Current Search: Cancer--Treatment (x)
View All Items
Pages
- Title
- Evaluation of surface dose outside the treatment area for breast cancer irradiation modalities using thermoluminescence dosimeters (TLDs).
- Creator
- Khanal, Suraj P., Ouhib, Zoubir, Leventouri, Theodora, Graduate College
- Date Issued
- 2013-04-12
- PURL
- http://purl.flvc.org/fcla/dt/3361319
- Subject Headings
- Thermoluminescence dosimetry, Breast--Cancer--Treatment
- Format
- Document (PDF)
- Title
- COMMISSIONING AND ACCEPTANCE TESTING OF A TRUEBEAM LINEAR ACCELERATOR.
- Creator
- Dumitru, Nicolae, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Due to the difficulty of a complex commissioning technique for a multi energetic, multi-modality linear accelerator, I perform all the commissioning and acceptance testing for a TrueBeam linear accelerator with 4 megavoltage (MV) energies of which 2 are flattening filter-free (FFF) and 6 electron energies varying from 6 MeV to 20 MeV. A 2 dimensional (2D) water tank was used for scanning all the required field sizes for all the energies. The one dimensional (1D) water tank was used to collect...
Show moreDue to the difficulty of a complex commissioning technique for a multi energetic, multi-modality linear accelerator, I perform all the commissioning and acceptance testing for a TrueBeam linear accelerator with 4 megavoltage (MV) energies of which 2 are flattening filter-free (FFF) and 6 electron energies varying from 6 MeV to 20 MeV. A 2 dimensional (2D) water tank was used for scanning all the required field sizes for all the energies. The one dimensional (1D) water tank was used to collect all the output factors for all the photon fields sizes small to medium electron field sizes. For the large electron fields sizes, we had to use the 2D water tank. All the collected data was converted into a file type accepted by the planning system (Eclipse) and subsequently imported there. Treatment plans were generated using multiple forms of planning to verify the viability and quality of the beam data commissioned.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013301
- Subject Headings
- Linear accelerators, Cancer--Treatment, Radiation dosimetry
- Format
- Document (PDF)
- Title
- COMPARATIVE PHARMACOKINETICS, BIODISTRIBUTION AND DOSIMETRY OF 212Pb (ALPHA-EMITTER) LABELED ANTIBODY VS PEPTIDE VS SMALL MOLECULE.
- Creator
- Moshiri, Nader Sedeh, Leventouri, Theodora, Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
With the advent of newly and more reliably designed targeted therapy methods in the past several years, targeted radionuclide therapy has attracted more attentions around the world as a more reliable treatment modality in combination with other well established traditional cancer treatments i.e., external beam radiotherapy and chemotherapy. Alpha particles have a high relative biological effectiveness (RBE) due to their high linear energy transfer (LET). However, to utilize them for...
Show moreWith the advent of newly and more reliably designed targeted therapy methods in the past several years, targeted radionuclide therapy has attracted more attentions around the world as a more reliable treatment modality in combination with other well established traditional cancer treatments i.e., external beam radiotherapy and chemotherapy. Alpha particles have a high relative biological effectiveness (RBE) due to their high linear energy transfer (LET). However, to utilize them for therapeutic purposes, precise human body dosimetry calculation is required. The measurement of their uptake and biodistribution can be quite challenging. Also, due to the complex biology of different types of cells, their shapes and functions, there is not a simple and clear understanding of the mechanism of action that fits all. This study aims to estimate and compare the human organ dosimetry of the alpha emitter, 212Pb, from animal data assuming that it is conjugated with three different types of commonly used targeting nanoparticles. For this purpose, the pre-published animal data of three different radionuclide labeled peptide, antibody, and small molecule carriers were selected and converted to human data. Then a compartmental model was designed for each of them to fit the model to the human data with 212Pb, half-life of 10.64 hours. Once each model reached the desired fit, the area under the curves were extracted then the estimated human organ dosimetry calculations took place via the MIRD scheme. The organ dosimetry results for 212Pb + three different carriers are presented in Tables 14, 17, and 20.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014215
- Subject Headings
- Cancer--Treatment, Lead-212, Nuclear Medicine
- Format
- Document (PDF)
- Title
- Dosimetric Consequences of the Parotid Glands Using CT-To-CBCT Deformable Registration During IMRT For Late Stage Head And Neck Cancers.
- Creator
- Conill, Annette L., Selvaraj, Raj, Kalantzis, Georgios, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Patients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe...
Show morePatients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe for replanning. Nineteen locally advanced HN cancer patients underwent definitive IMRT. Each patient received an initial computerized tomography simulation (CT-SIM) scan and weekly cone beam computerized tomography (CBCT) scans. A Deformable Image Registration (DIR) was performed between the CT-SIM and CBCT of the parotid glands and Planning Target Volumes (PTVs) using the Eclipse treatment planning system (TPS) and the Velocity deformation software. A recalculation of the dose was performed on the weekly CBCTs using the original monitor units. The parameters for evaluation of our method were: the changes in volume of the PTVs and parotid glands, the dose coverage of the PTVs, the lateral displacement in the Center of Mass (COM), the mean dose, and Normal Tissue Complication Probability (NTCP) of the parotid glands. The studies showed a reduction of the volume in the PTVs and parotids, a medial displacement in COM, and alterations of the mean dose to the parotid glands as compared to the initial plans. Differences were observed for the dose volume coverage of the PTVs and NTCP of the parotid gland values between the initial plan and our proposed method utilizing deformable registration-based dose calculations.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004491
- Subject Headings
- Cancer -- Radiation therapy, Head -- Cancer -- Treatment, Medical physics, Neck -- Cancer -- Treatment, Radiation dosimetry
- Format
- Document (PDF)
- Title
- Efficacy of Combining 3-Bromopyruvate with Fenofibrate in Killing the Human Breast Cancer Cell Line MCF-7.
- Creator
- Graham, Rashean A., Hartmann, James X., Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
The goal of our research was to find a cancer treatment that was both effective and cancer specific, sparing immune and normal tissues. We evaluated the efficacy of a combinatorial treatment using the glycolytic inhibitor 3-bromopyruvate and the fatty acid metabolism inhibitor fenofibrate in cancer, immune and normal tissue cells lines. Treatment of the human breast cancer MCF-7 with 3-bromopyruvate and fenofibrate resulted in increased cell death and decreased colony formation. In the immune...
Show moreThe goal of our research was to find a cancer treatment that was both effective and cancer specific, sparing immune and normal tissues. We evaluated the efficacy of a combinatorial treatment using the glycolytic inhibitor 3-bromopyruvate and the fatty acid metabolism inhibitor fenofibrate in cancer, immune and normal tissue cells lines. Treatment of the human breast cancer MCF-7 with 3-bromopyruvate and fenofibrate resulted in increased cell death and decreased colony formation. In the immune cells known as peripheral blood mononuclear cells our combinatorial treatment displayed less toxicity than the traditional chemotherapy doxorubicin. Our combinatorial treatment displayed greater toxicity than doxorubicin towards an established breast cell line MCF- 10A, described in the literature as representing normal breast cells. We have shown for the first time a synergistic relationship between 3-bromopyruvate and fenofibrate.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013556
- Subject Headings
- Breast--Cancer--Treatment, bromopyruvate, Fenofibrate, MCF-7 Cells
- Format
- Document (PDF)
- Title
- THE TRIFECTA: A NOVEL COMBINATORIAL THERAPY SPARES IMMUNE CELLS WHILE INDUCING IMMUNOGENIC CELL DEATH IN HUMAN MAMMARY ADENOCARCINOMA AND MOUSE MAMMARY CARCINOMA.
- Creator
- Motii, Youssef, Hartmann, James X., Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
According to U.S. Breast Cancer Statistics, about 1 in 8 U.S. women will develop invasive breast cancer during their lifetime. Chemotherapeutics that are used on patients currently often lead to tumor resistance, bone marrow suppression and cachexia. This study evaluated a novel combination of three non-mutagenic compounds for their effectiveness against mammary tumor cells, toxicity towards immune cells, ability to provoke the expression of immunogenic cell death (ICD) markers, and killing...
