You are here
CLASSICAL AND POST-QUANTUM CRYPTOGRAPHY ON MODERN ARM-BASED PROCESSORS
- Date Issued:
- 2024
- Abstract/Description:
- Cryptographic algorithms are being developed and incorporated into network security protocols to provide secure communication over vulnerable mediums like the Internet. These protocols utilize secret and public key mechanisms to carry out data integrity, confidentiality, authentication, and non-repudiation. The urge to deploy cryptosystems on low-end devices, based on the constantly growing Internet of Things (IoT) world, requires optimal design and implementation of cryptographic algorithms and protocols to achieve small communicational and computational cost, while preserving the privacy of the transmitted data. Scenarios of low bandwidth, constrained memory, and limited processing power are common when targeting embedded devices; however, security requirements are still present due to the sensitive information that may be communicated. In this thesis, we address the need for optimal cryptographic primitives implementation design in terms of computing capabilities, energy and power consumption, and memory usage to accommodate the deployment of cryptographical systems on resource-constrained devices.
Title: | CLASSICAL AND POST-QUANTUM CRYPTOGRAPHY ON MODERN ARM-BASED PROCESSORS. |
![]() ![]() |
---|---|---|
Name(s): |
Anastasova, Mila , author Azarderakhsh, Reza, Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2024 | |
Date Issued: | 2024 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 167 p. | |
Language(s): | English | |
Abstract/Description: | Cryptographic algorithms are being developed and incorporated into network security protocols to provide secure communication over vulnerable mediums like the Internet. These protocols utilize secret and public key mechanisms to carry out data integrity, confidentiality, authentication, and non-repudiation. The urge to deploy cryptosystems on low-end devices, based on the constantly growing Internet of Things (IoT) world, requires optimal design and implementation of cryptographic algorithms and protocols to achieve small communicational and computational cost, while preserving the privacy of the transmitted data. Scenarios of low bandwidth, constrained memory, and limited processing power are common when targeting embedded devices; however, security requirements are still present due to the sensitive information that may be communicated. In this thesis, we address the need for optimal cryptographic primitives implementation design in terms of computing capabilities, energy and power consumption, and memory usage to accommodate the deployment of cryptographical systems on resource-constrained devices. | |
Identifier: | FA00014431 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2024. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Cryptography ARM microprocessors Public key cryptography Curves, Elliptic |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014431 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU |