Current Search: Image-guided radiation therapy. (x)
View All Items
- Title
- Dosimetric and Radiobiological Comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for Early Stage Whole Breast Cancer.
- Creator
- Moshiri Sedeh, Nader, Pella, Silvia, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for...
Show moreIntensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004526, http://purl.flvc.org/fau/fd/FA00004526
- Subject Headings
- Breast -- Cancer -- Treatment, Cancer -- Radiation therapy, Image guided radiation therapy, Radiation dosimetry, Radiotherapy -- Technological innovations
- Format
- Document (PDF)
- Title
- A novel method to evaluate local control of lung cancer in stereotactic body radiation therapy (SBRT) treatment using 18f-Fdg positron emission tomography (PET).
- Creator
- Kathriarachchi, Vindu, Shang, Charles, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations...
Show moreAn improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004029
- Subject Headings
- Cancer -- Radiotherapy, Image guided radiation therapy, Lung cancer -- Treatment, Radiopharmaceuticals, Tomography, Emission
- Format
- Document (PDF)
- Title
- Empirical beam angle optimization for lung cancer intensity modulated radiation therapy.
- Creator
- Doozan, Brian, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Empirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used...
Show moreEmpirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used gantry angles were applied to four different regions in each lung to gather an optimal set of fields that could be used to treat future lung cancer patients. This method, given the moniker FAU BAO, is compared in 7 plans created with the Eclipse BAO choosing 5 fields and 9 fields. The results show that the conformality index improved by 30% or 3% when using the 5 and 9 fields. The conformation number was better by 12% from the 5 fields and 9% from the 9 fields. The organs at risk (OAR) were overall more protected to produce fewer nonstochastic effects from the radiation treatment with the FAU BAO.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004280, http://purl.flvc.org/fau/fd/FA00004280
- Subject Headings
- Cancer -- Radiotherapy, Image guided radiation therapy, Lung cancer -- Treatment, Medical physics, Medical radiology -- Data processing, Medicine -- Mathematical models
- Format
- Document (PDF)
- Title
- Comparison of treatment plans calculated using ray tracing and Monte Carlo algorithms for lung cancer patients having undergone radiotherapy with cyberknife.
- Creator
- Pennington, Andreea, Selvaraj, Raj, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this research is to determine the feasibility of introducing the Monte Carlo (MC) dose calculation algorithm into the clinical practice. Unlike the Ray Tracing (RT) algorithm, the MC algorithm is not affected by the tissue inhomogeneities, which are significant inside the chest cavity. A retrospective study was completed for 102 plans calculated using both the RT and MC algorithms. The D95 of the PTV was 26% lower for the MC calculation. The first parameter of conformality, as...
Show moreThe purpose of this research is to determine the feasibility of introducing the Monte Carlo (MC) dose calculation algorithm into the clinical practice. Unlike the Ray Tracing (RT) algorithm, the MC algorithm is not affected by the tissue inhomogeneities, which are significant inside the chest cavity. A retrospective study was completed for 102 plans calculated using both the RT and MC algorithms. The D95 of the PTV was 26% lower for the MC calculation. The first parameter of conformality, as defined as the ratio of the Prescription Isodose Volume to the PTV Volume was on average 1.27 for RT and 0.67 for MC. The results confirm that the RT algorithm significantly overestimates the dosages delivered confirming previous analyses. Correlations indicate that these overestimates are largest for small PTV and/or when the ratio of the volume of lung tissue to the PTV approaches 1.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004316
- Subject Headings
- Computer graphics, Diagnostic imaging, Image guided radiation therapy, Lung cancer -- Treatment, Lungs -- Cancer -- Radiotherapy, Monte Carlo method
- Format
- Document (PDF)
- Title
- Exploring appropriate offset values for pencil beam and Monte Carlo dose optimization in lung stereotactic body radiotherapy encompassing the effects of respiration and tumor location.
- Creator
- Evans, Grant, Shang, Charles, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Evaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using...
Show moreEvaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using the fast PB and compared with MC. This exact plan with the same beam Monitor Units (MUs) was recalculated over each respiratory phase. The results show that the PB algorithm has a 2.3-2.4% less overestimation at the maximum exhalation phase than the maximum inhalation phase when compared to MC. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus central lesions (12.7±0.8%)(p< 0.01).
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004105, http://purl.flvc.org/fau/fd/FA00004105
- Subject Headings
- Drug development -- Computer simulation, Image guided radiation therapy, Lung cancer -- Treatment, Monte Carlo method, Proton beams, Transport theory
- Format
- Document (PDF)
- Title
- A Computational Study on Different Penalty Approaches for Constrained Optimization in Radiation Therapy Treatment Planning with a Simulated Annealing Algorithm.
- Creator
- Mohammadi Khoroushadi, Mohammad Sadegh, Kalantzis, Georgios, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Intensity modulated radiation therapy (IMRT) is a cancer treatment method in which the intensities of the radiation beams are modulated; therefore these beams have non-uniform radiation intensities. The overall result is the delivery of the prescribed dose in the target volume. The dose distribution is conformal to the shape of the target and minimizes the dose to the nearby critical organs. An inverse planning algorithm is used to obtain those non-uniform beam intensities. In inverse...
Show moreIntensity modulated radiation therapy (IMRT) is a cancer treatment method in which the intensities of the radiation beams are modulated; therefore these beams have non-uniform radiation intensities. The overall result is the delivery of the prescribed dose in the target volume. The dose distribution is conformal to the shape of the target and minimizes the dose to the nearby critical organs. An inverse planning algorithm is used to obtain those non-uniform beam intensities. In inverse treatment planning, the treatment plan is achieved by using an optimization process. The optimized plan results to a high-quality dose distribution in the planning target volume (PTV), which receives the prescribed dose while the dose that is received by the organs at risk (OARs) is reduced. Accordingly, an objective function has to be defined for the PTV, while some constraints have to be considered to handle the dose limitations for the OARs.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004765
- Subject Headings
- Image-guided radiation therapy., Radiation--Dosage., Mathematical optimization., Evolutionary programming (Computer science), Medical physics., Medical radiology--Data processing.
- Format
- Document (PDF)
- Title
- The Advantages of Collimator Optimization for Intensity Modulated Radiation Therapy.
- Creator
- Doozan, Brian, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field. A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization...
Show moreThe goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field. A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization techniques in Eclipse version 11.0. Keeping all other parameters equal, multiple plans are created using four collimator techniques: CA0, all fields have collimators set to 0°, CAE, using the Eclipse collimator optimization, CAA, minimizing the area of the jaws around the PTV, and CAX, minimizing the x-jaw gap. The minimum area and the minimum x-jaw angles are found by evaluating each field beam’s eye view of the PTV with ImageJ and finding the desired parameters with a custom script. The evaluation of the plans included the monitor units (MU), the maximum dose of the plan, the maximum dose to organs at risk (OAR), the conformity index (CI) and the number of fields that are calculated to split. Compared to the CA0 plans, the monitor units decreased on average by 6% for the CAX method with a p-value of 0.01 from an ANOVA test. The average maximum dose remained within 1.1% difference between all four methods with the lowest given by CAX. The maximum dose to the most at risk organ was best spared by the CAA method, which decreased by 0.62% compared to the CA0. Minimizing the x-jaws significantly reduced the number of split fields from 61 to 37. In every metric tested the CAX optimization produced comparable or superior results compared to the other three techniques. For aspherical PTVs, CAX on average reduced the number of split fields, lowered the maximum dose, minimized the dose to the surrounding OAR, and decreased the monitor units. This is achieved while maintaining the same control of the PTV.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004804, http://purl.flvc.org/fau/fd/FA00004804
- Subject Headings
- Radiation--Dosage., Optical engineering., Medical physics., Image-guided radiation therapy., Cancer--Radiotherapy., Medical radiology--Data processing., Medicine--Mathematical models.
- Format
- Document (PDF)
- Title
- A dosimetric study of a heterogeneous phantom for lung stereotactic body radiation therapy comparing Monte Carlo and pencil beam calculations to dose distributions measured with a 2-d diode array.