Show moreAccording to U.S. Breast Cancer Statistics, about 1 in 8 U.S. women will develop invasive breast cancer during their lifetime. Chemotherapeutics that are used on patients currently often lead to tumor resistance, bone marrow suppression and cachexia. This study evaluated a novel combination of three non-mutagenic compounds for their effectiveness against mammary tumor cells, toxicity towards immune cells, ability to provoke the expression of immunogenic cell death (ICD) markers, and killing in 3D tumor models. Methotrexate (MTX), 2-deoxyglucose (2DG), and wogonin (WGN) were combined at doses well below their EC50 values yet effectively killed human and mouse breast cancer cells. The combination inhibited cancer cell colony formation and induced a high degree of cell death in multiple malignant tumor cell lines. Importantly, the combination did not significantly inhibit the viability of peripheral-blood mononuclear cells (PBMCs), even when employed at 3X the concentration that killed cancer cells. In marked contrast, low-dose doxorubicin, a common therapeutic for breast cancers, significantly decreased PBMC viability and increased the percentage of cell death. Our novel combinatorial therapy (Trifecta) elicited the significant expression of three ICD hallmarks: calreticulin surface expression, ATP secretion, and HMGB-1 release. In all cases, Trifecta elicited an equal or greater degree of ICD-marker expression compared to doxorubicin, a known inducer of ICD. We show significant efficacy of Trifecta against human and mouse mammary 3D tumor models grown in Matrigel® ECM-complex containing culture medium, and reaffirm the marked resistance of tumorspheres towards the conventional chemotherapeutic doxorubicin. The effectiveness of Trifecta in an acceptable surrogate model for mouse studies bodes well for translation of our findings to the clinic. In conclusion, Trifecta has proven highly effective against tumor cells grown either as monolayers or tumorspheres, without significant cytotoxic effects towards proliferating immune cells. Furthermore, treatment with this combination elicits ICD, which has the potential to prime an adaptive immune response against tumor cells and prevent future relapse. The drugs chosen for our combination target metabolic pathways that cancer cells are heavily dependent upon and do not interact with or induce mutations in DNA. These properties place Trifecta at the forefront of developing anticancer therapies.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013606
- Subject Headings
- Cancer--Treatment, Breast--Cancer, Methotrexate, Deoxyglucose, wogonin
- Format
- Document (PDF)
- Title
- TIME-LAPSE FLUORESCENCE MICROSCOPY TO QUANTIFY THE EFFICACY OF DRUGS AND NON-IONIZING RADIATION AS CANCER THERAPIES.
- Creator
- Konjalwar, Shalaka, Ranji, Mahsa, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Significant efforts are being made to understand and treat cancer, though methods are costly, invasive, and detrimental to healthy surrounding tissues. Techniques in optical imaging assess cancer cells’ state in response to treatments. The purpose of this study is to employ non-ionizing radiation as a potential safer therapeutic option and use timelapse fluorescence microscopy to monitor and quantify treatments to lung cancer cells. This thesis (1) measures and visualizes effects of a...
Show moreSignificant efforts are being made to understand and treat cancer, though methods are costly, invasive, and detrimental to healthy surrounding tissues. Techniques in optical imaging assess cancer cells’ state in response to treatments. The purpose of this study is to employ non-ionizing radiation as a potential safer therapeutic option and use timelapse fluorescence microscopy to monitor and quantify treatments to lung cancer cells. This thesis (1) measures and visualizes effects of a combinatory repurposed drug treatment through monitoring cellular metabolic state with time-lapse fluorescence microscopy and (2) develops a non-ionizing electromagnetic radiation system as a possible therapy modality. Results obtained demonstrate the effectiveness of a combinatory drug treatment and promising capability of non-ionizing radiation treatment, determined by an increase in fluorescence intensity correlated with metabolic state. In the future, different irradiation doses and drug combinations will be used for additional cancer cell lines, such as prostate and breast cancer.
