You are here

CLASSICAL AND POST-QUANTUM CRYPTOGRAPHY ON MODERN ARM-BASED PROCESSORS

Download pdf | Full Screen View

Date Issued:
2024
Abstract/Description:
Cryptographic algorithms are being developed and incorporated into network security protocols to provide secure communication over vulnerable mediums like the Internet. These protocols utilize secret and public key mechanisms to carry out data integrity, confidentiality, authentication, and non-repudiation. The urge to deploy cryptosystems on low-end devices, based on the constantly growing Internet of Things (IoT) world, requires optimal design and implementation of cryptographic algorithms and protocols to achieve small communicational and computational cost, while preserving the privacy of the transmitted data. Scenarios of low bandwidth, constrained memory, and limited processing power are common when targeting embedded devices; however, security requirements are still present due to the sensitive information that may be communicated. In this thesis, we address the need for optimal cryptographic primitives implementation design in terms of computing capabilities, energy and power consumption, and memory usage to accommodate the deployment of cryptographical systems on resource-constrained devices.
Title: CLASSICAL AND POST-QUANTUM CRYPTOGRAPHY ON MODERN ARM-BASED PROCESSORS.
35 views
12 downloads
Name(s): Anastasova, Mila , author
Azarderakhsh, Reza, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2024
Date Issued: 2024
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 167 p.
Language(s): English
Abstract/Description: Cryptographic algorithms are being developed and incorporated into network security protocols to provide secure communication over vulnerable mediums like the Internet. These protocols utilize secret and public key mechanisms to carry out data integrity, confidentiality, authentication, and non-repudiation. The urge to deploy cryptosystems on low-end devices, based on the constantly growing Internet of Things (IoT) world, requires optimal design and implementation of cryptographic algorithms and protocols to achieve small communicational and computational cost, while preserving the privacy of the transmitted data. Scenarios of low bandwidth, constrained memory, and limited processing power are common when targeting embedded devices; however, security requirements are still present due to the sensitive information that may be communicated. In this thesis, we address the need for optimal cryptographic primitives implementation design in terms of computing capabilities, energy and power consumption, and memory usage to accommodate the deployment of cryptographical systems on resource-constrained devices.
Identifier: FA00014431 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2024.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cryptography
ARM microprocessors
Public key cryptography
Curves, Elliptic
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014431
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU