Current Search: Submersibles (x)
View All Items
Pages
- Title
- Docking the Ocean Explorer Autonomous Underwater Vehicle using a low-cost acoustic positioning system and a fuzzy logic guidance algorithm.
- Creator
- Kronen, David Mitchell., Florida Atlantic University, Smith, Samuel M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Having the ability to dock an Autonomous Underwater Vehicle (AUV) can significantly enhance the operation of such vehicles. In order to dock an AUV, the vehicle's position must be known precisely and a guidance algorithm must be used to drive the AUV to its dock. This thesis will examine and implement a low cost acoustic positioning system to meet the positioning requirements. At-sea tests will be used as a method of verifying the systems specifications and proper incorporation into the AUV....
Show moreHaving the ability to dock an Autonomous Underwater Vehicle (AUV) can significantly enhance the operation of such vehicles. In order to dock an AUV, the vehicle's position must be known precisely and a guidance algorithm must be used to drive the AUV to its dock. This thesis will examine and implement a low cost acoustic positioning system to meet the positioning requirements. At-sea tests will be used as a method of verifying the systems specifications and proper incorporation into the AUV. Analyses will be run on the results using several methods of interpreting the data. The second portion of this thesis will develop and test a fuzzy logic docking algorithm which will guide the AUV from a location within the range of the sonar system to the docking station. A six degree of freedom simulation incorporating the Ocean Explorer's hydrodynamic coefficients will be used for the simulation.
Show less - Date Issued
- 1997
- PURL
- http://purl.flvc.org/fcla/dt/15502
- Subject Headings
- Oceanographic submersibles, Acoustical engineering, Underwater acoustics, Fuzzy algorithms
- Format
- Document (PDF)
- Title
- Hydrodynamics and control of an autonomous underwater vehicle equipped with a vectored thruster.
- Creator
- Le Page, Yann Georges., Florida Atlantic University, Holappa, Kenneth W., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this study, a laminar flow hull shape is implemented on an Autonomous Underwater Vehicle (AUV), with boundary layer suction at the aft end of the hull to prevent separation. The hull shape has the largest diameter of the vehicle near the aft end of the hull resulting in an accelerating flow over the majority of the hull's surface. The problem of axially symmetrical flow around the AUV is solved using a potential flow analysis. A finite difference algorithm evaluates the stream function,...
Show moreIn this study, a laminar flow hull shape is implemented on an Autonomous Underwater Vehicle (AUV), with boundary layer suction at the aft end of the hull to prevent separation. The hull shape has the largest diameter of the vehicle near the aft end of the hull resulting in an accelerating flow over the majority of the hull's surface. The problem of axially symmetrical flow around the AUV is solved using a potential flow analysis. A finite difference algorithm evaluates the stream function, leading to the computation of fluid velocity and pressure fields. The boundary layer characteristics are analyzed to predict the risk of separation. The numerical results are compared with laboratory measurements of the flow using a Particle Image Velocimetry system. Fuzzy Logic Sliding Mode Controllers are implemented to control the vectored thruster vehicle, and are simulated using a six-degree of freedom dynamic model of the vehicle.
Show less - Date Issued
- 2000
- PURL
- http://purl.flvc.org/fcla/dt/15766
- Subject Headings
- Boundary layer, Laminar flow, Hydrodynamics, Oceanographic submersibles--Mathematical models
- Format
- Document (PDF)
- Title
- Hybrid telemanipulation simulation for mission rehearsal and intervention.
- Creator
- Agba, Emmanuel I., Florida Atlantic University, Wong, Tin-Lup, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A "hybrid" telerobotic simulation system that is suitable for telemanipulation rehearsal, operator training, human factors study and operator performance evaluation has been developed. The simulator also has the capabilities for eventual upgrade for supervisory control. It is capable of operation in the conventional rate-control, master/slave control and a data driven preprogrammed mode of operation. It has teach/playback capability which allows an operator to generate joint commands for real...
