You are here
Binary representation of DNA sequences towards developing useful algorithms in bioinformatic data-mining
- Date Issued:
- 2003
- Summary:
- This thesis refers to a research addressing the use of binary representation of the DNA for the purpose of developing useful algorithms for Bioinformatics. Pertinent studies address the use of a binary form of the DNA base chemicals in information-theoretic base so as to identify symmetry between DNA and complementary DNA. This study also refers to "fuzzy" (codon-noncodon) considerations in delinating codon and noncodon regimes in a DNA sequences. The research envisaged further includes a comparative analysis of the test results on the aforesaid efforts using different statistical metrics such as Hamming distance Kullback-Leibler measure etc. the observed details supports the symmetry aspect between DNA and CDNA strands. It also demonstrates capability of identifying non-codon regions in DNA even under diffused (overlapped) fuzzy states.
Title: | Binary representation of DNA sequences towards developing useful algorithms in bioinformatic data-mining. |
102 views
32 downloads |
---|---|---|
Name(s): |
Pandya, Shivani. Florida Atlantic University, Degree grantor Neelakanta, Perambur S., Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2003 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 121 p. | |
Language(s): | English | |
Summary: | This thesis refers to a research addressing the use of binary representation of the DNA for the purpose of developing useful algorithms for Bioinformatics. Pertinent studies address the use of a binary form of the DNA base chemicals in information-theoretic base so as to identify symmetry between DNA and complementary DNA. This study also refers to "fuzzy" (codon-noncodon) considerations in delinating codon and noncodon regimes in a DNA sequences. The research envisaged further includes a comparative analysis of the test results on the aforesaid efforts using different statistical metrics such as Hamming distance Kullback-Leibler measure etc. the observed details supports the symmetry aspect between DNA and CDNA strands. It also demonstrates capability of identifying non-codon regions in DNA even under diffused (overlapped) fuzzy states. | |
Identifier: | 9780496219278 (isbn), 13089 (digitool), FADT13089 (IID), fau:9953 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2003. |
|
Subject(s): |
Bioinformatics Data mining Nucleotide sequence--Databases Computer algorithms |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/13089 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |