You are here

Using Deep Learning Semantic Segmentation to Estimate Visual Odometry

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
In this research, image segmentation and visual odometry estimations in real time are addressed, and two main contributions were made to this field. First, a new image segmentation and classification algorithm named DilatedU-NET is introduced. This deep learning based algorithm is able to process seven frames per-second and achieves over 84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual odometry error was more significant than could be accurately measured. However, the robust framerate speed made up for this, able to process 15 frames per second.
Title: Using Deep Learning Semantic Segmentation to Estimate Visual Odometry.
259 views
249 downloads
Name(s): Blankenship, Jason R., author
Su, Hongbo, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 57 p.
Language(s): English
Abstract/Description: In this research, image segmentation and visual odometry estimations in real time are addressed, and two main contributions were made to this field. First, a new image segmentation and classification algorithm named DilatedU-NET is introduced. This deep learning based algorithm is able to process seven frames per-second and achieves over 84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual odometry error was more significant than could be accurately measured. However, the robust framerate speed made up for this, able to process 15 frames per second.
Identifier: FA00005990 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Image segmentation
Computer vision
Deep learning
Visual odometry
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00005990
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.