in the loop simulation of generic nodes using Lontalk.
- Creator
- Gupta, Sangeeta., Florida Atlantic University, Evett, Matthew P.
- Abstract/Description
-
Designing a dependable network for a highly sustainable system gives a challenging network design problem. The network must be highly adaptive to the changes in the network environment. It should also sustain any damages occurring in the network and recover itself quickly and efficiently. This thesis ultimately maps a real network to simulated network by developing a concept of generic nodes and experimentally investigates different parameters that affects the reliability of the system. The...
Show moreDesigning a dependable network for a highly sustainable system gives a challenging network design problem. The network must be highly adaptive to the changes in the network environment. It should also sustain any damages occurring in the network and recover itself quickly and efficiently. This thesis ultimately maps a real network to simulated network by developing a concept of generic nodes and experimentally investigates different parameters that affects the reliability of the system. The work includes designing a simulation for generation of network traffic in a simulated network and studying the behavior of the network with different parameters. The experiment helped us in determining the optimum values of these parameters. For the selected set of experiments and further implies that simulation can determine the nodes different parameter in a control network and will result in a Dependable system.
Show less - Date Issued
- 1998
- PURL
- http://purl.flvc.org/fcla/dt/15596
- Subject Headings
- Intelligent control systems, Adaptive control systems, Local area networks (Computer networks)
- Format
- Document (PDF)
- Title
- A simplistic approach to reactive multi-robot navigation in unknown environments.
- Creator
- MacKunis, William Thomas., Florida Atlantic University, Raviv, Daniel, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Multi-agent control is a very promising area of robotics. In applications for which it is difficult or impossible for humans to intervene, the utilization of multi-agent, autonomous robot groups is indispensable. This thesis presents a novel approach to reactive multi-agent control that is practical and elegant in its simplicity. The basic idea upon which this approach is based is that a group of robots can cooperate to determine the shortest path through a previously unmapped environment by...
Show moreMulti-agent control is a very promising area of robotics. In applications for which it is difficult or impossible for humans to intervene, the utilization of multi-agent, autonomous robot groups is indispensable. This thesis presents a novel approach to reactive multi-agent control that is practical and elegant in its simplicity. The basic idea upon which this approach is based is that a group of robots can cooperate to determine the shortest path through a previously unmapped environment by virtue of redundant sharing of simple data between multiple agents. The idea was implemented with two robots. In simulation, it was tested with over sixty agents. The results clearly show that the shortest path through various environments emerges as a result of redundant sharing of information between agents. In addition, this approach exhibits safeguarding techniques that reduce the risk to robot agents working in unknown and possibly hazardous environments. Further, the simplicity of this approach makes implementation very practical and easily expandable to reliably control a group comprised of many agents.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13013
- Subject Headings
- Robots--Control systems, Intelligent control systems, Genetic algorithms, Parallel processing (Electronic computers)
- Format
- Document (PDF)
- Title
- An Ant Inspired Dynamic Traffic Assignment for VANETs: Early Notification of Traffic Congestion and Traffic Incidents.
- Creator
- Arellano, Wilmer, Mahgoub, Imad, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks and represent a relatively new and very active field of research. VANETs will enable in the near future applications that will dramatically improve roadway safety and traffic efficiency. There is a need to increase traffic efficiency as the gap between the traveled and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem tries to dynamically distribute vehicles efficiently on the road...
