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ABSTRACT 

Author: Jeremy Ah-Chong 

Title: Static Error Modeling of Sensors applicable to Ocean Systems 

Institution: Florida Atlantic University 

Thesis Advisor: Dr. P. Edgar An 

Degree: Master of Science 

Year: 2003 

This thesis presents a method for modeling navigation sensors used on ocean systems and 

particularly on Autonomous Underwater Vehicles (AUV). An extended Kalman filter 

.. 
was previously designed for the implementation of the Inertial Navigation System (INS) 

making use of Inertial Measurement Unit (IMU), a magnetic compass, a GPS/DGPS 

system and a Doppler Velocity Log (DVL). Emphasis is put on characterizing the static 

sensor error model. A "best-fit ARMA model" based on the Aikake Information Criterion 

(AIC), Whiteness test and graphical analyses were used for the model identification. 

Model orders and parameters were successfully estimated for compass heading, GPS 

position and IMU static measurements. Static DVL measurements could not be collected 

and require another approach. The variability of the models between different 

measurement data sets suggests online error model estimation. 
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1 INTRODUCTION 

Autonomous Underwater Vehicles (AUVs) are small, unmanned and untethered 

submarines providing a simple, low-cost solution to collect various underwater data [6]. 

These vehicles have been very useful for many undersea applications including scientific, 

commercial and military applications. Specifically, the main interest of AUVs resides in 

mine-countermeasure applications. While current approaches requires the use of humans 

in endangered area for mine detection, classification, identification and marking [24], the 

growing capability of AUVs' navigation positioning accuracy enables the use of 

automated vehicles in place of humans, thereby significantly reducing the risk of life. 

Since the early 90's the Department of Ocean Engineering at Florida Atlantic University 

has been strongly involved in the development of shallow-water AUVs [6] [7] [26] , and 

has been participating in many research programs sponsored by American institutions 

including the Office of Naval Research, the National Science Foundation, the Florida 

Department of Transportation, the Florida Sea Grant Program, NASA, the U.S. Coast 

Guard, and the U.S . NA VSEASYSCOM. 

An Inertial Navigation System (INS) has been designed for the latest generation ofF AU 

AUVs, the Morpheus [6]. It uses several sensors with more or less accurate information 

and a complementary full-state Extended Kalman Filter to estimate the AUV's heading 

and position. To rely on the information given, an extensive data processing is required to 
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reduce the critical source of errors in the navigation estimation. Satisfactory results of the 

order of 1% navigation accuracy have been obtained while using the INS [7] . 

Another powerful and sophisticated post-processed filter has been developed for the 

previous generation of AUVs, the Ocean Explorer (OEX). This system uses an error-state 

Extended Kalman Filter, based on the complementary characteristics of some redundant 

navigation measurements. This filter used in conjunction with the post-processing Rauch­

Tung - Striebel smoother [ 4] has proven to be a very efficient tool to compensate for the 

sensors dropouts and long-term drift errors. This post-processed filer can also be used for 

the Morpheus AUV data measurements. 

1.1 Problem Statement 

Navigation is the act of determining the course or the heading of movement of a vehicle 

at all times. The major problem that arises in underwater navigation is the absence of an 

accurate source of positioning. While air or outdoor land vehicle navigation can rely on 

GPS fixes throughout the entire mission, underwater navigation suffers from the absence 

of this position information. Instead it relies on other dynamics and orientation sensors 

such as Doppler Velocity Log and TCM2 compass to determine the vehicle's position 

underwater. This technique of determining position by computing distance traveled on a 

given course is called dead reckoning. 

An inertial navigation system INS has been designed for the Morpheus [7] and with the 

aid of redundant information capable of removing the major sources of errors in 

positioning, more particularly in the compass heading bias. However, this system using a 
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full-state Kalman Filter has shown some limitations regarding the long-term drifts caused 

by inertial measurement integrated bias. Therefore, a complementary error state Kalman 

Filter was then ideally suited to remove this long-term drift [ 6]. The problem when using 

an error state filter is on how to model the sensor errors accurately. For this, a 151 order 

Gauss-Markov process [ 4], which states that the sensor error outputs are time-correlated 

was previously used. Nevertheless, practical analyses have shown that the sensor errors 

exhibit a more complex model. Modeling the sensor errors is an important step in 

underwater navigation and will be investigated in this thesis. 

1.2 Objectives 

The objective of this thesis is to enhance the navigation accuracy of the Morpheus 

Autonomous Underwater Vehicle. Sensor measurements are usually accompanied with a 

disturbing term, which prevents the exact estimation of the true process. To improve this 

navigation accuracy, a lot of emphasis should then be put on identifying these error 

terms. This sensor error modeling aims to characterize the sensor residual outputs in 

steady-state situation. The analysis results will enable the characterization of the sensor 

errors by an adequate Gauss-Markov process [ 4] [31] . The error model will then be a 

useful tool for the Inertial Navigation System of the AUV using a sensor error-state 

Extended Kalman Filter [6]. 
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1.3 Thesis outline 

The rest ofthis thesis is organized as follows: 

In chapter 2, the navigation system currently in use on the Morpheus AUV will be 

described. Particularly, we will describe the on board sensors and their error 

characteristics. Autocorrelation techniques in data analysis are reviewed [13] [14] 

followed by some known models in system identification [8] [9]. Chapter 3 describes the 

sensor error modeling methodology. Least-square model identification [24] is detailed as 

well as the criteria of fit used for diagnostic checking. In chapter 4, the results of static 

sensor measurement analysis are presented and discussed with the introduced methods. 

Chapter 5 summarizes the main conclusions from the project, and gives recommendations 

for further work on the project. Appendix A tabulates the results of the model estimation 

of the sensor error models so far obtained. 
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2 BACKGROUND 

This chapter describes the navigation sensors currently used on the Morpheus AUV. A 

literature review on the autocorrelation techniques is included [13] [14] as well as the 

signal characteristics and autoregressive and moving average models [9] [10]. Several 

important tools on the autocorrelation functions graphical interpretation are also detailed. 

2.1 MORPHEUS SENSOR SUITE 

Morpheus is a class of autonomous underwater vehicle (AUV) developed by the 

department of Ocean Engineering at Florida Atlantic University. It is composed of 

modular and replaceable payloads depending on the need for specific applications. In 

Figure 2.1, a Morpheus is surfacing for GPS fixes. This AUV will be referenced in this 

thesis as AUV 1. Figure 2.2 shows a Bio Inspired Propulsion System of the Morpheus 

AUV, this AUV will be referenced in this thesis as AUV 2. One of the payloads has been 

equipped with additional fins for control enhancement. 

Figure 2.1: GPS/DGPS equipped Morpheus AUV 1 
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Figure 2.2: Bio Inspired Propulsion System Morpheus AUV 2 

Two types of data are collected using the following sensors: 

o Environmental: oceanographic (Conductivity Temperature and Depth CTD 

sensor), acoustic (sonar), visual (video) 

o Vehicle: attitude (gyroscope), acceleration (accelerometer), heading (compass), 

velocity (Doppler Velocity Log DVL sensor), satellite aided positioning (Global 

Positioning System GPS, Differential Global Positioning System DGPS) and underwater 

acoustic positioning (Ultra Short Baseline USBL and Long Baseline LBL). 

The navigation system of the Morpheus uses four types of instruments to estimate the 

position of the vehicle [6] [7]. They are a magnetometer compass for the heading, a 

GPS/DGPS sensor, a Doppler Velocity Log and an Inertial Measurement Unit IMU. The 

IMU encompasses a set of three accelerometers and a set of three ring-laser gyroscopes. 

2.1.1.1 TCM2 Navigation Compass 

Precision Navigation, Inc manufactures and provides the TCM2 electronic compass 

module. This module outputs the heading, pitch and roll angles and the 3-D magnetic 

field strengths surrounding the vehicle. The instrument uses the attitude information 
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(pitch and roll angles) to transform the magnetic field in the Euler frame (i.e. the 

projection of the body frame onto the horizontal frame) and compute the heading [28]. 

2.1.1.2 Motorola VP Oncore GPS receiver 

The VP Oncore receiver from Motorola [35] collects GPS/DGPS data information and 

processes them to output the absolute position of the AUV. The position accuracy 

depends on the number of satellites transmitting time signals to the receiver. Usually four 

to six orbiting satellites are available. 

The major error sources in GPS measurements can be assigned to: satellite clock errors, 

ephemeris error, receiver errors and atmospheric or ionospheric delay. In addition, the 

accuracy of GPS data were purposely degraded by the U.S. Department of Defense using 

"Selective Availability" to prevent hostile force from taking advantage of this positioning 

means. A Differential GPS positioning can significantly enhance the accuracy of 

positioning by using an extra referenced emitter source in a ground location. 

2.1.1.3 RDI Navigator Doppler Velocity Log 

The Navigator Doppler Velocity Log instrument is provided by RD Instruments . It 

outputs the vehicle velocity in the forward, starboard and downward directions and with 

respect to seabed. The velocity is computed based on the frequency shift between 

outgoing and incoming signals [29]. 

2.1.1.4 IMU X100CX Inertial Measurement Unit 

The IMU XlOOCX from Crossbow encompasses three gyroscopes and three linear 

accelerometers mounted in strap down configuration. The tri-axial accelerometer 

measures the acceleration in three mutually perpendicular directions [30] . It actually 

7 



reads the force applied on a spring mass along the three independent axes on a different 

accelerometer unit. The displacement of the mass will be then read as a force and 

converted in acceleration via gravity unit. Because of the gravitational earth attraction, a 

constant acceleration will always be read on the tri-axial accelerometer. Besides, the 

frequency rate attainable for the IMU of 100 [Hz] enables instant vehicle attitude 

estimation but is usually limited to steady state due to the acceleration sensitivity to 

attitude changes, this shortcoming motives the reason to discard the pool acceleration 

data. The ring-laser block assembly outputs angular rates namely the yaw, roll and pitch 

rates. The quantities, angular rates and acceleration can be integrated with respect to time 

to obtain attitude and velocity then position respectively. 

Table 2.1 presents the characteristics of the navigation sensors used on the Morpheus 

AUV 1 [7]. 

Unit Measurement Accuracy Bias Update Range 

Rate 

± 100 
Crossbow Gyroscope - Gyro drift <2.25[0 1hr112

] 
100Hz [o/s] 

IMU 
Accelerometer ± 0.25 [mg] Ace bias:± 0.5 [mg] ± 2 [g] 

0-
Heading ± 0.2 11T ~so 

359.9° 
TCM2 8-40Hz 

Roll 
± 0.2° - ± 20° 

Pitch 

±0.2% 
DVL Speed (x, y, z) 0.003 m/sec 4Hz -

±0.4% 

Latitude GPS: < 25m 
GPS ~ 0.2 m negligible 1Hz -

Longitude DGPS: 1-5m 

Table 2.1: Sensor error characteristics [7] 
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2.2 AUTOCORRELATION TECHNIQUES 

Autocorrelation functions ACF are valuable tools for evaluating of how a process is 

related to itself from one time step to another. Recent methods have been proposed for 

stationary process analysis [9] [ 1 0] [31] [32] using the complementary characteristics of 

the partial autocorrelation function PACF with the ACF. These two statistical properties 

have shown to be very useful in the development of a process model, its identification 

and in the checking diagnosis (section 3.4) [9] [10] [13]. This chapter will describe these 

two functions and more particularly the derivation of the PACF from the Yule-Walker 

equation [4] [25]. 

2.2.1 Autocorrelation Function 

From the definition given in [ 1 ], an auto-correlation function Rx.x( r) of a quantity x(t) is 

a time average of the product of a quantity at time t with the same quantity at time (t + r) 

over a period T: 

1 T 

Rxx(r) = E[x(k) .x(k + r)]= Limr---+oo - Jx(t)x(t + r)dt 
To 

(2.1) 

Where T is the time lag, and E[.] represents the expected value of the term inside the 

brackets. The autocorrelation function at lag 0 is equivalent to the mean square value 

estimated by: 

(2.2) 
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Noting that jRxx(r)j ~ Rxx(O), it follows that the maxtmum possible values of 

Rxx(r) occur at r = 0 . 

For convenience, we will use the normalized autocorrelation function. 

T 

Jx(t) x(t + r)dt 
r(r) = Rxx(r) = --'--o ___ _ _ 

Rxx(O) T 

Jx 2 (t)dt 

(2 .3) 

0 

The autocorrelation function (ACF) will then vary between -1 and + 1, with values near 

± 1 indicating stronger correlation. For the analysis in this thesis, the time series data are 

subtracted from their mean. The function used is also called auto-covariance. 

2.2.2 Cross-Correlation Coefficient 

Cross-correlation coefficients at each lag k measure the degree of correlation between 

neighboring data observations in a time series. 

Let xN = (xP .. . ,xN) and y N = (yP ... ,yN) be some given time-series data, the correlation 

coefficient function is estimated in discrete time as follows: 

(2.4) 

c xy is the covariance of x andy, defined by the equation: 

C ry = El(x(k)- ,uJ.(y (k)- ,uy )J= E[x(k) .y(k)]- E[x(k)}E[y(k)] 
00 

cry = f fc x -,ux).(y- ,uy).p(x, y )dxdy 
(2 .5) 

-00 

Where (crx, cry) and (Jlx, Jly) represent respectively the standard deviation and mean for the 

time series Xn and Y n· 
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2.2.3 The Yule-Walker Equation 

We can characterize an autoregressive process (section 2.3.3) as a linear combination of 

previous observations plus a Gaussian random noise [ 4] [20]: 

p 

ull = Iak .ull-k + v" 
k= l 

(2.6) 

Where U
11 

is an observation at time step n, V
11 

is the portion of measurement which 

cannot be predicted from previous measurements, and ak the corresponding 

autoregressive parameters of order p. 

We can represent the autoregressive process by a sum ofp linear terms: 

(2.7) 

Evaluating the auto-correlation function for the autoregressive process by multiplying 

(2. 7) with Un-p and then taking the expectation term by term, we obtain: 

Elull-p .u" J = a,.Elull-p .ull_, J+ az .Elull-p .u~~ - z J+ ... 
... + an-I"E[ull-p .u,_p+l ]+a p .£~11- p .u,_p ]+ E[un-p .v, ] (2.8) 

Where the autocorrelation function at lag p is given by: 

(2.9) 

Since Vn is a white noise process, Elu,_P .V
11 
J = 0. Thus we can write: 

R"" (p) = a,.R"" (p -1) + a2 .R1111 (p- 2) + ... + a,_1.R1111 (1) +a P .R"" (0) (2.10) 

Since R"" (p) = R"" (-p), we obtain the following set of equations: 
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Rllll (1) = ai.Ruu (0) + a 2 .Rllll (1) + ... + a,_I.Ruu (p- 2) +a p .RUII (p -1) 

Ruu (2) = ai.Ruu (1) + a 2 .Rllll (0) + .. . +a,_] .Ruu (p- 3) +a p .RIIU (p- 2) 

Ruu (p -1) = a1 .R1111 
(p- 2) + a 2 .R1111 

(p- 3) + ... + a,_1.R1111 (0) +a P .R1111 (1) 

Ruu (p) = a1.R1111 
(p -1) + a 2 .Ruu (p- 2) + ... + a 11 _ 1.Ruu (1) +a P .Ruu (0) 

In vector-matrix notation: 

Ruu (1) Ruu (0) Ruu (1) Ruu (2) Ruu (p-2) Ruu (p -1) 

Ruu (2) Ruu (1) Ruu (0) Ruu (1) Ruu (p- 3) Ruu (p- 2) 

= 
Ruu (p -1) Ruu (p- 2) Ruu (0) Ruu (1) 

Ruu (p) Ruu (p-1) Ruu (1) Ruu (0) 

Normalizing each autocorrelation term by Ruu(O) and defining rp as: 

RIIU (p) 
r =---=--
P RUII (0) 

We obtain the Yule-Walker equation: 

rp-2 rp-1 al 

rp-3 rp-2 a 2 

= 
1 

Or, compactly p P = R P .a P 

With 

PP = [rl r2 rp-1 rP ]T 

a P = [a1 a2 ap-1 apr 

12 

(2.11) 

al 

a 2 
(2.12) 

ap-1 

aP 

(2 .13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 



1 r, r2 rp -2 r p - l 

r, 1 r, r p-3 r p-2 

R = p (2.18) 

rp - 2 1 r, 

r p - l r, 1 

Where p P is the correlation coefficients vector, R P the Toeplitz matrix of correlation 

coefficients r p at lag p and a P the vector of prediction coefficients ap [25]. We thus see 

Equation (2.14) that the Yule-Walker equation represents a linear relationship between 

the autoregressive parameters ap and the correlation vector p P. 

2.2.4 The Partial Autocorrelation function 

The subscript p in Equation (2.14) defining the order of the AR process in the Yule-

Walker equation is replaced by the lag k for which we want to compute the prediction 

coefficient ak of the model. The Yule-Walker equation (2.14) can be solved for the 

coefficient vector ak, which relates the matrix Rk to correlation vector p k. The solution 

coefficients are referred to as partial correlation coefficients. The last row of Equation 

(2.14) shows that the term ak is dependent on the (k-1) previous terms, thus requiring the 

use of a recursive algorithm [13] [25]: 

(2.19) 

Then, for the following, ak will be written as ak,k where the first subscript denotes the total 

number of lags and the second, the order of the coefficient. 

Separating Equation (2.14) into (kith -1) and kith stage yields: 
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rl 1 rl rz r k-z rk - 1 ak ,l 

r2 rl 1 rl rk -3 rk-2 ak ,2 

= (2.20) 

rk -1 rk -2 1 rl ak ,k-1 

rk rk -1 rl 1 ak,k 

And 

[p,_,] ~ [ .\' · p,_, Je··-· J 
rk Pk - 1 1 ak,k 

(2.21) 

Where the symbol star (*) corresponds to the reversed vector. The correlation vector 

a\_1 corresponds to the (k -1) dimensional column vector: 

(2.22) 

[ 

I ] 
a k - 1 

Where ak = 
ak ,k 

(2.23) 

Expanding (2.21), we obtain: 

R I * 
P k-1 = k-1 .a k-1 +ak ,k · Pk - 1 (2.24) 

(2.25) 

Since Rk is a symmetric matrix with equal diagonal elements, Equation (2.14) IS 

equivalent to: 
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rk 1 rl r2 rk - 2 rk - 1 ak 

rk - 1 rl 1 rl rk -3 rk - 2 a k- 1 

= (2.26) 

r 2 r k-2 1 rl a 2 

r l rk - 1 rl 1 al 

Or also 

(2.27) 

ith • • 
And for the (k -1) stage, p k- l = Rk- l . a k- l 

Now solving (2.24) for the (kith_1) stage ofthe correlation vectora'k-l, we have: 

(2.28) 

Therefore a'k-l = ak- l - ak ,k .• a k_1 (2.29) 

Finally, substituting (2.29) into (2.25) the partial correlation coefficient at lag k can be 

written as: 

(2.30) 

Note from [25] that the denominator of Equation (2.30) is equal to the predictor error 

variance and is conveniently used in the recursive algorithm: 

2 1 T 
IJk = - a k- I'Pk - 1 (2.31) 

(2.32) 

The partial autocorrelation coefficient au represents the direct correlation between a 

quantity Un and the same quantity delayed by a lag k. Indeed, Equation 2.19 shows that 

solving for ak.k removes the effect of the shorter lag correlations from the autocorrelation 

function rk. 
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2.3 STOCHASTIC PROCESSES 

Data representing a random physical phenomenon cannot generally be described by a 

mathematical relationship, because each outcome of the phenomenon cannot be predicted 

previously [14]. That outcome represents only one solution of all the possible 

observations. The single time history of one process is called a sample function. Then the 

collection of all sample records constitutes an ensemble called stochastic process. Figure 

2.3 illustrates three time histories of a random process. 

In general, a sample record of any particular function xk(t) is not suitable to represent the 

entire random process to which it belongs. However, it turns out that for the special type 

of random process, statistical information can be derived from analysis of a single sample 

function. A process is said to be ergodic if its properties can be determined by performing 

a time average of a sample record. These quantities of interest are mean value Jlx(t), 

covariance Cxx(t) and correlation function Rxx(T) given by: 

f.l x(t) = E[xk(t)] 

Cxx(t) = E[xk (t)- f.l x (t)) 2 ]=a-; (t) 

Rxx(r) = E[xk (t)- x k (t- r)] 

(2.33) 

Where T is the time lag, xk(t) is the process to be described and Jlx its conditional mean 

and a-; its variance. If these statistical properties yield the same results for different 

values of time, i.e. independent to time translation, the random process is said to be 

weakly stationary. Our sensor error modeling will be based on the study of the static 

sensor measurements, and are assumed weakly stationary over time [14]. In the case of 

16 



non-stationary data, temperature effect is investigated to explain the measurement drift 

over time. 

Random process Time History 

Figure 2.3: Random process 

2.3.1 Signal Characteristics 

A signal is generally distorted by noise before arriving at the receiver (refer to Equation 

2.34). If the statistical properties of the signal and noise are known in advance, it is 

possible to reduce the effect of the disturbance to a minimum. 

A well-known technique for describing the signal in time series analysis was introduced 

by Box-Jenkins [4] [9] [10]. Any measurement process can be decomposed into two 

major components: a signal component f(t) and a zero mean gaussian white noise 

component v(t), i.e. 

y(t) = f(t) + v(t) (2.34) 
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2.3.2 Noise Characteristics 

Any noise can generally be decomposed in two categories, white and colored. 

2.3.2.1 White noise 

White noise is an idealized concept which does, however, serve as a very useful 

approximation to situations in which a disturbing noise is wideband compared with the 

bandwidth of a signal. This noise embodies the following statistical properties [ 14] [20]: 

Rvv(t) = E[v(t).v(t + r)] =a~ .5(t- r) (2.35) 

Where a~ is the variance of the white noise, 5(t- r) is the Kronecker 8 function equal to 

1 if t = r, zero otherwise. The occurrence of white noise does not correlate with any 

measurement at any time step. This implies that measuring a white noise source at one 

time step does not reveal any information about itself at other time step. The white noise 

process is therefore unpredictable [20]. 
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2.3.2.2 Colored noise: 

All types of noise other than white are called colored noise. These processes usually 

encompass a strong time autocorrelation meaning that the colored noise is closely related 

to another at a different time step. 

The quantization noise in digital filters, created from continuous to digital discretization 

via rounding or magnitude truncation errors [14] exhibits a strong correlation with the 

main signals. Therefore, such noise signal is considered as a sum of both correlated and 

uncorrelated noise. The uncorrelated component is by definition unpredictable, an effort 

is focused on characterizing the correlated noise component. We will use a Gauss-

Markov process [ 4] that is capable of characterizing the correlated noise. 

2.3.2.2.1 Quantization noise 

During any data collection, a process signal is converted from its analog form to a binary 

word of finite length. Among the infinite continuous values, only finite levels are 

available for approximation of the measurements. The true value will be offset by this 

round-off error also called quantization error. The standard deviation is given by [14]: 

a x = {1 ~ = 0.289.~ 
~12 

(2.36) 

Where .0-x is the measurement resolution. 

2.3.2.2.2 Gauss-Markov Process 

In our work, the study is based on the data collected from static measurements. The 

records should in theory be a white noise process as described previously. But in practice, 

the high frequency component of this noise is removed by effect of signal quantization 
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[11] . The signal transformation to discrete time then produces a low-frequency random 

process called Gauss-Markov [31] [32]. 

By definition, a continuous process x(t) is a first order Markov process if for every 

integer k such that t1 < t 2 . .. < t k> it is true that [ 4]: 

(2.37) 

Where F[x(tk )] is the probability distribution of the process x(t) at time step tk and is 

defined by: 

x(tk) 

F[x(tk)] = JJ(u).du (2.38) 
-00 

Equation (2.37) indicates that the probability distribution for the process x(tk) is 

dependent only on the value at one point immediately in the past, say x(tk-I). In the 

continuous case, x(tk) can be represented by the first order differential equation: 

x(t) =- jJ, x(t) + w(t) (2.39) 

Where w(t) is white noise and the first order time-constant /]1 is defined as jJ, = _!_. 
T 

The statistics for a 1st order Gauss-Markov process is described using the following 

autocorrelation function described in 2.2.1: 

Rxx( T) = cr 2 • exp(-jJ, .1 T I) + m 2 (2.40) 

Where cr 2 is the variance. The correlation time T can be found arithmetically for each 

process order. The product jJ" .T for any order n should result in the 1/e point of the 

correlation function . Hence, the analysis of the autocorrelation function for sensor error 
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can lead to the computation of the time constant and variance for a stationary process, 

assuming the sensor error is stationary. 