Show less - Date Issued
- 2024
- PURL
- http://purl.flvc.org/fau/fd/FA00014406
- Subject Headings
- Cancer--Treatment, Drugs--Effectiveness, Fluorescence Microscopy, Nonionizing radiation
- Format
- Document (PDF)
- Title
- Dosimetric comparison of inverse planning by simulated annealing (IPSA) and dose points optimized treatment plans in high dose rate (HDR) brachytherapy of skin lesions using Freiburg flap applicator.
- Creator
- Ghebremichael, Bereket Tewolde, Ouhib, Zoubir, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
A detailed dosimetric comparison between Inverse Planning by Simulated Annealing (IPSA) and Dose Points (DP) optimized treatment plans has been performed for High Dose Rate (HDR) brachytherapy of skin lesions using Freiburg Flap applicator in order to find out whether or not IPSA offers better clinical dosimetric outcomes for lesions categorized into four different curvatures. Without compromising target coverage, IPSA reduced the volume of Planning Target Volume (lesion) that received at...
Show moreA detailed dosimetric comparison between Inverse Planning by Simulated Annealing (IPSA) and Dose Points (DP) optimized treatment plans has been performed for High Dose Rate (HDR) brachytherapy of skin lesions using Freiburg Flap applicator in order to find out whether or not IPSA offers better clinical dosimetric outcomes for lesions categorized into four different curvatures. Without compromising target coverage, IPSA reduced the volume of Planning Target Volume (lesion) that received at least 125% of the prescription dose on average by 41%. It also reduced the volume of the healthy skin surrounding the lesion that receives at least 100% of the prescription dose on average by 42%. IPSA did not show any advantage over DP in sparing normal structures underlying the lesions treated. Although DP optimization algorithm has been regularly used at Lynn Cancer Institute for HDR brachytherapy of skin lesions, recent upgrades in IPSA software have made IPSA more amenable to rapid treatment planning and therefore IPSA can be used either in place of DP or as its alternative.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004285
- Subject Headings
- Artificial intelligence -- Medical applications, Cancer -- Treatment, Computational intellingence, Imaging systems in medicine, Medical physics
- Format
- Document (PDF)
- Title
- Effects of gene selection and data sampling on prediction of breast cancer treatments.
- Creator
- Heredia, Brian, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
In recent years more and more researchers have begun to use data mining and machine learning tools to analyze gene microarray data. In this thesis we have collected a selection of datasets revolving around prediction of patient response in the specific area of breast cancer treatment. The datasets collected in this paper are all obtained from gene chips, which have become the industry standard in measurement of gene expression. In this thesis we will discuss the methods and procedures used in...
Show moreIn recent years more and more researchers have begun to use data mining and machine learning tools to analyze gene microarray data. In this thesis we have collected a selection of datasets revolving around prediction of patient response in the specific area of breast cancer treatment. The datasets collected in this paper are all obtained from gene chips, which have become the industry standard in measurement of gene expression. In this thesis we will discuss the methods and procedures used in the studies to analyze the datasets and their effects on treatment prediction with a particular interest in the selection of genes for predicting patient response. We will also analyze the datasets on our own in a uniform manner to determine the validity of these datasets in terms of learning potential and provide strategies for future work which explore how to best identify gene signatures.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004292, http://purl.flvc.org/fau/fd/FA00004292
- Subject Headings
- Antineoplastic agents -- Development, Breast -- Cancer -- Treatment, Cancer -- Genetic aspects, DNA mircroarrays, Estimation theory, Gene expression
- Format
- Document (PDF)
- Title
- A Dosimetric Comparison of 3D-CRT, IMRT, and SAVI HDR via NTCP/TCP and DVH Analysis of Critical Organs for Breast Cancer.
- Creator
- Wisnoskie, Sarah, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Accelerated Partial Breast Irradiation (APBI) is a common treatment of breast cancer with many modalities including 3D Conformal Radiation Therapy (3D-CRT), Intensity Modulated Radiation Therapy (IMRT), and High Dose Rate Brachytherapy (HDR). In this research, a retrospective analysis of patient’s data was performed to analyze the NTCP/TCP (Normal Tissue Complication Probability/Tumor Control Probability) and Dose Volume Histogram (DVH) parameters for HDR with SAVI, 3D, and IMRT and compare...
Show moreAccelerated Partial Breast Irradiation (APBI) is a common treatment of breast cancer with many modalities including 3D Conformal Radiation Therapy (3D-CRT), Intensity Modulated Radiation Therapy (IMRT), and High Dose Rate Brachytherapy (HDR). In this research, a retrospective analysis of patient’s data was performed to analyze the NTCP/TCP (Normal Tissue Complication Probability/Tumor Control Probability) and Dose Volume Histogram (DVH) parameters for HDR with SAVI, 3D, and IMRT and compare them focusing on critical organs such as the heart, ipsilateral lung, chest wall, ribs, and skin. TCP was 90.275%, 55.948%, and 53.369% for HDR, 3D, and IMRT respectively. The ribs were the most sensitive critical organ for all 3 modalities with a mean NTCP of 8%, 15%, and 8% for HDR, 3D, and IMRT respectively. DVH analysis showed HDR spares critical organs more than EBRT except for 2 patients receiving high doses to the ribs and chest wall.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013281
- Subject Headings
- Radiation dosimetry--Evaluation, Breast--Cancer--Treatment, Organs, Tissues--Effect of radiation on
- Format
- Document (PDF)
- Title
- A novel method to evaluate local control of lung cancer in stereotactic body radiation therapy (SBRT) treatment using 18f-Fdg positron emission tomography (PET).
- Creator
- Kathriarachchi, Vindu, Shang, Charles, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations...
Show moreAn improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004029
- Subject Headings
- Cancer -- Radiotherapy, Image guided radiation therapy, Lung cancer -- Treatment, Radiopharmaceuticals, Tomography, Emission
- Format
- Document (PDF)
- Title
- Variations of Pericardial Dose at Different Respiratory Status in Accelerated Partial Breast Irradiation (APBI) Using Cyberknife M6™ Multileaf Collimators (CKMLC).
- Creator
- Long, Samanthia C., Shang, Charles, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this study is to investigate the changes of the pericardial dose at different respiratory phases and statuses in accelerated partial breast irradiation (APBI) using Cyberknife M6™ multileaf collimators (CK-MLC). Anonymous 6 female patient files with respiration gated four-dimensional computed tomography (4DCT) sets, and 6 left breast cancer cases with CT images in free-breathing (FB) and deep inhalation breath-hold (BH) were selected. One CT image set from each patient was...
Show moreThe purpose of this study is to investigate the changes of the pericardial dose at different respiratory phases and statuses in accelerated partial breast irradiation (APBI) using Cyberknife M6™ multileaf collimators (CK-MLC). Anonymous 6 female patient files with respiration gated four-dimensional computed tomography (4DCT) sets, and 6 left breast cancer cases with CT images in free-breathing (FB) and deep inhalation breath-hold (BH) were selected. One CT image set from each patient was planned for APBI in Accuray Multiplan™ 5.2, and respectively compared its pericardial dose with those from CT sets of other respiratory phases. All the comparable CT images were fused in the planning system according to the left chest wall, among which the lung gap anterior to the pericardium varies by the lung expansion. For the purpose of this study, the tumor volume was outlined in the media-lower quadrant of the left breast where this lung gap is relatively small. All the plans in this study met the requirements set by the National Surgical Adjuvant Breast and Bowel Project/Radiation Therapy Oncology Group (NSABP/RTOG), specifically protocol B-39/RTOG 0413. From the comparisons in this investigation, the mean relative pericardial dose of the BH CT group showed significant or 45% (p < 0.01) lower value than that of FB CT group. However, in FB 4DCT group, 3 of 6 cases indicated a meaningful reduction (p < 0.05) in 100% inhalation phase when compared with the mean dose over other phases. The inconsistent pericardial doses were displayed in FB 4DCT group due to minimal changes in the anterior lung gap of the pericardium, when the diaphragmatic breathing was dominant in those patients.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004518, http://purl.flvc.org/fau/fd/FA00004518
- Subject Headings
- Breast--Cancer--Radiotherapy., Breast--Cancer--Treatment., Radiation--Measurement--Methodology., Medical physics.