- Creator
- Curley, Casey Michael, Ouhib, Zoubir, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Monte Carlo (MC) and Pencil Beam (PB) calculations are compared to their measured planar dose distributions using a 2-D diode array for lung Stereotactic Body Radiation Therapy (SBRT). The planar dose distributions were studied for two different phantom types: an in-house heterogeneous phantom and a homogeneous phantom. The motivation is to mimic the human anatomy during a lung SBRT treatment and incorporate heterogeneities into the pre-treatment Quality Assurance process, where measured and...
Show moreMonte Carlo (MC) and Pencil Beam (PB) calculations are compared to their measured planar dose distributions using a 2-D diode array for lung Stereotactic Body Radiation Therapy (SBRT). The planar dose distributions were studied for two different phantom types: an in-house heterogeneous phantom and a homogeneous phantom. The motivation is to mimic the human anatomy during a lung SBRT treatment and incorporate heterogeneities into the pre-treatment Quality Assurance process, where measured and calculated planar dose distributions are compared before the radiation treatment. Individual and combined field dosimetry has been performed for both fixed gantry angle (anterior to posterior) and planned gantry angle delivery. A gamma analysis has been performed for all beam arrangements. The measurements were obtained using the 2-D diode array MapCHECK 2™.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004360
- Subject Headings
- Cancer -- Radiotherapy, Drug development -- Computer simulation, Image guided radiation therapy, Ion bombardment, Lung cancer -- Treatment, Medical physics, Monte Carlo method, Proton beams
- Format
- Document (PDF)
- Title
- Phantom Study Incorporating A Diode Array Into The Treatment Planning System For Patient-Specific Quality Assurance.
- Creator
- Curley, Casey Michael, Leventouri, Theodora, Ouhib, Zoubir, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this research is to accurately match the calculation environment, i.e. the treatment planning system (TPS) with the measurement environment (using a 2-D diode array) for lung Stereotactic Body Radiation Therapy (SBRT) patient-specific quality assurance (QA). Furthermore, a new phantom was studied in which the 2-D array and heterogeneities were incorporated into the patient-specific QA process for lung SBRT. Dual source dual energy computerized tomography (DSCT) and single...
Show moreThe purpose of this research is to accurately match the calculation environment, i.e. the treatment planning system (TPS) with the measurement environment (using a 2-D diode array) for lung Stereotactic Body Radiation Therapy (SBRT) patient-specific quality assurance (QA). Furthermore, a new phantom was studied in which the 2-D array and heterogeneities were incorporated into the patient-specific QA process for lung SBRT. Dual source dual energy computerized tomography (DSCT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam dose distributions were compared to the measured distributions. Composite and individual fields were analyzed for normally incident and planned gantry angle deliveries. The distributions were compared using γ-analysis for criteria 3% 3mm, 2% 2mm, and 1% 1mm. The Monte Carlo calculations for the DSCT modeled phantoms (incorporating the array) showed an increase in the passing percentage magnitude for 46.4 % of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm. The Monte Carlo calculations gave no agreement for the same γ-analysis criteria using the SECT. Pencil beam calculations resulted in lower passing percentages when the diode array was incorporated in the TPS. The DSCT modeled phantoms (incorporating the array) exhibited decrease in the passing percentage magnitude for 85.7% of the fields at 3% 3mm, 82.1% at 2% 2mm, and 71.4% at 1% 1mm. In SECT modeled phantoms (incorporating the array), a decrease in passing percentage magnitude were found for 92.9% of the fields at 3% 3mm, 89.3% at 2% 2mm, and 82.1% at 1% 1mm. In conclusion, this study demonstrates that including the diode array in the TPS results in increased passing percentages when using a DSCT system with a Monte Carlo algorithm for patient-specific lung SBRT QA. Furthermore, as recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004744, http://purl.flvc.org/fau/fd/FA00004744
- Subject Headings
- Cancer--Radiotherapy., Lungs--Cancer--Treatment., Monte Carlo method., Proton beams., Image-guided radiation therapy., Ion bombardment., Medical physics.
- Format
- Document (PDF)