An nth order Markov process is defined by the following characteristic equations: 

d 
11 

x(t) cl d n-l x(t) /31 d l1 ·

2
x(t) /] 2 en-I ( ) jJ" - ( ) ----'-'-- + . + n. + ... + .x t . - w t dt " n dtn-1 n dtn-2 n n n 

. h C P n! Wit =----
n p!(n- p)! 

_ 2 -P-Irl ~ r(n).(2/3nlrlr -k-I 
Rxx(r)- a- .e -~ 

k=o (2n- 2)!k!r(n- k) 

Here, the correlation time is solved arithmetically at each n for Rxx(r) = _!_ [4]. 
e 

2.3.3 Autoregressive model 

(2.41) 

(2.42) 

A time series u(n), u(n-1), ... , u(n-p) represents a realization of an autoregressive (AR) 

process of order p if it satisfies the following difference equation [ 4] [20]: 

u(n)- a 1.u(n -1)- ... - aP.u(n- p) = v(n) (2.43) 

where a1 , a2 , ... ,a P are constants called the AR parameters, and v(n) is a white-noise 

process. The term ak .u(n- k) is an inner product of ak and u(n- k), where k = 1, ... ,p. 

To explain the reason of the term "autoregressive", we rewrite the above equation (2.43) 

in the form: 

u(n) = [a1 .u(n -1) + a 2 .u(n- 2) + ... + aP.u(n- p)] + v(n) (2.44) 
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We notice that u" 1s a finite linear combination of past values of the process, 

u(n - l) , ... ,u(n-p), plus an error term v(n) giving the reason for the term 

"au tore gressi ve". 

Equation (2.43) can also be written as a convolution sum of the input sequence u(n) and 

the sequence ofparameters {a" ... , aP}: 

p 

u" = Iak.u n-k +vn 
k~ l (2.45) 

The autoregressive process from the convolution sum Equation (2.45) is schematized in 

Figure 2.4 in which each of the z- 1 blocs corresponds to one-time delay. The AR process 

U 11 is related top previous values by the sequence of AR parameters. 

AR process 
u(11) 

Figure 2.4: AR process 

2.3.4 Moving Average model 

~ u(n-p) 

·····~ 

White noise 

---~ 1: v(n) 

The second type of noise model is built on parameters called moving-average (MA) 

parameters [ 4] [20]. This model resembles closely the AR model but is very different in 

which the value of the process u(n) is only dependent on the previous white noise values. 

A MA model can be formulated as follows: 
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u(n) = v(n) + b1 v(n -1) + ... + bq v(n- q) (2.46) 

Where b1 , •• • ,bq are constants called the MA parameters, and v(n) is a white-noise process 

of zero-mean and variance a~ . Except forv(n), each term on the right-hand side of 

Equation (2.46) represents an inner product of a white noise at the previous time steps 

with the MA parameters. The order of the MA process is q. 

As for the autoregressive equation (2.45), a moving average can be written as a 

convolution sum of the input sequence u11 and the sequence of parameters {b 1 , ••• , bq}: 

q 

u" =I bk .v n-k 

k=O 

(2.47) 

Where b0 = 1. The MA model bloc scheme is represented in Figure 2.5. Again, the z-1 

bloc corresponds to one-time delay. As stated before, the MA process Un is dependent 

only on q previous values of the white noise Vn. 

White no ise 
v(n) 

Figure 2.5: MA model 

b2 

1----+IE-. 
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2.3.5 Autoregressive-Moving Average model 

A more general model can be written as a combination of both AR and MA processes. 

Given a white noise process v(n), the autoregressive moving average (ARMA) model 

u(n) can be described by the difference equation: 

u( n) - a 1 • u( n - 1) - ... - a P • u( n - p) = v( n) + b1 • v( n - 1) + ... + b" . v( n - q) (2.48) 

Where a1' ... , a P andb1' ... , bq are constants called the ARMA parameters. Except for 

u ( n) and v( n) , all the terms represent scalar versions of time product. The orders of the 

AR and MA process are p and q and the ARMA order is written as (p,q). 

Taking the convolution formulation of (2.45), we can rewrite the ARMA model as: 

p q 

lin= Iai.Un-i + Lbi.Vn-J (2.49) 
j;) j;Q 

with b0 = 1. 

From Eq. (2.49), we notice that the AR and MA model are particular cases of ARMA 

model. From a computational viewpoint, the AR model has an advantage over the MA 

and ARMA models [20]. Specifically, the computation of the AR coefficients involves a 

system of linear equations known as the Yule-Walker equations. On the other hand, the 

computation of the MA coefficients and the computation of the ARMA coefficients are 

more complicated in which they tend to describe a model from an assumed unpredictable 

noise. Wold in [15] has developed a fundamental theorem, which states that the MA 

model part can also be represented by an AR model. This type of ARMA estimation is 

beyond the scope of this thesis but has been developed in [31]. It is for this reason that, in 

practice, the use of AR models is more popular than the MA or ARMA models. 

The ARMA model bloc scheme is represented in Figure 2.6. 
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White noise 
v(n) ______. 

Figure 2.6: ARMA model 

ARMA process 
u(n) 

2.3.6 Autoregressive-Integrated Moving Average model 

In the previous models, an ARMA model was applied to time senes, assuming it is 

stationary over the time interval of interest. In the case of a non-stationary series, an 

autoregressive integrated moving average ARIMA model can be used. This model differs 

from an ARMA model by the number of differentiation applied to the series until the 

stationarity property is achieved. The regular differentiation involves taking a difference 

Zn between two consecutive values of the process un . Hence an ARIMA model of order 

(p,d,q) corresponds to an ARMA model (p,q) differentiated d times. 

(2.50) 
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(2.51) 

The process of differencing the time series is equivalent to removing a first order AR 

parameter from the signal: 

(2.52) 

With a 1 =1. 

2.4 AUTOCORRELATION FUNCTION INTERPRETATION 

This section gives valuable insights into the analysis of the autocorrelation (ACF) and 

partial autocorrelation (P ACF) functions. A graphical interpretation based on the 

knowledge of some ACF and P ACF patterns for the various models described earlier is 

detailed [9] [ 1 OJ [31] [32]. 

2.4.1 Interpretation of the Autocorrelation function 

In time series forecasting, the autocorrelation function is extremely useful in obtaining a 

partial description of a time series. The autocorrelation function or ACF tests whether 

some adjacent observations are auto-correlated. That is, whether there is correlation 

between observations 1 and 2, 2 and 3, 3 and 4, etc. This is known as autocorrelation of 

lag one, since one of the pair of observations lags the other by one period or sample. 

Similarly, it will test at other lags. For instance, the autocorrelation at lag four tests 

whether observations 1 and 5, 2 and 6, etc. are correlated. The ACF can be computed 

over the total number of observations in the analysis. But from previous analysis, 

estimates at longer lags have been shown to be statistically unreliable [ 12]. 

26 



Usually, the effect of autocorrelation at small lags will influence the estimate of 

autocorrelation at longer lags. For an instance, a strong autocorrelation at lag one would 

cause a higher lag observation to correlate directly with the previous or the next lag. This 

results in an apparent correlation between observations following high lag autocorrelation 

coefficient, even though no direct correlation exists. The Partial Autocorrelation Function 

(P ACF) removes the effect of shorter lag autocorrelation from the correlation estimate at 

longer lags as explained in 2.2.4. This estimate however is only valid for a small portion 

of the correlation coefficient values. 

2.4.2 Interpretation of the Partial Autocorrelation function 

The partial autocorrelation function P ACF of a series produce patterns that are exactly 

the reverse of the autocorrelation patterns with respect to AR and MA parameters [8][9]. 

That is, partial autocorrelation patterns for AR models look like autocorrelation patterns 

for MA models, and vice versa. A fundamental property of the P ACF for the 

parameterization of a stationary process is described in the following theorem [13]. 

A process is autoregressive of order p, if and only if its PACF Equation (2.30) satisfies: 

a k = 0 fork> p (2.53) 

For any coefficient k greater than the AR order p (k>p). And for any lag k such that k<p, 

the partial correlation coefficient verifies: 

a k -:t: 0 fork < p (2.54) 

More explicitly, a model with p AR parameters will generate a series whose P ACs have 

spikes at lags 1 through p and zero spike at remaining lags. The PAC pattern therefore is 

extremely useful in identifying the presence and number of AR parameters. On the other 
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hand, a model with q MA parameters will generate a series whose PAC pattern is an 

exponentially decreasing pattern of some type [9] [ 1 OJ. 

Both ACF and P ACF will vary between± 1, the high values indicating strong correlation. 

The 95% confidence limits are provided to show when ACF or P ACF appears to be 

significantly different from zero. In other words, lags having values greater than these 

limits should be considered to have significant correlation. 

2.4.3 Simple ACF and P ACF patterns 

This section illustrates the usage ACF and P ACF patterns for AR and MA models of 

order 1 generated from simulated data. 

The standard deviation of the white noise was set to CY = 1/ 6. The initial values of the 

process were set to 1 and the AR and MA parameters were arbitrarily set to a1 = 0.8 and 

b1 = -0.6. The simulation is performed for a record of 1000 samples. 

From the time series representation Figure 2.7, one cannot make any assumption for the 

model identification. Although a decaying process is obvious for the AR model 

(depending of the AR parameter used) top plot of Figure 2. 7, the other processes are not 

discernable. The use of the ACF and PACF plots Figure 2.8 to 2.11 will help us 

recognize these processes. Table 2.2 lists the patterns known for the respective AR, MA 

and ARMA models. 
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Figure 2. 7: Time series signals 

Model Order ACF PACF 

AR p Exponential decay toward zero Cuts off to zero after lag p 

MA Q Cuts off to zero after lag q Exponential decay toward 

ARMA (P, Q) Tails off toward zero Tails off toward zero 

Table 2.2: Guideline for Box-Jenkins model identification [32] 

Figure 2.8 represents the AR process of order 1. It shows a decaying pattern toward zero 

for the ACF plot, left plot Figure 2.8. The PACF plot, Figure 2.8 shows only one spike at 

lag 1 as stated for the characteristics of an AR model of order 1. The spike amplitude is 

0.8 and verifies the parameter set for a1• 

Figure 2.9 represents the MA process of order 1. It shows inversely to the AR process a 

decaying pattern toward zero for the PACF plot Figure 2.9. The ACF plot on left of 

Figure 2.9 shows a significant spike at lag 1. Here, we cannot deduce the MA parameter 

value from the spike amplitude contrary to the AR process. Other spikes on both ACF 

and PACF plots show periodicities eventually driven by the white noise process. 
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Figure 2.10 represents the combination of an AR and MA process of order (1,1). It shows 

a decaying pattern toward zero for both the ACF and PACF plots, left and right of Figure 

2.10. The statistic properties of the AR and MA shows an increase in the complexity of 

the graphical model identification. Figure 2.11 represents the ACF and PACF plots of the 

generated white noise, left and right of Figure 2.11. The white noise is in theory 

unpredictable from one step to another. Its ACF and PACF plots should then be null for 

any non-zero lags. However, the spikes found on the PACF plot of the MA (Figure 2.9) 

are also observed. Although the noi se was created randomly, it is practically difficult to 

generate a pure white noise. 

AR-1 Signai ACF 

' ' ' ' 
0.9 ---- -· ... ... ; . ...... .. . .. . ... . .... .. -~- . ..... . ... . 

0 ' 
0 ' 

0.8 ···········+··········· ··-·--······f············ 
' ' ' ' 0.7 ........... -~- ........... : ------------~---···· .... . 
' . ' ' . ' 

0.6 · ···· · ···---~---·······-· : ········---·~·- ......... . 
' ' ' ' ' ' 

Ll.. 0.5 ........ ----~--- . .. . .. ... : ............ ; ... . ...... . . 
~ : : : 

0.4 ........... -~- ........ ---~ .... . ....... ; ......... . . . 
' ' ' 
' ' ' 

::: :::::::::::::::::::::::;:: Jt :::: ::: ::t: ::::::::::: 
0.1 ·········---~---······· ··:- .\ ---···· · - ~ ·-·· · ······· 

0 ./. .~ ... \ '>-.. _ _ ...;.........._--{ 

-DJoo:-:------::-50:---~o-----=so--~100 
Time lag )samples) 

AR·1 Signal PACF 
0.8 fi!---.-----r--.----.-----, 

0.7 ·········+····· · ···i···· · · ···-i·-·· · ·· ··-~·- ·· · ·· ·· · 
I I I I 

' ' ' 

0.6 ··········f·········]··········j·········r········ 
0.5 ····-····-~·-··· · ··- ~ ·-········i····· · ···-~ · -···· ·· · 

... 0.4 -------- .. :. ········-~- ......... j .......... ; ...... ... . 
~ : : : : 
D. 0.3 ·······---~---····--;----······!·········-~·-·-·----

' I I I 
I I I I 

0.2 ·······---~ --------- ;---- · -··--:---· ·····-~·-·-·· ··· 
I I I I 

' ' ' ' I I I I 

0.1 ·········+·-······+··-····+········+····· ···· 

-0.1 o._ _ _.20 __ 40......_ __ so,.__ _ _.lll_----,-'1oo 

lags )samples] 

Figure 2.8: AR signal order 1 autocorrelations 
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Figure 2.9: MA signal order 1 autocorrelations 
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Figure 2.10: ARMA order (1,1) autocorrelations 
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Figure 2.11: White noise signal autocorrelations 
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3 SENSOR ERROR MODELING 

A major concern in the navigation system using a Kalman filter is how to model the 

dynamics of the system. And more particularly for the use of an error-state Kalman filter, 

a great emphasis should be put on how to model the sensor errors. Previous studies have 

shown that the navigation sensors currently used on the Morpheus AUV encompass 

intrinsic errors [ 6] [7]. The measurement errors are estimated and modeled in the filter for 

the: DVL, the magnetic compass, gyroscope, accelerometer and GPS/DGPS system. 

A traditional approach was to model the sensor errors by a first order Gauss-Markov 

process (section 2.3.2.2.2). This method relies on the correlation properties of the noise 

and appeared sufficient for the applications of the Kalman filter [6] . However, a thorough 

study of the measurement sensor noise has shown some inadequacies between the 

theoretical first order Gauss-Markov process and the noise correlation properties. The 

problem resides in the exact determination of the Gauss-Markov process order. 

This section will describe the methodology used to identify an ARMA/ ARIMA model. 

The least-square method used to estimate the ARMA parameters is presented as well as 

the criteria used to select the model orders. 

33 



3.1 BOX-JENKINS BUILDING BLOCKS 

For a non-stationary process, an approach to modeling ARIMA processes was proposed 

by the statisticians G. Box and G. Jenkins in 1970 [9] [10] [31]. Box-Jenkins modeling 

involves identifying an appropriate ARIMA process, fitting it to the data, and then using 

the fitted model for forecasting. The original Box-Jenkins modeling procedure involves 

an iterative three-stage process of model identification, parameter estimation and 

diagnostic checking. 

1. Data preparation involves transformations and differencing. 

Transformations of the data in the case of logarithmic or exponential trend can help 

stabilize the variance in a series where the variation changes with the level. The data are 

then differenced until no obvious patterns such as linear trend or periodicity is observed. 

"Differencing" meaning taking the difference between consecutive observations, or 

studying the process derivative. 

2. Model identification in the Box-Jenkins framework. 

Once the time series stationarity has been achieved, it is possible to determine the model 

of the process by visual inspection. The ACF and P ACF provide useful indications for 

the time series and residual analysis as shown in Table 2.2. 

3. Parameter estimation involves finding the values of the model coefficients. 

This provides the best fit to the data. A least-square algorithm [24] can be used for linear 

AR processes. For ARMA/ARIMA models, another method using the output prediction 

error can be applied and will be covered in section 3.4 [33]. 
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4. Diagnostic checking tests the assumptions of the model and verifies the adequacy 

of the model. The model order can be selected with two relevant criteria: the Akaike's 

Information Criterion and the Mehra's whiteness test (cf. section 3.4). The 

autocorrelation and partial autocorrelation functions are also used to assess the residual's 

whiteness. If not the model selection should be redone. 

5. Forecasting once the model is selected, estimated and checked. 

Figure 3.1 summarizes the respective steps of the Box-Jenkins model building blocks. 

Data preparation: 
Time Series-ACF-PACF 

Model Identification 

Parameter Estimation 

Diagnostic Checking: 
Is the model adequate? 

Forecasting 

Figure 3.1: Box-Jenkins building blocks 

3.2 ESTIMATION STAGE 

The method used in this thesis to estimate the ARMA parameters is based on Multistage 

Least Squares also called Extensive Least Square (ELS) and is carried out using the 

ARMAX function of MATLAB System Identification Toolbox. 