- Format
- Document (PDF)
- Title
- Inhibition of the Growth and Spread of Human Prostate Cancer.
- Creator
- Yi, Zoey, Hartmann, James, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Prostate cancer, the most frequent non-skin cancer, is the second leading cause of cancer-related deaths in males within the United States. Men diagnosed with metastatic prostate cancer have a 5-year survival rate of approximately 30%. Goals of this study were to produce a combination of compounds that are effective against the disease with minimal side effects on normal cells, especially those of the immune system. This study showed KBU2046 in combination with calcitriol, limit proliferation...
Show moreProstate cancer, the most frequent non-skin cancer, is the second leading cause of cancer-related deaths in males within the United States. Men diagnosed with metastatic prostate cancer have a 5-year survival rate of approximately 30%. Goals of this study were to produce a combination of compounds that are effective against the disease with minimal side effects on normal cells, especially those of the immune system. This study showed KBU2046 in combination with calcitriol, limit proliferation, inhibit migration, and are cytotoxic in a testosterone dependent human prostate cancer cell line. Organic compounds, ellagic acid and curcumin were tested alone and in combination with either calcitriol or KBU2046. No combinations were as effective as KBU2046 and calcitriol in inhibiting migration and proliferation of LNCaP cells. The findings of this study support further investigation into therapeutic use of a combination of KBU2046 and calcitriol in prevention and remission of human prostate cancer.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014242
- Subject Headings
- Prostate--Cancer, Prostate--Cancer--Treatment--Research, Prostate--Cancer--Prevention, Calcitriol
- Format
- Document (PDF)
- Title
- A Study on Reversing the Immunosuppressive Phenotype of Tumor Associated Macrophages.
- Creator
- Liddle, Genevieve M., Hartmann, James X., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Extracellular stimuli may influence the M1/M2 phenotypic polarization of macrophages. We examined M1/M2 biomarkers, phagocytic activity, and tumoricidal activity in RAW 264.7 mouse macrophages. Macrophages were treated with conditioned media (CM) from 4T1 breast cancer cells, curcumin, 22-oxacalcitriol, LPS, or a combination of the previously listed. Arginase activity, a M2 phenotypic biomarker, was upregulated by the treatment of macrophages with conditioned media. Curcumin, 22-...
Show moreExtracellular stimuli may influence the M1/M2 phenotypic polarization of macrophages. We examined M1/M2 biomarkers, phagocytic activity, and tumoricidal activity in RAW 264.7 mouse macrophages. Macrophages were treated with conditioned media (CM) from 4T1 breast cancer cells, curcumin, 22-oxacalcitriol, LPS, or a combination of the previously listed. Arginase activity, a M2 phenotypic biomarker, was upregulated by the treatment of macrophages with conditioned media. Curcumin, 22- oxacalcitriol, and LPS partially inhibited RAW 264.7 arginase activity in the presence of 4T1 breast cancer media. 22-oxacalcitriol increased the phagocytic ability of RAW 264.7 macrophages in the presence of M2 polarizing substances produced by the 4T1 breast cancer cells. Also, LPS increased RAW 264.7 phagocytic ability in the presence of 4T1 breast cancer CM. This study looked at the potential substances that would possibly reverse the M2 tumor promoting macrophage phenotype seen in the breast cancer tumor environment.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004867
- Subject Headings
- Macrophages., Breast--Cancer--Treatment., Tumors--Immunological aspects., Cancer--Immunological aspects., Biological response modifiers., Cancer--Molecular aspects.
- Format
- Document (PDF)
- Title
- Empirical beam angle optimization for lung cancer intensity modulated radiation therapy.
- Creator
- Doozan, Brian, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Empirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used...