Show moreVehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks and represent a relatively new and very active field of research. VANETs will enable in the near future applications that will dramatically improve roadway safety and traffic efficiency. There is a need to increase traffic efficiency as the gap between the traveled and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem tries to dynamically distribute vehicles efficiently on the road network and in accordance with their origins and destinations. We present a novel dynamic decentralized and infrastructure-less algorithm to alleviate traffic congestions on road networks and to fill the void left by current algorithms which are either static, centralized, or require infrastructure. The algorithm follows an online approach that seeks stochastic user equilibrium and assigns traffic as it evolves in real time, without prior knowledge of the traffic demand or the schedule of the cars that will enter the road network in the future. The Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant Colony Optimization for VANETs follows a metaheuristic approach that uses reports from other vehicles to update the vehicle’s perceived view of the road network and change route if necessary. To alleviate the broadcast storm spontaneous clusters are created around traffic incidents and a threshold system based on the level of congestion is used to limit the number of incidents to be reported. Simulation results for the algorithm show a great improvement on travel time over routing based on shortest distance. As the VANET transceivers have a limited range, that would limit messages to reach at most 1,000 meters, we present a modified version of this algorithm that uses a rebroadcasting scheme. This rebroadcasting scheme has been successfully tested on roadways with segments of up to 4,000 meters. This is accomplished for the case of traffic flowing in a single direction on the roads. It is anticipated that future simulations will show further improvement when traffic in the other direction is introduced and vehicles travelling in that direction are allowed to use a store carry and forward mechanism.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004566, http://purl.flvc.org/fau/fd/FA00004566
- Subject Headings
- Vehicular ad hoc networks (Computer networks)--Technological innovations., Routing protocols (Computer network protocols), Artificial intelligence., Intelligent transportation systems., Intelligent control systems., Mobile computing., Computer algorithms., Combinatorial optimization.
- Format
- Document (PDF)
- Title
- Reliable Vehicle-to-Vehicle Weighted Localization in Vehicular Networks.
- Creator
- Altoaimy, Lina, Mahgoub, Imad, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Vehicular Ad Hoc Network (VANET) supports wireless communication among vehicles using vehicle-to-vehicle (V2V) communication and between vehicles and infrastructure using vehicle-to-infrastructure (V2I) communication. This communication can be utilized to allow the distribution of safety and non-safety messages in the network. VANET supports a wide range of applications which rely on the messages exchanged within the network. Such applications will enhance the drivers' consciousness and...
Show moreVehicular Ad Hoc Network (VANET) supports wireless communication among vehicles using vehicle-to-vehicle (V2V) communication and between vehicles and infrastructure using vehicle-to-infrastructure (V2I) communication. This communication can be utilized to allow the distribution of safety and non-safety messages in the network. VANET supports a wide range of applications which rely on the messages exchanged within the network. Such applications will enhance the drivers' consciousness and improve their driving experience. However, the efficiency of these applications depends on the availability of vehicles real-time location information. A number of methods have been proposed to fulfill this requirement. However, designing a V2V-based localization method is challenged by the high mobility and dynamic topology of VANET and the interference noise due to objects and buildings. Currently, vehicle localization is based on GPS technology, which is not always reliable. Therefore, utilizing V2V communication in VANET can enhance the GPS positioning. With V2V-based localization, vehicles can determine their locations by exchanging mobility data among neighboring vehicles. In this research work, we address the above challenges and design a realistic V2V-based localization method that extends the centroid localization (CL) by assigning a weight value to each neighboring vehicle. This weight value is obtained using a weighting function that utilizes the following factors: 1) link quality distance between the neighboring vehicles 2) heading information and 3) map information. We also use fuzzy logic to model neighboring vehicles' weight values. Due to the sensitivity and importance of the exchanged information, it is very critical to ensure its integrity and reliability. Therefore, in this work, we present the design and the integration of a mobility data verification component into the proposed localization method, so that only verified data from trusted neighboring vehicles are considered. We also use subjective logic to design a trust management system to evaluate the trustworthiness of neighboring vehicles based on the formulated subjective opinions. Extensive experimental work is conducted using simulation programs to evaluate the performance of the proposed methods. The results show improvement on the location accuracy for varying vehicle densities and transmission ranges as well as in the presence of malicious/untrusted neighboring vehicles.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004564, http://purl.flvc.org/fau/fd/FA00004564
- Subject Headings
- Vehicular ad hoc networks (Computer networks)--Mathematical models., Computer communication systems., Wireless communication systems., Routing (Computer network management), Intelligent transportation systems., Intelligent control systems.
- Format
- Document (PDF)
- Title
- Intelligent systems using GMDH algorithms.
- Creator
- Gupta, Mukul., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Design of intelligent systems that can learn from the environment and adapt to the change in the environment has been pursued by many researchers in this age of information technology. The Group Method of Data Handling (GMDH) algorithm to be implemented is a multilayered neural network. Neural network consists of neurons which use information acquired in training to deduce relationships in order to predict future responses. Most software tool during the simulation of the neural network based...
