Current Search: Drosophila melanogaster--Cytogenetics. (x)
View All Items
- Title
- Synaptic Rearrangements and the Role of Netrin-Frazzled Signaling in Shaping the Drosophila Giant Fiber Circuit.
- Creator
- Lloyd, Brandon N., Murphey, Rodney K., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
In the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in...
Show moreIn the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in Drosophila melanogaster (the giant fiber circuit), we developed tools that enabled us to study the molecular development of this circuit; which consists of a bilaterally symmetrical pair of presynaptic interneurons and postsynaptic motorneurons. In the adult circuit, each presynaptic interneuron (giant fiber) forms a single connection with the ipsilateral, postsynaptic motorneuron (TTMn). Using new tools that we developed we labeled both giant fibers throughout their development and saw that these neurons overgrew their targets and formed overlapping connections. As the circuit matured, giant fibers pruned their terminals and refined their connectivity such that only a single postsynaptic connection remained with the ipsilateral target. Furthermore, if we ablated one of the two giant fibers during development in wildtype animals, the remaining giant fiber often retained excess connections with the contralateral target that persisted into adulthood. After demonstrating that the giant fiber circuit was suitable to study synaptic rearrangement, we investigated two proteins that might mediate this process. First, we were able to prevent giant fibers from refining their connectivity by knocking out highwire, a ubiquitin ligase that prevented pruning. Second, we investigated whether overexpressing Netrin (or Frazzled), part of a canonical axon guidance system, would affect the refinement of giant fiber connectivity. We found that overexpressing Netrin (or Frazzled) pre- & postsynaptically resulted in some giant fibers forming or retaining excess connections, while exclusively presynaptic (or postsynaptic) expression of either protein had no effect. We further showed that by simultaneously reducing (Slit-Robo) midline repulsion and elevating Netrin (or Frazzled) pre- & postsynaptically, we significantly enhanced the proportion of giant fibers that formed excess connections. Our findings suggest that Netrin-Frazzled and Slit-Robo signaling play a significant role in refining synaptic circuits and shaping giant fiber circuit connectivity.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004758, http://purl.flvc.org/fau/fd/FA00004758
- Subject Headings
- Drosophila melanogaster--Cytogenetics., Genetic transcription., Transcription factors., Cellular signal transduction., Cellular control mechanisms., Cell receptors.
- Format
- Document (PDF)
- Title
- Highwire coordinates synapse formation and maturation by regulating both a map kinase cascade and the ability of the axon to respond to external cues in the giant fiber system of Drosophila Melanogaster.
- Creator
- Borgen, Melissa A., Murphey, Rodney K., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The ubiquitin ligase Highwire is responsible for cell-autonomously promoting synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects in synaptic function and extra branching at the axon terminal, corresponding to transient branching that occur in the course of giant synapse formation during metamorphosis. The MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor Jun, act to suppress synaptic function and axon pruning in a dosage...
Show moreThe ubiquitin ligase Highwire is responsible for cell-autonomously promoting synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects in synaptic function and extra branching at the axon terminal, corresponding to transient branching that occur in the course of giant synapse formation during metamorphosis. The MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor Jun, act to suppress synaptic function and axon pruning in a dosage sensitive manner, suggesting different molecular mechanisms downstream of the MAP kinase pathway govern function and pruning. A novel role for Highwire is revealed, regulating the giant fiber axon’s ability to respond to external cues regulated by Fos. When expression of the transcription factor Fos is disrupted in the post-synaptic TTMn or surrounding midline glia of highwire mutants, the giant fiber axons show a marked increase in axon overgrowth and midline crossing. However, synaptic function is rescued by the cell nonautonomous manipulation of Fos, indicating distinct mechanisms downstream of Highwire regulating synaptic function and axon morphology.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004081, http://purl.flvc.org/fau/fd/FA00004081
- Subject Headings
- Cell differentiation, Cellular control mechanisms, Cellular signal transduction, Drosophila melanogaster -- Cytogenetics, Gene expression, Genetic transcription
- Format
- Document (PDF)
- Title
- Netrin-Frazzled signaling instructs synaptogenesis and plasticity at an identified central synapse in Drosophila.
- Creator
- Orr, Brian, Murphey, Rodney K., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The classic guidance molecules, Netrin and its receptor Frazzled (Fra), dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the pre-synaptic terminal. In Netrin mutant animals the synaptic coupling between a giant interneuron and the jump motor neuron was weakened. Dye-coupling between these two neurons was severely compromised or absent. These mutants exhibited anatomically and physiologically...