Show moreEmpirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used gantry angles were applied to four different regions in each lung to gather an optimal set of fields that could be used to treat future lung cancer patients. This method, given the moniker FAU BAO, is compared in 7 plans created with the Eclipse BAO choosing 5 fields and 9 fields. The results show that the conformality index improved by 30% or 3% when using the 5 and 9 fields. The conformation number was better by 12% from the 5 fields and 9% from the 9 fields. The organs at risk (OAR) were overall more protected to produce fewer nonstochastic effects from the radiation treatment with the FAU BAO.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004280, http://purl.flvc.org/fau/fd/FA00004280
- Subject Headings
- Cancer -- Radiotherapy, Image guided radiation therapy, Lung cancer -- Treatment, Medical physics, Medical radiology -- Data processing, Medicine -- Mathematical models
- Format
- Document (PDF)
- Title
- Dosimetric and Radiobiological Comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for Early Stage Whole Breast Cancer.
- Creator
- Moshiri Sedeh, Nader, Pella, Silvia, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for...
Show moreIntensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004526, http://purl.flvc.org/fau/fd/FA00004526
- Subject Headings
- Breast -- Cancer -- Treatment, Cancer -- Radiation therapy, Image guided radiation therapy, Radiation dosimetry, Radiotherapy -- Technological innovations
- Format
- Document (PDF)
- Title
- Comparison of treatment plans calculated using ray tracing and Monte Carlo algorithms for lung cancer patients having undergone radiotherapy with cyberknife.
- Creator
- Pennington, Andreea, Selvaraj, Raj, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this research is to determine the feasibility of introducing the Monte Carlo (MC) dose calculation algorithm into the clinical practice. Unlike the Ray Tracing (RT) algorithm, the MC algorithm is not affected by the tissue inhomogeneities, which are significant inside the chest cavity. A retrospective study was completed for 102 plans calculated using both the RT and MC algorithms. The D95 of the PTV was 26% lower for the MC calculation. The first parameter of conformality, as...
Show moreThe purpose of this research is to determine the feasibility of introducing the Monte Carlo (MC) dose calculation algorithm into the clinical practice. Unlike the Ray Tracing (RT) algorithm, the MC algorithm is not affected by the tissue inhomogeneities, which are significant inside the chest cavity. A retrospective study was completed for 102 plans calculated using both the RT and MC algorithms. The D95 of the PTV was 26% lower for the MC calculation. The first parameter of conformality, as defined as the ratio of the Prescription Isodose Volume to the PTV Volume was on average 1.27 for RT and 0.67 for MC. The results confirm that the RT algorithm significantly overestimates the dosages delivered confirming previous analyses. Correlations indicate that these overestimates are largest for small PTV and/or when the ratio of the volume of lung tissue to the PTV approaches 1.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004316
- Subject Headings
- Computer graphics, Diagnostic imaging, Image guided radiation therapy, Lung cancer -- Treatment, Lungs -- Cancer -- Radiotherapy, Monte Carlo method
- Format
- Document (PDF)
- Title
- Exploring appropriate offset values for pencil beam and Monte Carlo dose optimization in lung stereotactic body radiotherapy encompassing the effects of respiration and tumor location.
- Creator
- Evans, Grant, Shang, Charles, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Evaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using...
Show moreEvaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose® 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using the fast PB and compared with MC. This exact plan with the same beam Monitor Units (MUs) was recalculated over each respiratory phase. The results show that the PB algorithm has a 2.3-2.4% less overestimation at the maximum exhalation phase than the maximum inhalation phase when compared to MC. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus central lesions (12.7±0.8%)(p< 0.01).
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004105, http://purl.flvc.org/fau/fd/FA00004105
- Subject Headings
- Drug development -- Computer simulation, Image guided radiation therapy, Lung cancer -- Treatment, Monte Carlo method, Proton beams, Transport theory
- Format
- Document (PDF)
- Title
- The Impact of Pharmacological Targeting of Abnormal Tumor Metabolism with 3-Bromopyruvate on Dendritic Cell Mediated Tumoral Immunity.
- Creator
- Lang, Kevin, Hartmann, James X., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Studies have shown that tumor cells are susceptible to pharmacological targeting of their altered glycolytic metabolism with a variety of compounds that result in apoptosis. One such compound, 3-bromopyruvate (3-BP), has been shown to eradicate cancer in an animal model. However, no studies have shown whether the apoptotic fragments resulting from 3-BP treatment have the capacity to elicit an immunogenic cell death that activates dendritic cells, the primary antigen presenting cell in the...
