You are here

Effects of Electromagnetic Hydrolysis on Dissolved Oxygen in Small Ponds

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
This pilot study was conducted to determine if an Electron Magnetics Oxygen and Hydrogen (EMOH) device can increase the dissolved oxygen (DO) concentration of a residential surface water. By using EMOH, DO concentration will increase and allow bacteria to remove the substrate that creates blue-green algae for which the City of Boynton Beach (City) receives complaints. Those complaints center on odors and the visual appearance of the ponds. The study was conducted in-situ at the INCA Pond system in the City of Boynton Beach, Florida with data collection taking place bi-weekly, using surface aeration techniques. Water sampling was conducted in the INCA Pond system via a handheld water sensor. Primary variable monitored included: water temperature, barometric pressure, DO concentration, and DO saturation (DOSAT). Biomass of dead algae at the bottom of the pond was also monitored to determine if increased DO concentration aided the biological digestion of the organic matter. Data analysis shows that exposure to EMOH treatment allowed the relationship between DO and temperature to change from a negative correlation (the expected relationship) to a positive trend. Furthermore, pressure and DOSAT became less correlated after exposure to EMOH effluent. In all, EMOH was shown to be an effective means of treating hypoxic pond water. The optimal EMOH effluent discharge is determined to be deep in the subject pond. Backed by research on the surface-air water and bubble-water oxygen transfer coefficients, DO concentration in the subject pond was 110% higher when effluent was directed down toward the floor of the pond.
Title: Effects of Electromagnetic Hydrolysis on Dissolved Oxygen in Small Ponds.
8 views
2 downloads
Name(s): Iles, Matthew, author
Bloetscher, Frederick, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 94 p.
Language(s): English
Abstract/Description: This pilot study was conducted to determine if an Electron Magnetics Oxygen and Hydrogen (EMOH) device can increase the dissolved oxygen (DO) concentration of a residential surface water. By using EMOH, DO concentration will increase and allow bacteria to remove the substrate that creates blue-green algae for which the City of Boynton Beach (City) receives complaints. Those complaints center on odors and the visual appearance of the ponds. The study was conducted in-situ at the INCA Pond system in the City of Boynton Beach, Florida with data collection taking place bi-weekly, using surface aeration techniques. Water sampling was conducted in the INCA Pond system via a handheld water sensor. Primary variable monitored included: water temperature, barometric pressure, DO concentration, and DO saturation (DOSAT). Biomass of dead algae at the bottom of the pond was also monitored to determine if increased DO concentration aided the biological digestion of the organic matter. Data analysis shows that exposure to EMOH treatment allowed the relationship between DO and temperature to change from a negative correlation (the expected relationship) to a positive trend. Furthermore, pressure and DOSAT became less correlated after exposure to EMOH effluent. In all, EMOH was shown to be an effective means of treating hypoxic pond water. The optimal EMOH effluent discharge is determined to be deep in the subject pond. Backed by research on the surface-air water and bubble-water oxygen transfer coefficients, DO concentration in the subject pond was 110% higher when effluent was directed down toward the floor of the pond.
Identifier: FA00013220 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Water--Dissolved oxygen
Hydrolysis
Electromagnetic devices
Blue-green algae
Odor control
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013220
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.