It is composed of three steps: 
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1. Estimate the AR model using a Least Squares algorithm solving for the 

AR process from Equation (2.43): 

p 

u" = I a k . u n-k + v" 
k= l (3.1) 

The AR parameter estimates are computed for least-square estimation solution [ 4] 

[15] [20] [33]: 

~ [ T ]-! T ak =X .X X .uk (3 .2) 

Where the hat " 1\ " denotes the estimate. 

2. Calculate the prediction error of the AR model: 

From the estimated AR parameters, the residuals eARn can then be sought for: 

p 

eARn =I ak .un-k 

k=O 

(3.3) 

3. Estimate the ARMA model parameters an and bn with a Recursive Least 

Square algorithm by approximating the prediction errors of the ARMA model 

until the residual is equal the AR residual. 

e ARMAn ~ e ARn (3.4) 

The steps 2 and 3 are iterated at most 20 times until the convergence of the residual is 

reached. 

3.2.1 Least Square Estimation 

The Least Square approach is commonly used for curve-fitting problems [4] [15] [20] 

[33], where a best-fit solution is computed for a chosen model order. This technique does 
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not require any statistical assumption about the source of uncertainty in the problem. It 

estimates a best fit to the observed measurement by minimization of the loss function. 

The ARMA process Equation 2.47 can be formulated as: 

(3.5) 

Where k denotes the discrete time step. vk is an white noise term which accounts for the 

fact that the data never matches the model exactly. p and q are the orders of the ARMA 

processes. 

The problem here is to estimate the parameter vector A from a set of data: 

(3.6) 

Equation (3.5) may be written in a vector form as 

(3.7) 

With r/Jk-1 =[-uk-1, .. . ,-uk_p,vk-l'"""'vk-qf (3.8) 

The vector ¢k_1 represents a sliding window of the signal and noise terms. 

We can compute an estimate of the ARMA parameter vector A based on the data set 

U = {v0 , ... , v N, u 0 , ... , u N} if the N data points are collected. vk is assumed to be white 

noise process. Consequently, if the residual ek = uk - ¢k_1 r .A between the data set U and 

the estimated data from the model A is assumed to be Gaussian and white, the estimate of 

the parameters can then be computed as the least squares solution: 

N 2 

A= arg min A I/uk - ¢{_1.A/ (3 .9) 
k= l 

where " 1\ " denotes the estimate. 
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The solution can be obtained using standard techniques, by writing B as the least squares 

solution of the system of linear equations: 

¢J = .A (3.10) 

Or also U = <D.A (3 .11) 

The solution given by the pseudo-inverse becomes 

(3.12) 

For the estimation of the ARMA parameters, a priori knowledge of the residuals IS 

required. Therefore, a first AR estimation is computed for some AR parameters to 

generate a set of assumed white noise residual ek. 

3.3 SELECTING THE MODEL ORDER 

The procedure of statistical model identification may be defined as finding a model 

which best fits a set of observed data with respect to a chosen criterion. The performance 

of the sensor error model identification depends very much on the choice of the criterion 

of fit. In [20] [21] Akaike developed an Information Criterion (AIC) for time series 

model fitting. This criterion finds an optimal number of ARMA parameters (p,q) which 

minimizes the maximum likelihood estimation loss function. Another criterion based on 

Merha's whiteness test of the estimation residual [16] [17] appears to be a very useful 

tool for the model order selection. Minimal AIC orders and whiteness tests results will be 

used to determine a sufficient order in the sensor error characterization. The two criteria 
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3.3.1 The Akaike information theoretic criterion (AIC) 

Akaike's Information Criterion is an information theoretic approach for selecting the 

estimated best approximating ARMA model [20] . In a general sense, the model for which 

AIC is smallest represents the "best" approximation to the true model. In practice, the 

model satisfying the AIC criterion may or may not be the "true" model since there is no 

way of knowing whether the "true" model is included among those being compared [22]. 

This method contrasts with the typical procedure of testing the correlation significance 

between different models. 

The AIC can be expressed as: 

AIC = N.log(a 2
) + 2K (3.13) 

N 

L (yt data - yt fit ) 
2 

Where a 2 = _:_i=__:_l _____ _ 

N 
(3.14) 

and y t _data is one representation of the N measurements, yt _fit is the best fit of the model 

and K = p + q the sum of the ARMA (p+q) model parameters. The term K is simply the 

number of model parameters and leads to the standard form of the AIC measure used for 

model selection: 

AIC=x 2 +2.K (3.15) 

The function x2 is recognized as the logarithm of the maximum likelihood estimates of 

the model parameters. The term k represents the model complexity penalty. The first term 

decreases rapidly with N where as the other one increase linearly with N. The 

representation of the AIC will show a minimum value at an optimum order called 
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minimum AIC. Then when several models are being fitted by the method of least-square 

estimation, the one with the smallest value of AIC is chosen as best model (21] (22]. 

3.3.2 Mehra Whiteness Test (WT) 

The knowledge of AR or MA autocorrelation patterns [9] (10] can significantly help 

identify a random process. However, the ACF and P ACF plots obtained from real 

measurement data will never precisely match the theoretical ACF and P ACF patterns 

associated with AR and MA models. While comparing the fitted model with the real data, 

we then need to find a means, which tells when an autocorrelation function is close 

enough to zero to be interpreted as zero. Or inversely, we need to know when this value 

can be considered significant. 

For this, a very basic test oftime series is the test ofwhiteness. In the situation of model 

identification, the whiteness of the residual series after fitting a model is required as a 

proof of adequacy of the model. This function determines according to the 

autocorrelation test proposed by Mehra (16] (17], whether a process satisfy the white 

noise properties. 

Considering the normalized autocorrelation function (2.3), the probability for the 

autocorrelation function to be non-zero with a degree of confidence is given by [14] : 

[ 
(x- JLJ ffi) ] 

Prob z1_a 12 < crx <z1_a 12 =1-a (3.16) 

Therefore from the statement that a process is white with 95% degree of confidence, the 

fid 10 0 f 0 1 0 fu 0 1.96 con 1 ence 1m1ts o 1ts autocorre atwn nctwn are ± JN . 
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For a time series, the whiteness test counts the number of times where the autocorrelation 

function lies outside the confidence intervals and divide this value by the total number of 

samples. This ratio is then compared to the 5% value Equation (3 .17). If the number 

greater than 1, the sequence is said to be white. The test is based on the assumption of 

large number of samples N, [ 16]. 

WT=_!!_ 
n / N 

(3.17) 

Where a= 0.05, n the number of samples lying out ofthe confidence intervals and N the 

total number of samples. 

The two criteria, minimum AIC and Mehra's maximum whiteness test were used for 

diagnosis checking at the end of the estimation stage. Each ARMA model order is 

estimated with its residuals checked and analyzed with the criteria and the ACF, PACF 

functions. 
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4 RESULTS AND ANALYIS 

This section presents the data collection procedure and static measurement analysis 

performed using the two different Morpheus AUV s described in section 2.1. Specifically, 

the static measurement obtained from the TCM2 compass, GPS, DVL and IMU were 

analyzed. A model order for each of the quantities recorded is selected. The results 

obtained from the ARMA process parameter estimation are summarized in Appendix A. 

4.1 DATA COLLECTION 

This section describes results and analysis of static data collected from the Morpheus 

AUVs presented in Section 2.1. 

Using AUV 1 (refer to section 2.1 for notation), a set of data was extracted on an outdoor 

field of Seatech, Dania Beach for analysis of the TCM2 and GPS static outputs on 

November 22nd (see Table 4.1). Although the TCM2 compass is supposed to exhibit 

steady state measurement, a significant compass heading drift was observed over the 

record interval (see Figure 4.1 ). The need to check the redundancy of this phenomenon 

had to be further investigated. Hence, several other sets of compass measurements were 

collected from AUV 1 and 2. Other sensor static measurements that were collected on 

December 181
h in the pool of the F AU Ocean Engineering department in Boca Raton 

came from the Crosbow IMU and the RDI DVL ground and water velocity sensor. AUV 

2 was hung by a rope at the water surface to stay stationary. Despite the rope, the pool 
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data have shown some periodic oscillation, which was assumed due to the wind..,induced 

waves in the pool. Two additional sets of data were recorded indoor on January 24th and 

February 3rd in the Seatech laboratories in order to obtain better steady state 

measurements from the IMU and verify the compass heading drift. Table 4.2 lists the 

data collected from the two Morpheus AUV s. 

Date GPS equipped Morpheus (1) Bio Morpheus (2) 

November 22na Outdoor environment -

December 181n - Pool 

January 24tn Laboratory ( 1) -

February 3 ra - Laboratory (2) 

Table 4.1: Data collection dates 

GPS equipped~orpheus (1) ,~"?& "'' Bio Nforph&l!'(2) *'W "!fii'f& 

OUTDOOR LAB POOL LAB 
Case 1 Case2 Case 3 Case4 
llt = 0.134 [sec] ~t = 0.1551 [sec] llt = 0.11 [sec] !lt = 0.11 [sec] 
TimeStamp TimeStamp TimeStamp TimeStamp 
auvHeading auvHeading auvHeading AuvHeading 
auvRoll auvRoll auvRoll AuvRoll 
AuvPitch AuvPitch AuvPitch AuvPitch 
Gps status Acceleration x Acceleration x 
Gps hdop Acceleration y Acceleration y 
Gps latd Acceleration z Acceleration z 
Gps latm Yaw rate Yaw rate 
Gps longd Roll rate Roll rate 
Gps longm Pitch rate Pitch rate 

DVL Velocity x 
DVL Velocity y 
DVL Velocity z 
DVL Altitude 

Table 4.2: Steady State Data collected 

Figure 4.1 and 4.2 show the data collected from case 1. Figure 4.3 shows the compass 

measurements from case 2. Figure 4.4 and 4.5 show the data collected from the pool case 
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3. The DVL ground velocities were collected only for this set. Figure 4.6 and 4.7 show 

the data collected from laboratory from case 4. 

From figure 4.4, we notice periodic oscillations for the case 3 heading and roll 

measurements. The DVL x and y-axis ground velocities exhibit the same behavior at the 

same time instant. The pitch angle and z-axis velocity measurements were on the other 

hand stationary. We therefore assume that a horizontal wave motion was imposed to the 

vehicle platform during the data collection. The pool measurements encompass a 

waveform signal and cannot be treated to model the DVL error. Another approach should 

be considered to overcome these difficulties. For instance, we can tether the AUV to the 

4 comers of an indoor pool. There, the water surface will be steady and the signal 

characteristics should be essentially white noise driven. 

Compass measurements case 1 (deg) 
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Figure 4.1: Compass measurements case 1 
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Figure 4.2: GPS measurements case 1 
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Figure 4.3: Compass measurements case 2 
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Figure 4.4: Compass and DVL measurements case 3 
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Figure 4.5: IMU measurements case 3 
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Figure 4.6: Compass measurements case 4 
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Figure 4.7: IMU measurements case 4 
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4.2 TCM2 MAGNETOMETER COMPASS HEADING 

Observing the compass heading static measurements, we can develop a noise model. The 

study is based on a graphical analysis of time series plot, autocorrelation functions and 

the AIC and whiteness test results. 

4.2.1 Steady state measurement: 

Compass Outdoor Headong RoU Potch JdsgJ Cornpou Lab Heading Ron Pitch JdogJ 
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Figure 4.8: TCM2 case 2 (a) and case 1 (b) compass heading 
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Figure 4.9: TCM2 case 2 (a) and case 1 (b) heading ACF 

The two sets of data respectively with case 1 and 2 (see Figure 4.8) exhibit a linear drift 

with time. The lab heading drifts over a period of 1.53 [hr] with a rate of 1.15 [0 /hr] 
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where as the outdoor heading drifts with a rate of -0.45 [0 /hr] over 2.8 [hr], respectively 

Figure 4.8 (b) and (a). In general, the statistics property of any random process can easily 

be described by a probability density and autocorrelation function. Here, an 

autoregressive pattern for AUV 1 compass heading is deduced from the decaying shape 

of the two ACF plots in Figure 4.9. 

On both plots, the ACF becomes negative at higher lags. From the definition of the 

autocorrelation function (Equation 2.1 ), the negative values are expected when most of 

the integrated product terms have an opposite sign (with respect to their mean for 

rescaled values). So when subtracting the mean from the data, this generally occurs when 

the signal is not stationary but drifting over the time interval as seen in Figure 4.8. 

By observation of the two plots Figure 4.8 (a) and (b), we may assume that the heading 

was recorded during a transient state of heating of the AUV electronic devices. Indeed, 

during these 2 data collections, the rising heat inside the AUV could be a source of drift, 

as the AUV was not submersed in a sufficiently cooling liquid. By looking at the 

temperature in Figure 4.10 from DVL and CTD sensors, we can verify the transient state 

behavior of the process. The DVL temperature was recorded from the DVL sensor 

mounted in the same payload as the TCM2 Compass. The CTD on the other hand records 

the ambient temperature outside of the AUV payload. 
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Figure 4.10: Case 1 (a) and Case 2 (b) DVL-CTD Temperature 

The observation of both cross-correlations in Figure 4.10 between the compass heading 

and the temperature is a good indicator on how to model the heading measurement. 

Temperature Vs alNHtading Outdoor fdegfdeg CJ 
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Figure 4.11: Case 1 (a) and Case 2 (b) Temperature Vs Heading 

The correlation coefficient is computed with MATLAB using the function "corrcoef': 

Pxy = 0.6294 For the outdoor heading and temperature. 

Pxy = -0.5019 For the lab heading and temperature. 

Figure 4.11 (a) shows a moderate linear correlation between the compass heading and the 

temperature. This is verified by a pretty high correlation coefficient of 0.6294. On the 

other hand, the cross correlation in Figure 4.10 (b) is close to a scatter pattern than a 
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linear correlation. This can be explained by the discontinuity observed both m the 

temperature and the heading measurements. 

In addition, the two cross-correlation coefficients obtained have an opposite sign even 

though the temperature was increasing in both cases. We assume that other external 

parameters may also be considered to characterize the heading drift. 

For the following, we assume that the compass heading is characterized by the sum of an 

ARMA model and a linear temperature term. 

p q 

L ak .lf/(n- k) + K T .T = L bk .v(n- k) +v(n) (4.1) 
k=O k=O 

Where Kr is to be computed experimentally, T represents the temperature, p and q are the 

parameter order of the ARMA process If/ is compass heading and v(n) is white noise. 
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4.2.2 Order and parameter estimation: 

The ARMA parameters (p,q) were computed using the ARMAX Matlab function. The 

Akaike AIC criterion (top of Figure 4.12) was computed from the residual of the 

estimation for each combination of p and q orders. The whiteness test described by 

Merha [ 16] is represented on the lower side of Figure 4.12. 

4.2.2.1 Case 2 data set 

The data set collected from the AUV 1 case 2 was studied for the original and differenced 

cases (ARMA and ARIMA models). The estimation performances are compared 

regarding the stationarity of the signal. 

4.2.2.1.1 Original Signal Parameter Estimation: 

On top of figure 4.12, the AIC criterion and Whiteness test are found to be respectively 

the minimum and maximum for the parameter orders (see Appendix A for the parameter 

estimation results): 

r
p -61 q = 10 => AIC : -1.91168 

d=O r
p = 101 
q = 8 => WT: 3.5970 

d=O 

With p being the AR order, q the MA order, and d the number of signal differentiations. 

Although the heading measurement seemed to be temperature dependent in Figure 4.11 

(b), an ARMA model can be used to remove the linear trend created by the increasing 

heat. As we can see on the top right hand side of Figure 4.12, the AIC criterion is higher 

along the q-axis. This indicates that the model is "best-fitted" with an AR process model 

of order 1 at minimum. The whiteness test on lower part of Figure 4.12 confirms this 
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assumption. Indeed, on these plots the 95% degree of confidence for which the 

innovation residual is white is reached for an AR order p ~ 1. 

AIC Criterion with ARMA ordol'i (p ,q) 

0 0 

Whitness test with ARMA ord8fs (p ,q) 

0 0 

10 

10 

6 

5 

2 

Whilness test with AAMA. orders (p,q) 

Figure 4.12: Lab case 2 heading residual AIC (above) and WT (below) 

Figure 4.13 shows the time series, autocorrelation function ACF and the partial 

autocorrelation function PACF based on the data from case 2. The plots on the left-hand 

side were computed for the best AIC criterion and for the best whiteness test result on the 

right hand side. 

53 



1 2 
IIIOCGnlllion of rtei.,llll, I'F, 5:2319 .. ha >< Q.Ql866.( ,,. 

