You are here

Base Promoted 5-endo-dig Cyclizations of Non-Conia-ene Propargyl Ethers: A Mechanistic Investigation

Download pdf | Full Screen View

Date Issued:
2024
Abstract/Description:
Herein, we discuss a novel method for the synthesis of decorated 2,5-dihydrofurans. The base promoted 5-endo-dig cyclization of non-Conia-ene propargyl ethers produces 2,2 disubstituted dihydrofurans. Central to the reaction is the presence of an acidic C–H bond which is activated by an adjacent aromatic heterocycle. The transformation is viable with a wide range of substituents, including N, O, and S containing heterocycles, substituted phenyl rings, and alkyl groups. The cyclization proceeds within 30 seconds at room temperature under the action of potassium tert-butoxide. This work stands apart from the current literature due to the absence of transition metal catalysts and/or harsh reaction conditions. A thorough mechanistic investigation is undertaken to better understand the nature of this unprecedented reaction.
Title: Base Promoted 5-endo-dig Cyclizations of Non-Conia-ene Propargyl Ethers: A Mechanistic Investigation.
26 views
11 downloads
Name(s): Hintze, Silas Q. , author
Lepore, Salvatore D. , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Chemistry and Biochemistry
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2024
Date Issued: 2024
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 110 p.
Language(s): English
Abstract/Description: Herein, we discuss a novel method for the synthesis of decorated 2,5-dihydrofurans. The base promoted 5-endo-dig cyclization of non-Conia-ene propargyl ethers produces 2,2 disubstituted dihydrofurans. Central to the reaction is the presence of an acidic C–H bond which is activated by an adjacent aromatic heterocycle. The transformation is viable with a wide range of substituents, including N, O, and S containing heterocycles, substituted phenyl rings, and alkyl groups. The cyclization proceeds within 30 seconds at room temperature under the action of potassium tert-butoxide. This work stands apart from the current literature due to the absence of transition metal catalysts and/or harsh reaction conditions. A thorough mechanistic investigation is undertaken to better understand the nature of this unprecedented reaction.
Identifier: FA00014376 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2024.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cyclization (Chemistry)
Chemistry, Organic
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014376
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU