Current Search: Automatic speech recognition (x)
View All Items
- Title
- Automated biometrics of audio-visual multiple modals.
- Creator
- Huang, Lin, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Biometrics is the science and technology of measuring and analyzing biological data for authentication purposes. Its progress has brought in a large number of civilian and government applications. The candidate modalities used in biometrics include retinas, fingerprints, signatures, audio, faces, etc. There are two types of biometric system: single modal systems and multiple modal systems. Single modal systems perform person recognition based on a single biometric modality and are affected by...
Show moreBiometrics is the science and technology of measuring and analyzing biological data for authentication purposes. Its progress has brought in a large number of civilian and government applications. The candidate modalities used in biometrics include retinas, fingerprints, signatures, audio, faces, etc. There are two types of biometric system: single modal systems and multiple modal systems. Single modal systems perform person recognition based on a single biometric modality and are affected by problems like noisy sensor data, intra-class variations, distinctiveness and non-universality. Applying multiple modal systems that consolidate evidence from multiple biometric modalities can alleviate those problems of single modal ones. Integration of evidence obtained from multiple cues, also known as fusion, is a critical part in multiple modal systems, and it may be consolidated at several levels like feature fusion level, matching score fusion level and decision fusion level. Among biometric modalities, both audio and face modalities are easy to use and generally acceptable by users. Furthermore, the increasing availability and the low cost of audio and visual instruments make it feasible to apply such Audio-Visual (AV) systems for security applications. Therefore, this dissertation proposes an algorithm of face recognition. In addition, it has developed some novel algorithms of fusion in different levels for multiple modal biometrics, which have been tested by a virtual database and proved to be more reliable and robust than systems that rely on a single modality.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/1927864
- Subject Headings
- Pattern recognition systems, Optical pattern recognition, Biometric identification, Identification, Automation, Automatic speech recognition
- Format
- Document (PDF)
- Title
- Sensitivity analysis of blind separation of speech mixtures.
- Creator
- Bulek, Savaskan., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Blind source separation (BSS) refers to a class of methods by which multiple sensor signals are combined with the aim of estimating the original source signals. Independent component analysis (ICA) is one such method that effectively resolves static linear combinations of independent non-Gaussian distributions. We propose a method that can track variations in the mixing system by seeking a compromise between adaptive and block methods by using mini-batches. The resulting permutation...
Show moreBlind source separation (BSS) refers to a class of methods by which multiple sensor signals are combined with the aim of estimating the original source signals. Independent component analysis (ICA) is one such method that effectively resolves static linear combinations of independent non-Gaussian distributions. We propose a method that can track variations in the mixing system by seeking a compromise between adaptive and block methods by using mini-batches. The resulting permutation indeterminacy is resolved based on the correlation continuity principle. Methods employing higher order cumulants in the separation criterion are susceptible to outliers in the finite sample case. We propose a robust method based on low-order non-integer moments by exploiting the Laplacian model of speech signals. We study separation methods for even (over)-determined linear convolutive mixtures in the frequency domain based on joint diagonalization of matrices employing time-varying second order statistics. We investigate the sources affecting the sensitivity of the solution under the finite sample case such as the set size, overlap amount and cross-spectrum estimation methods.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2953201
- Subject Headings
- Blind source separation, Mathematical models, Signal processing, Digital techniques, Neural networks (Computer science), Automatic speech recognition, Speech processing systems
- Format
- Document (PDF)