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An approach to the optimum design of structures, in which uncertainties with a fuzzy nature 
in the magnitude of the loads are considered, is proposed in this study. The optimization proc­
ess under fuzzy loads is transformed into a fuzzy optimization problem based on the notion of 
Wemers' maximizing set by defining membership functions of the objective function and 
constraints. In this paper, Werner's maximizing set is defined using the results obtained by 
first conducting an optimization through anti-optimization modeling of the uncertain loads. 
An example of a ten-bar truss is used to illustrate the present optimization process. The 
results are compared with those yielded by other optimization methods. 
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1. INTRODUCTION 

The optimization of structural behavior is usually performed for specified 
loading conditions. However, in most practical situations loads are uncer­
tain, and the designer must contend with the effects of this uncertainty. 
Most researchers favor the use of probabilistic models to account for this 
uncertainty, and employ probabilistic structural optimization for the design 
process. The structure is hereby optimally designed so that the probability 
of failure is below any pre-specified threshold. Hilton and Feigin [1] 
appear to have been the first to use probabilistic optimization, and their 
work has been followed by numerous studies. 
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It was recognized since then that uncertainty is not the same as random­
ness, and the notions of probability does not exhaust our notions of uncer­
tainty. One alternative to randomness for describing uncertainty is 
fuzziness. Indeed, imprecision is a property of physical phenomena. It 
arises from the intrinsic behavior of human reasoning and natural lan­
guage, which is less specific than a numerical characterization. A fuzzy set 
membership function describes the degree to which an object belongs to a 
set with imprecise boundaries, while randomness deals with the uncer­
tainty regarding the probabilistic occurrence or nonoccurrence of some 
event. 

It is well known that in the field of design designers are often forced in 
practice to state their design problems in precise mathematical terms rather 
than in terms of the real world which may often be imprecise in nature. In 
many cases a complex real world design problem can be divided into a 
sequence of simpler sub-problems, which can be best solved by experi­
enced designers using information expressed by statements such as words 
or phrases which are said to be values of given linguistic variables. The 
theory of fuzzy sets is a useful tool with which these statements can be 
interpreted with the use of membership functions, which express numeri­
cally the meaning of the linguistic variables. The construction of a mem­
bership function can be accomplished with the cooperation and assistance 
of a panel of experienced engineers in specific areas. The resulting design 
process can then be performed in a logical manner following the theory of 
fuzzy decision-making to obtain a meaningful answer to the originally 
complex problem. 

The general framework for fuzzy optimum design follows the fuzzy 
decision-making proposed by Bellman and Zadeh [2], Zimmermann [3], 
Verdagay [4], Rao [5], etc. Their approach was to compute the confluence 
as a fuzzy set on decision space of the fuzzy goals and fuzzy constraints. 
Then the optimum design is a design which maximizes the membership 
function of the resultant fuzzy set. 

The objective of the present paper is to formulate the problem of the 
structural optimization for the case of fuzzy load uncertainty. By defining 
the membership functions of the objective function and constraints, based 
on the notion of maximizing set by Werners [6], the optimization process 
is transformed into a fuzzy optimization problem, which, in turn, can be 
solved following the framework of conventional fuzzy decision making 
theory. The first step in the process is to perform the "crisp" optimization 



STRUCTURAL OPTIMIZATION 189 

to obtain the results for the use of defining maximum set. A solution pro­
cedure based on sequential linear programming is utilized, and a 
well-known ten bar truss example (Haftka and Glirdal, [7]) is used to dem­
onstrate the procedure. The results are compared with those obtained by 
the convex optimization and anti-optimization in our previous paper 
(Elishakoff, Haftka and Fang, [8]). 

2. FORMULATION 

Original Problem with Fuzzy Parameters 

Consider the problem of designing a structure so as to minimize an objective 
function <p(X), where X is a vector of design variables. The problem is for­
mulated as follows 

minimize <p(X) 
X 

suchthatg1(X,p)2:0 j=l, ... ,ng 
(1) 

where gj are constraint functions, p is the uncertain parameter vector and ng 

is the total number of constraints. 

The objective function and constraints may depend on parameters, such as 
external forces, material density and allowable stresses, that are best 
described as fuzzy variables, with specified membership functions. That is, 
we assume that the set of parameters p describing the problem is known to 
belong to a fuzzy set C p 

(2) 

Transformed System 

While solving the present optimization problem with fuzzy parameters 
involved is usually difficult and numerically cumbersome, it is suitable to 
seek a somewhat "equivalent" problem where only a fuzzy objective func­
tion and fuzzy constraints instead of several fuzzy parameters are involved. 
From the notion of maximizing set by Wemers [6], it is possible to define the 
membership functions of the objective function and the constraints, and 
hence transform the original problem into an ordinary fuzzy optimization 
problem. 
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The "equivalent" problem in fuzzy environment, can be stated as where 
the fuzzy subset Gj denotes the allowable region for the constraint function 
gj, the bold face symbols of <p and Gj indicate that the operators or variables 
contain fuzzy information. The 

minimize <p(X) 
X (3) 

suchthatg1(X) EG1 }= 1, ... ,ng 

constraint gj E Gj means that gj is a member of a fuzzy subset Gj in the sense 
of llofg) ~ 0, where !l(.) is the membership function. The fuzzy feasible 
region concerning all the constraints is defined as 

m 
S= n G· 

}=1 1 
(4) 

The membership degree of any design vector X to fuzzy feasible region 
Sis given by 

(5) 

i.e. the minimum degree of satisfaction of the design vector X to all of the 
constraints. A design vector X is considered feasible provided lls(X) ~ 0, and 
the differences in the membership degrees of two design vectors xi and x2 
imply nothing but variations in the minimum degrees of satisfaction of X1 

and x2 to the constraints. 

The fuzzy feasible region concerning the objective function is denoted as 
T, determined by ll<p(X) ~0, after the membership function of the objective 
function ll<p(X) is defined (which will be discussed in the next section). Thus 
the optimum solution should be found within a fuzzy domain D, 

D=SnT (6) 

Its membership function is 

!lv(X) = min{p<p(X),. min ,UG [gJ(X)]} 
]=1,2,- ,m 1 

(7) 

If the membership function of D is unimodal and has a unique maxi­
mum, then the optimum solution X* is one for which the membership 
function is maximum: 

,uv(X) = max,uv(X), XED (8) 

The fuzzy optimization problem can then be solved using ordinary non­
linear programming techniques as follows: 

Find X which maximizes A 

maximize 'A 
X 

(9) 
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subject to 

').,:::; Jlcp(X) 
').,:::; Jlgj(X), j = 1,2,· ,m 
gi(X,p0 ) ~ 0, i = n1,n2, ·, nm "crisp" constraints 
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(10) 

where p0 is the mid-point value of the fuzzy set CP in (2), i.e. with its mem­
bership function equals 0.5, 

Definition of the membership functions 

In the present case of fuzzy parameters p, the definition by Wemers (1984) 
is extended to construct the membership functions of <p and gi Let <p: 
X ~R1 be the objective function, R is the fuzzy feasible region of p, S(R) is 
the support of R, and R1 is a-level cut of R for a = 1. The membership 
function of the goal (objective function) given solution space R is then 
defined as 

1 if <p(X) :::; inf <p 
Rt 

sup-<p(X) 

Jlcp(X) = 
S(R) 

if inf <p :::; <p(X) :::; sup <p (11) 
sup-inf<p Rt S(R) 
S(R) Rt 

0 if sup<p:::; <p(X) 
S(R) 

where <p(X) is the objective function, ~! <p is the optimized objective func-
l 

tion from the "crisp" optimization for the loading condition corresponding 

to a= 1; ;(J:) <pis the optimized objective function from the "crisp" optimi­

zation through convex modeling of loads whose multi-dimensional bounded 
load space is produced by setting a = 0. For the details of the convex mode­
ling of uncertainty, the reader may consult with the monograph by 
Ben-Haim and Elishakoff [9] and with review by Elishakoff [10]. 

The membership functions of the constraints is defined as 

where inJG1 denotes minimum value of the fuzzy set G1 and supG1 denotes 
maximum value of Gj with p = p0. In this way, the optimization problem 
with fuzzy parameters can be transformed into an ordinary fuzzy optimiza­
tion problem, which contains only fuzzy objective function and fuzzy con­
straints, from the nominal values and bounded ranges of the fuzzy 
parameters. 
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3. TEN-BAR TRUSS EXAMPLE 

3.1 Analysis 

l 1 
gj(X)- infGj 

/lgj(X) = supGj ~infGj 

with p = p 0 

if gj(X) ::; inf Gj 

if infGj ::; gj(X) ::; supGj 

if gj(X) ~ supGj 
andj=1,2,·,m 

(12) 

Consider the simple ten-bar truss (Fig. 1), which has been investigated 
in various optimization contexts (Haftka and Gtirdal [7]; Elishak:off, 
Haftka and Fang [8]; Vanderplaats and Salajeghah [11]; Zhou and Roz­
vany [12]). The minimum weight design obtained by varying the 
cross-sectional areas of the truss members is sought subject to the vertical 
displacement constraint at joint 2, stress constraints and minimum gage 
constraints of 0.1 in2. The maximum allowable stress in each member is 
same in tension and compression. The allowable vertical displacement of 
joint 2 is 5 inches and the allowable stress is 25 ksi for all bars except bar 
9, whose allowable stress is 75 ksi. The truss is made of aluminum with 
weight density of 0.1 lb/in3 and elasticity modulus of 104 ksi. The bar 
length L is 360 in. Joint 4 is subjected to vertical load P 1, joint 2 is sub­
jected to vertical load P2 and horizontal load P3. Haftka and Gtirdal [7], 
Vanderplaats and Salajeghah [11], Zhou and Rozvany [12] treated the 
problem of optimization of the truss for a specific combination of the 
loads, namely for P 1 =P 2 = 100 kips, P 3 = 0. For the purpose of illustration 
we consider the optimization subject to stress and displacement constraints 
with fuzzy parameters of loads. Without loss of generality, the displace­
ment constraints are treated as fuzzy constraints while stress constraints 
will be taken as crisp constraints. The support of p, namely when a= 0, 
Pk, (k = 1, 2, 3) are varying in the following three-dimensional box 

{ 
Pf ::; P1 ::; Pf } 

Cp = Pi ::; Pz ::; P!f 
P~ ::; P3 ::; P!J 

(13) 

where Pk and Pf are lower and upper bounds of the load Pk, respec­
tively. Note that the structure is statically indeterminate, with the degree 
of indeterminacy equal to two. To determine the stresses in the bars we 
employ the standard flexibility method. The unknown axial forces in the 
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members are denoted Ni, where i is the sequence number of the bar, i = 1, 
2, ... , 10. They satisfy the set of following equilibrium and compatibility 
equations 

where 

N1=P2-YfNs 

N2 =- '/{Nw 

N3 = - P1 - 2P2 + P3 - Yf Ns 

N4 = -P2 + P3- YfNw 

Ns = - P2 - '/{ Ns - '/{ Nw 

N6 = -YfNw 
N7 = ,fi(P1 +P2) +Ns 
N9 = ViP2 + Nw 
anNs + a12N10 = b1 
a21Ns + a22N10 = b2 

(14) 

(15) 

where Ai is the cross-sectional area of bar i, and E is the modulus of elas­
ticity. Once the axial loads Ni in the members are calculated, the vertical 
displacement 02 of joint 2 can be found from expression 

02 = [± N(Ni + J2:£ N(Nil !:__, (16) 
i=l Ai i=7 Ai E 

where Nt are found from equations, similar to Eqs. (14) and (15) with a 
substitution P1 = P3 = 0 and P2 = 1. 



194 J. FANGetal. 

The minimum weight design formulation corresponding to (3) is 

mini~ize W = ~(pL;A;) = pL (~A;+ J2~A) 
such that A;~ Ao = 0.1 in2 

I Nj(p,A) I 
gj(A) =I o"j(A) I= max :::; crj,allow, (k = 1, 2, 3) 

Pf::;AC:,Pf: Aj 
emax ch(p,A) :::; <h,allow = 5 in 

Pk::;Pk::;,Pf: 

(17) 

where cr1 and crj,allow are the stress and maximum allowable stress, for bar j, 
and 8i and 8i, allow are the displacement and maximum allowable displace­
ment for bar i. 

For some specific values of p 0, the problem can be solved through 
sequential linear programming (SLP) (Haftka and Gi.irdal [7]). SLP starts 
with a trial design A/0J, and replaces the constraints with linear approxi­
mation obtained from a Taylor series expansion about A/0J. Thus the prob­
lem (17) is replaced by 

For the fuzzy parameters, according to the formulation addressed in sec­
tion 2, the present optimization problem with fuzzy parameters can be 
transformed into an ordinary fuzzy optimization process by seeking an 

" · 1 " bl sup W infw. G · rfG "11 b d d · th eqmva ent pro em. S(R) , R 1 , sup 1, m 1 WI e nee e m e 

definition of membership functions of objective function and constraints. 

Because N1 and 82 are linear functions of p, the extreme cases of the 

loads can be found at the vertices of the box. Thus ;(%) W may be obtained 

through the following optimization process: 
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(19) 

That is, the stress and displacement constraints are enforced at all 8 ver­
tices of the load-domain box. 

On the other hand, ~! W can be obtained by choosing minimum weight 
l 

for all optimization processes at the vertices ofthe loads. 

infW = min(Wv1 , Wv2 , ••• , Wv8 ) 

Rt 

where Wvl and 8;, vi can be obtained as follows: 

(20) 

Then the membership function of the objective function, i.e. weight W, 
given solution space R is then defined as follows (Fig. 2) where W(X) is 

the objective function, I(%) W is the optimized objective function from the 

"crisp" optimization under non-fuzzy uncertainties of loads, whose magni­
tude belongs to the bounded 

,uw(X) = 

minimize Wv; = pL (iA; + hiA;) 
~ ~1 ~7 

such that A;~ 0.1 

A} - j,allow Pk is at vertex v; 
I Nj I < (J } 

<h :::; Oz,allow 

1 if W(X) :::; infW 

supW- W(X) 
S(R) 

supW -infW 
S(R) Rt 

Rt 

ifinfW:::; W(X):::; supW 
Rt S(R) 

0 ifsupW:::; W(X) 
S(R) 

(21) 

(22) 

set, and ~! w is the optimized objective function from the "crisp" optimi­
t 

zation for one specific point in the multi-dimensional load space under 
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which the corresponding W(X) is the minimum among the W(X)'s of all 
other points of loads in the bounded set. 

According to Eq. (12), the membership functions of the constraint of dis­
placement 62 can be represented as follows (Fig. 3) 

(23) 

where inj02 and sup82 are chosen according to the problem itself. Usually 
sup82 is chosen as 82 allow and inj02 is chosen in the neighborhood of 

82,allow· 

3.2 Numerical results 

Minimum weight designs were obtained first with no uncertainty (that is 
Pk = Pf; k = 1, 2, 3). The results obtained for PI= P2 = 100 kips, P3 = 0 
and no displacement constraint coincide with those reported ed by Haftka 
and Gtirdal [7], who utilized the finite element method in conjunction with 
several optimization techniques. For the same loads but with the additional 
displacement constraint, the results coincide with those derived by Zhou 
and Rozvany [12]. The results of optimization for nominal values of the 
loads PI = P2== 100 kips and P3 = 400 kips are listed in Table I which 
indicates a total weight of 1598.6lb. 

TABLE I The Cross-Sectional Areas of Optimal Truss under Nominal Loads 

Bar's Serial 
Number 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Weight: l598.62lb 

Cross-Sectional 
Areas (in2) 

4.0354 
0.1000 
4.0354 

12.1000 
3.8646 
0.1000 

11.2637 
0.1000 
2.7577 
0.1414 
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For the case of uncertain loads, the stress and displacement constraints 
in (19) are enforced at the 8 vertices 

VI = (Pl,PJ,PD 
V2 = (P],PJ,P~) 
V3 = (Pl,PJ,P3) 
V4 = (P],PJ,P3) 
v5 = (Pl,P2,PD 
V6 = (P],P2,P~) 
V7 = (Pl,P2,P3) 
Vg = (P],P2,P3) 

(24) 

We consider as an example a case with 10 percent load uncertainty, that 

is Pf = P~ = 90 kips, Py = P~ = 110 kips, Pi = 360 kips, P~ = 440 

kips. The results of optimization are included in Table II. The objective 
function weight equals 1949.9lb, indicating a 22 percent increase over the 

nominal case due to the uncertainty. This weight is taken as ;(J:) W. 