Show moreDesign of intelligent systems that can learn from the environment and adapt to the change in the environment has been pursued by many researchers in this age of information technology. The Group Method of Data Handling (GMDH) algorithm to be implemented is a multilayered neural network. Neural network consists of neurons which use information acquired in training to deduce relationships in order to predict future responses. Most software tool during the simulation of the neural network based algorithms in a sequential, single processor machine like Pascal, C or C++ takes several hours or even days. But in this thesis, the GMDH algorithm was modified and implemented into a software tool written in Verilog HDL and tested with specific application (XOR) to make the simulation faster. The purpose of the development of this tool is also to keep it general enough so that it can have a wide range of uses, but robust enough that it can give accurate results for all of those uses. Most of the applications of neural networks are basically software simulations of the algorithms only but in this thesis the hardware design is also developed of the algorithm so that it can be easily implemented on hardware using Field Programmable Gate Array (FPGA) type devices. The design is small enough to require a minimum amount of memory, circuit space, and propagation delay.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2976442
- Subject Headings
- GMDH algorithms, Genetic algorithms, Pattern recognition systems, Expert systems (Computer science), Neural networks (Computer science), Fuzzy logic, Intelligent control systems
- Format
- Document (PDF)
- Title
- Stereo vision-based target tracking system for USV operations.
- Creator
- Sinisterra, Armando Jose, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A methodology to estimate the state of a moving marine vehicle, defined by its position, velocity and heading, from an unmanned surface vehicle (USV), also in motion, using a stereo vision-based system, is presented in this work, in support of following a target vehicle using an USV.
- Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004466, http://purl.flvc.org/fau/fd/FA00004466
- Subject Headings
- Adaptive control systems, Adaptive signal processing, Computer vision, Inertial navigation systems, Intelligent control systems, Motion segmentaton, Oceanographic instruments -- Development, Ubiquitous computing
- Format
- Document (PDF)
- Title
- Low Cost Robotic Car as a Way to Teach Mathematics.
- Creator
- Aguerrevere, Santiago Andres, Shankar, Ravi, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This report describes the development of a low cost open source semiautonomous robotic car and a way to communicate with it. It is a continuation of prior research done by other students at FAU and published in recent ASEE conferences. The objective of this project was the development of a new robotic platform with improved precision over the original, while still keeping the cost down. It was developed with the aim to allow a hands-on approach to the teaching of mathematics topics that are...
Show moreThis report describes the development of a low cost open source semiautonomous robotic car and a way to communicate with it. It is a continuation of prior research done by other students at FAU and published in recent ASEE conferences. The objective of this project was the development of a new robotic platform with improved precision over the original, while still keeping the cost down. It was developed with the aim to allow a hands-on approach to the teaching of mathematics topics that are taught in the K-12 syllabus. Improved robustness and reliability of the robotic platform for visually solving math problems was achieved using a combination of PID loops to keep track of distance and rotation. The precision was increased by changing the position of the encoders to the shafts of each motor. A mobile application was developed to allow the student to draw the geometric shapes on the screen before the car draws them. The mobile application consists of two parts, the canvas that the user uses to draw the figure and the configure section that lets the user change the parameters of the controller. Results show that the robot can draw standard geometric and complex geometric shapes. It has high precision and sufficient accuracy, the accuracy can be improved with some mechanical adjustments. During testing a Pythagorean triangle was drawn to show visually the key mathematics concept. The eventual goal of this project will be a K-12 class room study to obtain the feedback of the teachers and students on the feasibility of using a robotic car to teach math. Subsequent to that necessary changes will be made to manufacture a unit that is easy to assemble by the teacher.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004712, http://purl.flvc.org/fau/fd/FA00004712
- Subject Headings
- Adaptive control systems, Applied mathematics, Artificial intelligence, Computers, Special purpose, Mathematics -- Study and teaching, User interfaces (Computer systems)
- Format
- Document (PDF)
- Title
- Modeling the performance of a laser for tracking an underwater dynamic target.
- Creator
- Dill, Thomas J., von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Options for tracking dynamic underwater targets using optical methods is currently limited. This thesis examines optical reflectance intensities utilizing Lambert’s Reflection Model and based on a proposed underwater laser tracking system. Numerical analysis is performed through simulation to determine the detectable light intensities based on relationships between varying inputs such as angle of illumination and target position. Attenuation, noise, and laser beam spreading are included in...