Show moreA "hybrid" telerobotic simulation system that is suitable for telemanipulation rehearsal, operator training, human factors study and operator performance evaluation has been developed. The simulator also has the capabilities for eventual upgrade for supervisory control. It is capable of operation in the conventional rate-control, master/slave control and a data driven preprogrammed mode of operation. It has teach/playback capability which allows an operator to generate joint commands for real time teleoperation. For high-level task execution, the operator selects a specific task from a set of menu options and the simulator automatically generates the required joint commands. The simulator was developed using a three dimensional graphic model of an increasingly popular manipulator, TITAN 7F. A closed-form solution for inverse kinematics of the manipulator was found. Degeneracies from inverse kinematics solutions were observed to exist for certain arm configurations, although the manipulator can physically attain such configurations. An approach based on known facts about the manipulator geometry and physical constraints coupled with heuristics was used to generate physically attainable joint solutions from the inverse kinematics. The conditions that cause solution degeneracy were demonstrated to be related to singularity conditions. A novel object interaction detection strategy was implemented for more realistic telemanipulation. The object detection technique was developed based on the use of superellipsoid, which has a convenient inside-outside function for interference testing. The manipulator, with its end-effector and payloads, if any, were modeled as superquadric ellipsoids. A systematic way of determining transformation matrices between the superquadric manipulator links was developed. The interaction detection technique treats both moving and stationary objects in a consistent manner and has proved to be easy to implement and optimize for real-time applications. The feature has been applied for the simulation of pick-and-place operations and collision detection. It is also used to provide visual feedback as a low-cost force reflection and can be interfaced with a bilateral controller for force reflection simulation.
Show less - Date Issued
- 1991
- PURL
- http://purl.flvc.org/fcla/dt/12278
- Subject Headings
- Manipulators (Mechanism), Remote control, Vehicles, Remotely piloted, Remote submersibles
- Format
- Document (PDF)
- Title
- Obstacle detection by a forward-looking sonar integrated in an autonomous underwater vehicle.
- Creator
- Martin, Antoine., Florida Atlantic University, An, Edgar, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis describes the implementation of a commercially available forward looking sonar (FLS) in an autonomous underwater vehicle (AUV) modified for the task of reactive obstacle detection. Any obstacle lying in the vehicle's path is a potential mission-terminating threat. Inclusion of a forward looking sensor would provide valuable information to the AUV. Threat assessment and navigation would use this information in order to avoid obstacles. The system used for this project is an 8...
Show moreThis thesis describes the implementation of a commercially available forward looking sonar (FLS) in an autonomous underwater vehicle (AUV) modified for the task of reactive obstacle detection. Any obstacle lying in the vehicle's path is a potential mission-terminating threat. Inclusion of a forward looking sensor would provide valuable information to the AUV. Threat assessment and navigation would use this information in order to avoid obstacles. The system used for this project is an 8-element transducer FLS at 200 kHz. The sonar control software is done in DOS on a dedicated personal computer in a PC/104 form factor. A variable cell-size grid occupancy search method is used to detect objects in the vehicle path. This thesis describes how this sonar is used for the obstacle detection task (software), how it is integrated (hardware and network) in the AUV and what are the results obtained with the system.
Show less - Date Issued
- 2000
- PURL
- http://purl.flvc.org/fcla/dt/12691
- Subject Headings
- Oceanographic submersibles--Computer simulation, Sonar, Underwater navigation
- Format
- Document (PDF)
- Title
- Obstacle avoidance for AUVs.
- Creator
- Gan, (Linda) Huilin., Florida Atlantic University, Ganesan, Krishnamurthy
- Abstract/Description
-
This thesis describes a general three-dimensional Obstacle Avoidance approach for the Autonomous Underwater Vehicle (AUV) using a forward-looking high-frequency active sonar system. This approach takes into account obstacle distance and AUV speed to determine the vehicle's heading, depth and speed. Fuzzy logic has been used to avoid the abrupt turn of the AUV in the presence of obstacles so that the vehicle can maneuver smoothly in the underwater environment. This approach has been...
Show moreThis thesis describes a general three-dimensional Obstacle Avoidance approach for the Autonomous Underwater Vehicle (AUV) using a forward-looking high-frequency active sonar system. This approach takes into account obstacle distance and AUV speed to determine the vehicle's heading, depth and speed. Fuzzy logic has been used to avoid the abrupt turn of the AUV in the presence of obstacles so that the vehicle can maneuver smoothly in the underwater environment. This approach has been implemented as an important part of the overall AUV software system. Using this approach, multiple objects could be differentiated automatically by the program through analyzing the sonar returns. The current vehicle state and the path of navigation of the AUV are self-adjusted depending on the location of the obstacles that are detected. A minimum safety distance is always maintained between the AUV and any object. Extensive testing of the program has been performed using several simulated AUV on-board systems undergoing different types of missions.
Show less - Date Issued
- 1997
- PURL
- http://purl.flvc.org/fcla/dt/15451
- Subject Headings
- Submersibles--Automatic control, Fuzzy logic, Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- A force sensor system for the real time measurement of thrust on an AUV.
- Creator
- Larroque-Lahitette, Gilles., Florida Atlantic University, Holappa, Kenneth W., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
When a control system for an Autonomous Underwater Vehicle (AUV) requires thrust, it is common to apply a simplified model to estimate the force generated. Even though this model takes into account several parameters, it will never recover the real value. Our challenge is to directly measure the force, in real time, from the tunnel thrusters used in the positioning control of the Mini AUV known as Morpheus. Therefore, a force sensor system has been designed, optimized, machined and tested,...
Show moreWhen a control system for an Autonomous Underwater Vehicle (AUV) requires thrust, it is common to apply a simplified model to estimate the force generated. Even though this model takes into account several parameters, it will never recover the real value. Our challenge is to directly measure the force, in real time, from the tunnel thrusters used in the positioning control of the Mini AUV known as Morpheus. Therefore, a force sensor system has been designed, optimized, machined and tested, that supports the thruster assembly. The sensor implements strain gages to measure the deformation in a beam. To optimize the capabilities of the sensor, a finite elements analysis has been run. The sensor has been fabricated and tested to determine the static and dynamic characteristics. This thesis discusses the design implementation, optimization, fabrication and testing of the force sensor. The discussion begins with an overview of the problem, then explains the fabrication, optimization, testing and concludes with recommendation for future work.
Show less - Date Issued
- 2001
- PURL
- http://purl.flvc.org/fcla/dt/12745
- Subject Headings
- Oceanographic submersibles, Tactile sensors, Robots--Control systems
- Format
- Document (PDF)
- Title
- Modeling and estimation for the Morpheus AUV dynamics.
- Creator
- Binois, Nicolas., Florida Atlantic University, An, Edgar
- Abstract/Description
-
This thesis describes the determination of linear and nonlinear coefficients for the Morpheus vehicle. Added mass and nonlinear damping terms were obtained by strip-theory. These added mass coefficients were compared to the ones previously computed by boundary-integral method. Open-loop simulations were conducted using both sets of added-mass coefficients along with the damping terms, which were adjusted to fit at-sea data. A previously estimation technique for hydrodynamic coefficients has...
Show moreThis thesis describes the determination of linear and nonlinear coefficients for the Morpheus vehicle. Added mass and nonlinear damping terms were obtained by strip-theory. These added mass coefficients were compared to the ones previously computed by boundary-integral method. Open-loop simulations were conducted using both sets of added-mass coefficients along with the damping terms, which were adjusted to fit at-sea data. A previously estimation technique for hydrodynamic coefficients has been applied to the Morpheus AUV using a Kalman filter. This technique based on linearized equations of motion was tested with linear and nonlinear data generated by simulation. Steering and diving motions were considered resulting in the estimation of different sets of coefficients. Results showed that the estimated values were able to reproduce accurately the vehicle motion in the linear as well as in the nonlinear case.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/12972
- Subject Headings
- Oceanographic submersibles--Mathematical models, Hydrodynamics, Underwater navigation
- Format
- Document (PDF)
- Title
- A three-dimensional forward-look sonar simulation model.
- Creator
- Gazagnaire, Julia., Florida Atlantic University, Cuschieri, Joseph M., Beaujean, Pierre-Philippe
- Abstract/Description
-
The aim of this thesis is to develop a simulation tool, The 3-D Forward-Look Sonar Simulation Model (3-D-FLSSM), for the 3-D Forward Look Sonar or equivalent that provides insight to the defining characteristics of the sonar system that affect the image quality and the data processing. The simulator includes a representation of the acoustic environment, which incorporates a flat seafloor and spherical target, both of which are assumed to a have small-scale roughness (much less than the...
Show moreThe aim of this thesis is to develop a simulation tool, The 3-D Forward-Look Sonar Simulation Model (3-D-FLSSM), for the 3-D Forward Look Sonar or equivalent that provides insight to the defining characteristics of the sonar system that affect the image quality and the data processing. The simulator includes a representation of the acoustic environment, which incorporates a flat seafloor and spherical target, both of which are assumed to a have small-scale roughness (much less than the acoustic wavelength) associated with them. The backscatter from the target and the seafloor are calculated using the Rayleigh-Rice approximation implementing Kuo's backscattering cross section. The simulator is capable of modeling targets of various shapes and sizes. The 3-D-FLSSM assumes a plane wave approximation and a constant sound velocity throughout the water column. The final product is a simulation tool with a focus on shallow water littoral acoustics, which can be used to define the sonar hardware and processing software necessary to meet various operational requirements.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13002
- Subject Headings
- Sonar--Computer simulation, Underwater acoustics, Remote submersibles
- Format
- Document (PDF)
- Title
- A passive platform for tracking underwater vehicles.
- Creator
- Dufour, Emmanuel R., Florida Atlantic University, Glegg, Stewart A. L.
- Abstract/Description
-
Over recent years, the trend in Autonomous Underwater Vehicle (AUV) design has been to reduce vehicle size and cost. On board navigation systems are both large and expensive so alternate solutions for vehicle positioning are required. The thesis explores the performance of a passive platform, the Ambient Noise Sonar (ANS), in remotely detecting, localizing and tracking submersible vessels. This task is achieved by exploiting communication signatures emitted by the moving submersible. The...
Show moreOver recent years, the trend in Autonomous Underwater Vehicle (AUV) design has been to reduce vehicle size and cost. On board navigation systems are both large and expensive so alternate solutions for vehicle positioning are required. The thesis explores the performance of a passive platform, the Ambient Noise Sonar (ANS), in remotely detecting, localizing and tracking submersible vessels. This task is achieved by exploiting communication signatures emitted by the moving submersible. The utility modem integrated on the AUV can be operated in a PSK and a MFSK mode. It was demonstrated that the ANS successfully tracks AUVs in both cases. First, the thesis presents the sonar beamformer and shows its potential for tracking by using the AUV communication signals. It describes a scheme developed to enhance the processor performance in a multi-target configuration and clutter. Then, it discusses promising tracking results from experiments conducted in summer and fall 1998, off the coast of South Florida.
Show less - Date Issued
- 1999
- PURL
- http://purl.flvc.org/fcla/dt/15671
- Subject Headings
- Oceanographic submersibles--Automatic control, Underwater acoustics, Acoustical engineering
- Format
- Document (PDF)
- Title
- Thrust Response of a Vectored-Thruster Unmanned Underwater Vehicle.
- Creator
- Ackermann, Lloyd E. J., von Ellenrieder, Karl, Florida Atlantic University
- Abstract/Description
-
Towing tank/water flume experiments are conducted to characterize the dynamics of a Remotely-Piloted Unmanned Underwater Vehicle (RPUUV) propelled by a vectored-thruster system. Force and torque measurements are used to determine the coefficients of drag, lift, yaw-moment and thrust of the vehicle as a function of the vehicle yaw angle and the vectored-thruster rudder angle. Simultaneously, particle Image Velocimetry (PIV) measurements of the propeller inlet flow are also performed to examine...
Show moreTowing tank/water flume experiments are conducted to characterize the dynamics of a Remotely-Piloted Unmanned Underwater Vehicle (RPUUV) propelled by a vectored-thruster system. Force and torque measurements are used to determine the coefficients of drag, lift, yaw-moment and thrust of the vehicle as a function of the vehicle yaw angle and the vectored-thruster rudder angle. Simultaneously, particle Image Velocimetry (PIV) measurements of the propeller inlet flow are also performed to examine the variation of flow conditions at the propeller inlet with rudder angle. The tests are conducted at 0.150 rnls, 0.300 rnls, 0.515 rnls and 0.773 rnls. While the measured drag coefficient is slightly higher than predicted by theory at low Reynolds number (1.44 x10^5 and 2.88 x10^5), the hydrodynamic coefficients data are expected to be useful in predicting the response of vehicles in the field. Additionally, the magnitude of the thrust vector varies nonlinearly with rudder angle and for nonzero rudder angles the thrust vector does not point in the same direction as the thruster axis.
Show less - Date Issued
- 2007
- PURL
- http://purl.flvc.org/fau/fd/FA00012500
- Subject Headings
- Naval architecture, Oceanographic submersibles--Hydrodynamics, Vibration (Marine engineering)
- Format
- Document (PDF)
- Title
- Thermocline tracking using an upgraded ocean explorer autonomous underwater vehicle.
- Creator
- Clabon, Mathieu., Florida Atlantic University, Dhanak, Manhar R.
- Abstract/Description
-
This thesis addresses the problem of tracking a thermocline---a layer of water showing an intense vertical temperature gradient---with an Autonomous Underwater Vehicle (AUV). One of Florida Atlantic University's Ocean Explorer (OEX) AUV has been upgraded, as part of the work described here, by integration of a standard and convenient software interface, and used in several thermocline survey experiments aimed at gathering oceanographic data relevant to thermoclines. A tool that simulates the...
Show moreThis thesis addresses the problem of tracking a thermocline---a layer of water showing an intense vertical temperature gradient---with an Autonomous Underwater Vehicle (AUV). One of Florida Atlantic University's Ocean Explorer (OEX) AUV has been upgraded, as part of the work described here, by integration of a standard and convenient software interface, and used in several thermocline survey experiments aimed at gathering oceanographic data relevant to thermoclines. A tool that simulates the longitudinal motion of the OEX through a water slice, whose temperature map is read using a simulated temperature and depth sensor, has been developed. Using this tool and information from at-sea experiments, several control methods for the OEX to track a thermocline were analyzed. In particular, two different algorithms were implemented and tested by simulation. Overall, two control algorithms have been validated, and it will soon be possible to provide the AUV with a thermocline tracking capability.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13025
- Subject Headings
- Thermoclines (Oceanography), Oceanographic submersibles--Computer simulation, Underwater navigation
- Format
- Document (PDF)
- Title
- Statistical bounds on handoff probabilities under different fading channel models of mobile communication.
- Creator
- Laupattarakasem, Pet., Florida Atlantic University, Neelakanta, Perambur S., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The research envisaged and reported in this thesis refers to finding comprehensive algorithms to determine the handoff probabilities of new and handoff calls encountered in mobile communications. The traditional expressions for these probabilities that are reported in the literature, are deduced only on the basis of call arrival statistics applied to RF links between base station (BS) and the mobile unit (MU). However, such radio links inevitably suffer from fading. These channels are...
Show moreThe research envisaged and reported in this thesis refers to finding comprehensive algorithms to determine the handoff probabilities of new and handoff calls encountered in mobile communications. The traditional expressions for these probabilities that are reported in the literature, are deduced only on the basis of call arrival statistics applied to RF links between base station (BS) and the mobile unit (MU). However, such radio links inevitably suffer from fading. These channels are normally modeled by appropriate probability density functions (pdfs) of the faded signal envelope. Rayleigh, Rician and Nakagami-m distributions are popularly considered in depicting such fading channel characteristics. The traditional (queueing-theoretic) based estimation of handoff probabilities does not account for the hysteresis-specific handoff statistics in the relevant fading channels. This is in contrary to the reality, inasmuch as fading is an inherent part of RF channels in mobile communications. The present study offers a tractable method of combining queuing-theoretic (call arrival) statistics and the hysteresis-crossing statistics of a RSS metric so as to obtain proper expressions for new and handoff call handoff probabilities. The (upper and lower) bound specified spread of the handoff probabilities indicates that care should be exercised in resource allocation efforts with a margin. To the best of the knowledge of the author, this research exercise is new and has not been reported elsewhere in open literature.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13006
- Subject Headings
- Oceanographic submersibles, Tactile sensors, Robots--Control systems
- Format
- Document (PDF)
- Title
- Using a cerebellar model arithmetic computer (CMAC) neural network to control an autonomous underwater vehicle.
- Creator
- Comoglio, Rick F., Florida Atlantic University, Pandya, Abhijit S.
- Abstract/Description
-
The design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six...
Show moreThe design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, roll angle, and yaw angle. Properties of CMAC and results of computer simulations for identification and control of the AUV model are presented.
Show less - Date Issued
- 1991
- PURL
- http://purl.flvc.org/fcla/dt/14762
- Subject Headings
- Neural networks (Computer science), Artificial intelligence, Submersibles--Automatic control
- Format
- Document (PDF)
- Title
- Automated Launch and Recovery of an Autonomous Underwater Vehicle from an Unmanned Surface Vessel.
- Creator
- Sarda, Edoardo I, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Research on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this...
Show moreResearch on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this dissertation is to identify possible methods to launch and recover a REMUS 100 AUV from a WAM-V 16 USV, thus developing this capability by designing and implementing a launch and recovery system (LARS). To meet this objective, a series of preliminary experiments was first performed to identify two distinct methods to launch and recover the AUV: mobile and semi-stationary. Both methods have been simulated using the Orcaflex software. Subsequently, the necessary control systems to create the mandatory USV autonomy for the purpose of launch and recovery were developed. Specifically, a series of low-level controllers were designed and implemented to enable two autonomous maneuvers on the USV: station-keeping and speed & heading control. In addition, a level of intelligence to autonomously identify the optimal operating conditions within the vehicles' working environment, was derived and integrated on the USV. Lastly, a LARS was designed and implemented on the vehicles to perform the operation following the proposed methodology. The LARS and all subsystems developed for this research were extensively tested through sea-trials. The methodology for launch and recovery, the design of the LARS and the experimental findings are reported in this document.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004631, http://purl.flvc.org/fau/fd/FA00004631
- Subject Headings
- Underwater acoustic telemetry., Fuzzy systems., Nonlinear control theory., Adaptive signal processing., Oceanographic submersibles--Automatic control., Submersibles--Control systems.
- Format
- Document (PDF)
- Title
- A high-level fuzzy logic guidance system for an unmanned surface vehicle (USV) tasked to perform an autonomous launch and recovery (ALR) of an unmanned underwater vehicle (UUV).
- Creator
- Pearson, David, An, Pak-Cheung, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
There have been much technological advances and research in Unmanned Surface Vehicles (USV) as a support and delivery platform for Autonomous/Unmanned Underwater Vehicles (AUV/UUV). Advantages include extending underwater search and survey operations time and reach, improving underwater positioning and mission awareness, in addition to minimizing the costs and risks associated with similar manned vessel operations. The objective of this thesis is to present the design and development a high...
Show moreThere have been much technological advances and research in Unmanned Surface Vehicles (USV) as a support and delivery platform for Autonomous/Unmanned Underwater Vehicles (AUV/UUV). Advantages include extending underwater search and survey operations time and reach, improving underwater positioning and mission awareness, in addition to minimizing the costs and risks associated with similar manned vessel operations. The objective of this thesis is to present the design and development a high-level fuzzy logic guidance controller for a WAM-V 14 USV in order to autonomously launch and recover a REMUS 100 AUV. The approach to meeting this objective is to develop ability for the USV to intercept and rendezvous with an AUV that is in transit in order to maximize the probability of a final mobile docking maneuver. Specifically, a fuzzy logic Rendezvous Docking controller has been developed that generates Waypoint-Heading goals for the USV to minimize the cross-track errors between the USV and AUV. A subsequent fuzzy logic Waypoint-Heading controller has been developed to provide the desired heading and speed commands to the low-level controller given the Waypoint-Heading goals. High-level mission control has been extensively simulated using Matlab and partially characterized in real-time during testing. Detailed simulation, experimental results and findings will be reported in this paper.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004315, http://purl.flvc.org/fau/fd/FA00004315
- Subject Headings
- Adaptive signal processing, Fuzzy sets, Fuzzy systems, Nonlinear control theory, Oceanographic submersibles -- Automatic control, Submersibles -- Control systems, Underwater acoustic telemetry
- Format
- Document (PDF)
- Title
- Optical 2D Positional Estimation for a Biomimetic Station-Keeping Autonomous Underwater Vehicle.
- Creator
- Nunes, Christopher, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15)....
Show moreUnderwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004528, http://purl.flvc.org/fau/fd/FA00004528
- Subject Headings
- Biometric identification, Feedback control systems, Oceanographic submersibles -- Design and construction, Optical pattern recognition, Remote submersibles -- Design and construction
- Format
- Document (PDF)
- Title
- Launch and recovery system for Johnson-Sea-Link I and II status and recommendations.
- Creator
- Kalajian, E. H., Clayton, David L.
- Date Issued
- 1979-09-04
- PURL
- http://purl.flvc.org/fcla/dt/3358632
- Subject Headings
- Johnson-Sea-Link II (Submarine), Submersibles--Design and construction
- Format
- Document (PDF)
- Title
- A xenon arc light for the Johnson-Sea-Linksubmersible.
- Creator
- Vulih, S., Clayton, David L., Tietze, R. C., Harbor Branch Oceanographic Institute
- Date Issued
- 1982
- PURL
- http://purl.flvc.org/fau/fd/FA00007142
- Subject Headings
- Johnson-Sea-Link II (Submarine), Xenon, Arc light, Oceanographic research, Submersibles
- Format
- Document (PDF)
- Title
- Recovery of a one-atmosphere transfer system.
- Creator
- Prentice, Jeffrey R., Harbor Branch Oceanographic Institute
- Date Issued
- 1982
- PURL
- http://purl.flvc.org/fau/fd/FA00007143
- Subject Headings
- Grand Bahama (Bahamas), Johnson-Sea-Link II (Submarine), Submersibles, Atmospheric pressure, Transfer, Recovery
- Format
- Document (PDF)
- Title
- A Submersible–based data display and data loggingsystem.
- Creator
- Voyles, Quentin, Clayton, David L., Harbor Branch Oceanographic Institute
- Date Issued
- 1986
- PURL
- http://purl.flvc.org/fau/fd/FA00007435
- Subject Headings
- Harbor Branch Foundation, Oceanographic submersibles, Johnson-Sea-Link II (Submarine), Data loggers, Information display systems
- Format
- Document (PDF)