Table III shows the weight of optimal truss under the loads corresponding 
to eight different vertices, and vertical displacement at joint 2. supo2 and 

info2 are 5 (in) and 0 (in), respectively. 

TABLE II The Cross-Sectional Areas of Optimal Truss Under Uncertainty 

Bar's Serial Number Cross-Sectional Areas ( in2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

o2: 2.2038 in 
Weight: 1949.89lb 

3.3 Comparison with a-cut method 

4.4638 
0.1000 
6.8230 

14.0414 
4.3064 
0.1000 

12.3776 
0.1000 
4.6256 
0.1000 

In this section the result from introducing the membership function of 
the loads directly is obtained through the level-cut method, which is often 
used in optimization studies associated with fuzzy-subsets modeling of 
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TABLE III The Weight of Optimal Truss at Various Load Vertices 

Load Vertices Number Weight (lb) 

100, 100, 0, 400 1598.62 
90, 90, 360 1440.22 
90, 90, 440 1670.62 
90, 110, 360 1497.82 
90, 110, 440 1728.22 

110, 90, 360 1469.02 
110, 90, 440 1699.42 
110, 110, 360 1526.62 
110, 110, 440 1757.02 

TABLE IV The Cross-Sectional Areas of Optimal Truss Under Fuzzy Environment 

Bar's Serial Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Cross-Sectional Areas ( in2) 

Weight: 1774.47lb 

4.2750 
0.1000 
4.0353 

12.0381 
4.1661 
0.1000 

11.2638 
0.1000 
5.9143 
0.1000 

uncertainty. The reader is referred to several studies (Adali [13]; Dong 
[14]; Mohandas, et al, [15]; Yeh and Hsu [16]; Wang and Wang [17]) for 
examples of the application of the fuzzy set theory to optimal design prob­
lems. In this study two membership functions are used to compare the 
results with those yielded by the method proposed. First the following tri-

angular membership function is utilized where Pf = P~ = 90 kips, 

Pr = P~ = 110 kips, P§ = 360 kips, P~ = 440 kips (Fig. 4). According 

to Adali (1991 ), the optimization procedure proceeds as follows: first the 
uncertainty level is chosen, i.e. is specified. Making a-cuts yields the val-

ues of Pr,gx and Pr,~n. Then loads are varied in the box Pr,~n :5: Pi :5: Pr,gx 

with attendant evaluation of optimal weight. For ten-bar truss problem, it 
is found that when a=0.4628, the corresponding minimized weight equals 
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1774.48 lb. In the real-world design problems selecting a is subjective, 
although use of 

f.lP;(P;) = 

0 if P; :S Pf or P; 2 Pt 
P;-Pf 
pO_pl 

l l 

P;-Pr 
ifP?<P;<Pt 

(25) 

the a-cut method is computationally inextensive. The present method does 
not require the above subjective choice of parameters, and therefore 
appears to be superior to the a level-cut method. 

4. CONCLUDING REMARKS 

The idea of combining the fuzzy-sets-based and anti-optimization mode­
ling of uncertainty is proposed in this paper. An example of minimum 
weight design of a ten-bar truss structures subjected to the set of uncertain 
bounded loads is employed to illustrate the applications of the proposed 
method. The uncertainty in variation of the loads is assumed to be con­
fined to a multi-dimensional box, with vertices corresponding to lower 
and/or upper bounds of different loads. The previous results from the opti­
mization through convex modeling of the loads are utilized to define the 
membership functions of both the objective function and constraints. 
Comparison with the a-cut method is performed. 
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