Show moreStudies have shown that tumor cells are susceptible to pharmacological targeting of their altered glycolytic metabolism with a variety of compounds that result in apoptosis. One such compound, 3-bromopyruvate (3-BP), has been shown to eradicate cancer in an animal model. However, no studies have shown whether the apoptotic fragments resulting from 3-BP treatment have the capacity to elicit an immunogenic cell death that activates dendritic cells, the primary antigen presenting cell in the immune system. Immunogenic cell death is critical to eliciting an effective adaptive immune response that selectively kills additional target cells and generates immunological memory. We demonstrated that 3-bromopyruvate induced apoptosis in a number of different murine breast cancer cell lines, including the highly metastatic 4T1 line. The dying tumor cells stimulated immature dendritic cells (DCs) of the immortal JAWS II cell line to produce high levels of the pro-inflammatory cytokine IL-12, and increased their expression of key co-stimulatory molecules CD80 and CD86. The activated dendritic cells showed increased uptake of fragments from dying tumor cells that correlated with the increased levels of calreticulin on the surface and release of high group motility box 1 (HMGB1) of the latter following 3-BP treatment. Additionally, the anti-phagocytic signal CD47 present on breast cancer cells was reduced by treatment with 3-bromopyruvate when compared to the levels on untreated 4T1 cells. 3-BP treated breast cancer cells were able to activate dendritic cells through TLR4 signaling. Signaling was dependent on both the expression of surface calreticulin and on the extracellular release of high mobility group box 1 protein (HMGB1) during the process of immunogenic cell death. Killing by 3-BP was compared to mitoxantrone and doxorubicin, among the few chemotherapeutics that induce immunogenic cell death. 3-BP killing was likewise compared to camptothecin, a compound that fails to induce immunogenic cell death. Importantly, 3-BP did not markedly decrease the levels of the key peptide presenting molecule MHC I on DCs that were co-cultivated with dying tumor cells. Treatment of the highly aggressive triple negative BT-20 human breast cancer cell line with 3-BP also induced an immunogenic cell death, activating human dendritic cells in vitro.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004834
- Subject Headings
- Apoptosis., Cellular signal transduction., Cell death., Breast--Cancer--Treatment., Carrier proteins., Cancer--Molecular aspects., Biological interfaces.
- Format
- Document (PDF)
- Title
- Investigation of Mathematical Modeling for the general treatment of Glioblastoma.
- Creator
- Khatiwada, Dharma Raj, Kalantzis, Georgios, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this research is to validate various forms of mathematical modeling of glioblastoma multiforme (GBM) expressed as differential equations, numerically. The first work was involved in the numerical solution of the reaction-convection model, efficacy of which is expressed in terms of survival time. It was calculated using simple numerical scheme for the standard-of-care treatment in clinics which includes surgery followed by the radiation and chemotherapy. Survival time using all...
Show moreThe purpose of this research is to validate various forms of mathematical modeling of glioblastoma multiforme (GBM) expressed as differential equations, numerically. The first work was involved in the numerical solution of the reaction-convection model, efficacy of which is expressed in terms of survival time. It was calculated using simple numerical scheme for the standard-of-care treatment in clinics which includes surgery followed by the radiation and chemotherapy. Survival time using all treatment options increased significantly to 57 weeks compared to that of surgery close to 14 weeks. It was also observed that survival time increased significantly to 90 weeks if tumor is totally resected. In reaction-diffusion model using simple numerical scheme, tumor cell density patterns due to variation in patient specific tumor parameters such as net proliferation rate and diffusion coefficient were computed. Significant differences were observed in the patterns while using dominant diffusion and proliferation rate separately. Numerical solution of the tumor growth model under the anti-angiogenic therapy revealed some impacts in optimum tumor growth control however it was not significant.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004703
- Subject Headings
- Antineoplastic agents, Brain -- Cancer -- Treatment, Cancer -- Research, Cytology, Glioblastoma multiforme -- Treatment, Immune system -- Mathematical models, Systems biology
- Format
- Document (PDF)