Show moreThe classic guidance molecules, Netrin and its receptor Frazzled (Fra), dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the pre-synaptic terminal. In Netrin mutant animals the synaptic coupling between a giant interneuron and the jump motor neuron was weakened. Dye-coupling between these two neurons was severely compromised or absent. These mutants exhibited anatomically and physiologically defective synapses between the giant fiber (GF) and tergotrochanteral motor neuron (TTMn). In cases where Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses. Dye-coupling between the giant fiber and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B Innexin (ShakB), they were significantly decreased or absent in the pre-synaptic terminal of the mutant GF. This data is the first to show that Netrin and Frazzled regulate placement of gap junctions pre-synaptically at a central synapse. In the Drosophila Giant Fiber System, we demonstrate a mechanism that ensures the monoinnervation of two homologous motor neurons by two homologous interneurons. In a scenario where both interneurons could synapse with both motor neuron targets, each interneuron exclusively synapsed with only one target and the circuit functions at normal physiological levels. This innervation pattern depended on the ratio of netrin-to-frazzled expression. When Netrin was over expressed in the system, shifting the ratio in favor of Netrin, both interneurons synapsed with both target motor neurons and physiological function was reduced. This resulted in the polyinnervationof a single target. In contrast, when Frazzled was over expressed in the system, one interneuron innervated both targets and excluded the remaining interneuron from making any synaptic contact. This resulted in a single interneuron mono-innervating both motor neurons and physiological function was mutant. The orphaned interneuron made no synaptic contact with either motor neuron target. Physiological function was only normal when the Netrin-Frazzled ratio was at endogenous levels and each GF monoinnervated one motor neuron. When we examined the gap junctions at this synapse in experimental animals, there was a significant reduction of gap junction hemichannels in the presynaptic terminal of axons that deviated from normal innervation patterns. While the synapse dyecoupled, the reduction in gap junction hemichannels reduced function in the circuit.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004041
- Subject Headings
- Cellular control mechanisms, Cellular signal transduction, Drosophila melanogaster -- Cytogenetics, Genetic transcription, Transcription factors
- Format
- Document (PDF)
- Title
- Presynaptic Determinants of Synaptic Strength and Energy Efficiency at Drosophila Neuromuscular Junctions.
- Creator
- Lu, Zhongmin, Macleod, Gregory, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Changes in synaptic strength underlie synaptic plasticity, the cellular substrate for learning and memory. Disruptions in the mechanisms that regulate synaptic strength closely link to many developmental, neurodegenerative and neurological disorders. Release site probability (PAZ) and active zone number (N) are two important presynaptic determinants of synaptic strength; yet, little is known about the processes that establish the balance between N and PAZ at any synapse. Furthermore, it is...
Show moreChanges in synaptic strength underlie synaptic plasticity, the cellular substrate for learning and memory. Disruptions in the mechanisms that regulate synaptic strength closely link to many developmental, neurodegenerative and neurological disorders. Release site probability (PAZ) and active zone number (N) are two important presynaptic determinants of synaptic strength; yet, little is known about the processes that establish the balance between N and PAZ at any synapse. Furthermore, it is not known how PAZ and N are rebalanced during synaptic homeostasis to accomplish circuit stability. To address this knowledge gap, we adapted a neurophysiological experimental system consisting of two functionally differentiated glutamatergic motor neurons (MNs) innervating the same target. Average PAZ varied between nerve terminals, motivating us to explore benefits for high and low PAZ, respectively. We speculated that high PAZ confers high-energy efficiency. To test the hypothesis, electrophysiological and ultrastructural measurements were made. The terminal with the highest PAZ released more neurotransmitter but it did so with the least total energetic cost. An analytical model was built to further explore functional and structural aspects in optimizing energy efficiency. The model supported that energy efficiency optimization requires high PAZ. However, terminals with low PAZ were better able to sustain neurotransmitter release. We suggest that tension between energy efficiency and stamina sets PAZ and thus determines synaptic strength. To test the hypothesis that nerve terminals regulate PAZ rather than N to maintain synaptic strength, we induced sustained synaptic homeostasis at the nerve terminals. Ca2+ imaging revealed that terminals of the MN innervating only one muscle fiber utilized greater Ca2+ influx to achieve compensatory neurotransmitter release. In contrast, morphological measurements revealed that terminals of the MN inner vating multiple postsynaptic targets utilized an increase in N to achieve compensatory neurotransmitter release, but this only occurred at the terminal of the affected postsynaptic target. In conclusion, this dissertation provides several novel insights into a prominent question in neuroscience: how is synaptic strength established and maintained. The work indicates that tension exists between energy efficiency and stamina in neurotransmitter release likely influences PAZ. Furthermore, PAZ and N are rebalanced differently between terminals during synaptic homeostasis.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004519, http://purl.flvc.org/fau/fd/FA00004519
- Subject Headings
- Drosophila melanogaster--Nervous system., Drosophila melanogaster--Cytogenetics., Fruit-flies--Development., Fruit-flies--Nervous system., Genetic transcription., Transcription factors., Cellular signal transduction., Cellular control mechanisms., Myoneural junction.
- Format
- Document (PDF)