Show moreOptions for tracking dynamic underwater targets using optical methods is currently limited. This thesis examines optical reflectance intensities utilizing Lambert’s Reflection Model and based on a proposed underwater laser tracking system. Numerical analysis is performed through simulation to determine the detectable light intensities based on relationships between varying inputs such as angle of illumination and target position. Attenuation, noise, and laser beam spreading are included in the analysis. Simulation results suggest optical tracking exhibits complex relationships based on target location and illumination angle. Signal to Noise Ratios are a better indicator of system capabilities than received intensities. Signal reception does not necessarily confirm target capture in a multi-sensor network.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004279, http://purl.flvc.org/fau/fd/FA00004279
- Subject Headings
- Acoustic velocity meters, Intelligent control systems, Optical instruments -- Design and construction, Roving vehicles (Astronautics), Target acquisition, Underwater acoustics
- Format
- Document (PDF)
- Title
- On Development of Arterial Fundamental Diagrams Based on Surrogate Density Measures from Adaptive Traffic Control Systems Utilizing Stop Line Detection.
- Creator
- Dakic, Igor, Stevanovic, Aleksandar, Florida Atlantic University, College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
Macroscopic fundamental diagram is the concept of the highest importance in traffic flow theory used for development of network-wide control strategies. Previous studies showed that so called Arterial Fundamental Diagrams (AFDs) properly depict relationships between major macroscopic traffic variables on urban arterials. Most of these studies used detector’s occupancy as a surrogate measure to represent traffic density. Nevertheless, detector’s occupancy is not very often present in the field...
Show moreMacroscopic fundamental diagram is the concept of the highest importance in traffic flow theory used for development of network-wide control strategies. Previous studies showed that so called Arterial Fundamental Diagrams (AFDs) properly depict relationships between major macroscopic traffic variables on urban arterials. Most of these studies used detector’s occupancy as a surrogate measure to represent traffic density. Nevertheless, detector’s occupancy is not very often present in the field data. More frequently, field data from arterial streets provide performance metrics measured at the stop lines of traffic signals, which represent a hybrid of flow and occupancy. When such performance measures are used in lieu of density, the outcomes of the relationships between macroscopic fundamental variables can be confusing. This study investigates appropriateness of using degree of saturation, as a representative surrogate measure of traffic density, obtained from an adaptive traffic control system that utilizes stop-line detectors, for development of AFDs.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004672, http://purl.flvc.org/fau/fd/FA00004672
- Subject Headings
- Adaptive control systems, Intelligent transportation systems, Traffic engineering, Traffic estimation -- Computer simulation, Traffic estimation -- Mathematical models, Traffic flow -- Computer simulation, Traffic flow -- Mathematical models
- Format
- Document (PDF)
- Title
- Smart low power obstacle avoidance device.
- Creator
- Cividanes, Ernesto., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Several technologies are being made available for the blind and the visually impaired with the use of infrared and sonar sensors, Radio Frequency Identification, GPS, Wi-Fi among others. Current technologies utilizing microprocessors increase the device's power consumption. In this project, a Verilog Hardware Language (VHDL) designed handheld device that autonomously guides a visually impaired user through an obstacle free path is proposed. The goal is to minimize power consumption by not...
Show moreSeveral technologies are being made available for the blind and the visually impaired with the use of infrared and sonar sensors, Radio Frequency Identification, GPS, Wi-Fi among others. Current technologies utilizing microprocessors increase the device's power consumption. In this project, a Verilog Hardware Language (VHDL) designed handheld device that autonomously guides a visually impaired user through an obstacle free path is proposed. The goal is to minimize power consumption by not using the usual microcontroller and replacing it with components that can increase its speed. Utilizing six infrared sensors, the handheld device is modeled after current technologies which use IR and sonar sensors which are reviewed in this project. By using behavioral modeling, an algorithm for obstacle avoidance and the generation of the obstacle free path is reduced using a K-map and implemented using a multiplexer.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2954841
- Subject Headings
- Verilog (Computer hardware description language), VHDL (Computer hardware description language), Rapid prototyping, Logic design, Intelligent control systems, Brain-computer interfaces
- Format
- Document (PDF)