0.02 . -.... ~- .. --.- -:-.-- .. --~ ....... ; ..... ... ~ ... -... ; .. --.--- ; --- -.-- - ~ . ------ ' --. -· .. 

~ . ~:[p-I;~:£ ~~1;;JiCtt7F ~Mp~~v 
""' ~::-r ¥ t:-::±::- :r''t: -::-::-::-::f~~t~~ r-:: 

~:~ 
o 10 ~ ~ ~ m m ro oo oo 1m 

la~[MIJIP"J 

1Wico.ll11on d ... ~, ""' 62319 .,., • 0 IJII:ili.4 , .. 

, :~~ 
~a 10 ~ ~ ~ ~ m ro ~ oo ~ .... , ...... , 

"------------- (a) _ ___________ (b) 

Figure 4.13: Residual characteristics for best AIC (6,0,10) (a) and WT (10,0,8) (b) 

The ACF drops at the first lag and stays bounded within the limit interval. We can 

consider that the correlation coefficients are non significant. The innovation process 

residual is white with 95% degree of confidence. The PACF plots in Figure 4.13 (a) and 

(b) show that neither autoregressive (spike) nor moving average term (exponential decay) 

for small orders have been omitted. However, between lags 23 to 50 (Figure 4.13), 

several terms are not characterized. They can be considered with a higher order 

differentiation, but in our case, they are relatively insignificant. In both cases (a) and (b), 

the variance of the signal has been halved (from 0.3263 to 0.1473). 

From figure 4.5, we have seen that a white noise residual was obtained with 98% 

confidence interval for (p,d,q) = (4,0,4) (whiteness test> 3, in our case WT = 3.3231) 

and may be a sufficient order for estimation. 

The results from the AIC and whiteness test criteria yield an ARMA process order of 10. 

A comparison is made with lower order terms to check whether the model was over 

fitted. The significance of the residual spikes from the ACF and PACF plots will be the 

reference for this analysis. 
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Figure 4.14 represents the residuals statistics of this estimation. The ACF shows some 

spikes at lags 6, 9 and what seems to be a decaying term starting at lags 29 and a spike at 

Jag 90. These coefficients are retrieved on the PACF where lags 6 and 9 also exhibit 

spikes without any decaying shape. Since then, the graphical analysis is more 

complicated and we'll assume these values can be neglected. 

~ :~u ~ 
0 0 .5 1 1.5 2 2 .5 3 

autocorrelation of residuals, n=, 26189 alpha = 0 .012111 "' 

. . . . . . . 

~:~~~~ 
-a.o2 o 10 20 ::o 40 60 so 70 eo 90 100 

laga (samples) 

Figure 4.14: Residual characteristics for order (4,0,4) 

55 



4.2.2.1.2 Regular Differenced Signal Parameter Estimation: 

Another method proposed by Jenkins [9] [ 10], is to use a regular or seasonal 

differentiation for non-stationary processes. This consists of taking the difference 

between consecutive values (for regular differencing) or between assumed periodical 

values (seasonal differencing). The reason differencing can be used to convert non-

stationary series into a stationary one is that it removes the short and long-term trends in a 

series. The method is called ARIMA parameterization for the values are estimated and 

then "integrated" from the differenced signal. We should note that the seasonal 

differentiation could be performed for the periodicities observed on the PACF of figure 

4.13. 

AIC Criterion with AAMA orders (p,q) 

-1 .6 
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10 

10 

AIC Criterion Wl1h AAMA orders (p,q) 
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0 

Figure 4.15: Differentiated heading residual case 2 AIC (above) and WT (below) 
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Figure 4.15 displays the AIC criterion and whiteness test results of a regular 

differentiation of order 1 for the heading case 2. The AIC criterion and Whiteness test 

were found to be respectively minimum and maximum for the same parameter orders: 

r
p = 

61 AIC: -1.9077 
q =10 ~ 

WT: 3.5384 
d = 1 

Same parameter orders were obtained as for the AIC non-differenced signal results. 

However, while looking at the plots of whiteness test Figure 4.15, we observe that the 

residual becomes non-white since an estimation order of (2,1,2) where as in the non 

differenced signal in Figure 4.12, the whiteness is obtained (WT>l) for higher orders i.e. 

(3,0,3). The regular differentiation of order 1 indeed mainly simplifies the parameter 

estimation by one order. 

! 1 

: 0 

L 

ReskRI~s from AAIMA(6.1 .10) for data: lab. ai.M-tu ding 

.o.02ot.=:=i,o==='20=:oiJO=::r:,o= 50::i::==so=s====:rooi==lll:IO===:ooi:===!,oo 
lags (samples I 

Figure 4.16: Residual of differentiated heading case 2 AIC-WT (6,1,10) 

Figure 4.16 shows the residual characteristics of a (6,1,10) ARIMA estimation. We notice 

the same spike on the PACF plot at lag 23. This means that an AR or MA term was 

omitted at lag 23 and would require a model of order 23. Noting from section 2.4.2 that a 
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pure white noise cannot practically be obtained, we consider the (6,1,10) ARMA orders 

as sufficient. However, the residual of the ACF plot remain within the confidence limit of 

95%. Between Figure 4.13 and 4.16, the regular differentiation of order 1 improved the 

residual whiteness. The ARIMA estimation then verifies the order found for the original 

signal. The sensor error model for the heading case 2 is assumed to be an ARMA model 

of order (p,q) = (6,10). 

4.2.2.2 Case 4 data set 
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Figure 4.17: Signal Case 4 heading (a) and ACF (b) 

In Figure 4.17 (a), the compass time series data case shows stationary characteristics. 

However the heading data has been filtered to remove the impulsive noise response of the 

signal. The temperature was not recorded during this experiment and so the heading 

dependency could not be assessed. We cannot draw any conclusion regarding the trend of 

the compass heading, as the data seems to oscillate around 1f1 = 84.3 [deg] with a 

variance al!l =0.0257 [deg 2
] . 

The autocorrelation function of the signal in Figure 4.17 (b) highlights the presence of an 

autoregressive process. This pattern is recognized as a band-pass white noise process in 
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[14] resulting in a sine cardinal autocorrelation function. Modeling with a 1st order Gauss 

Markov process appears to be insufficient for this signal, as it doesn't exhibit an 

exponentially decaying autocorrelation function. We will investigate the model order 

selection in the following. 

4.2.2.2.1 Original Signal Parameter Estimation 
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Figure 4.18: Lab case 4 residual AIC (above) and WT (below) 

.2 

.3 

.4 

The AIC criterion appears to be minimum for the parameter orders (p,d,q) = (10,0,9) in 

Figure 4.18. Like in Figure 4.5, the AIC criterion is higher along the q-axis and highlights 

the need to fit the data with an AR process. But in this case, for model estimations of 

p values ranging between 2 and 5, the AIC criterion is maximal. The whiteness test 

shows that the prediction error is not white with 95% of confidence (WT < 1) for an AR 

model less than 2. The best AIC criterion was found for the parameters (p,d,q)=(l0,0,9) 
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and (p,d,q)=(l0,0,10) for the whiteness test. For these parameters, the residuals 

characteristics were assumed to be white with 97% confidence interval (WT-1.7). 
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Figure 4.19: Case 4 heading residual statistics and fitting model ACF (10,0,9) 

Figure 4.19 (a) shows the result of an ARMA model parameterization of order (10,0,9). 

The residual variance obtained was reduced to a mid = 0.0049 [deg 2
] . The residual ACF 

and PACF function in Figure 4.19 (a) show that the signal residual is almost white. 

However, in the two 1st lags and between lags 10 to 18, several spikes occur on the PACF 

plot. This indicates that a higher order model should be used for a parameterization 

enhancement. Figure 4.19 (b) shows the ACF plot of the model used to fit the heading 

signal. We notice that thi s function is almost identical to the band-pass white noise 

pattern of Figure 4.17 (b). 
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4.2.2.2.2 Regular Differenced Signal Parameter Estimation 
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Figure 4.20: Differenced case 4 residual AIC (above) and WT (below) 

The AIC and whiteness test study of the heading case 4 differenced signal in Figure 4.20 

shows similar results (10,1,9) as for the non-differenced signal (10,0,9). As previously, 

the signal differentiation hasn't shown much improvement in the signal order estimation. 

We can therefore assume that we can represent the sensor error model of the compass 

heading measurement from the AUV 2 by an ARMA model of order (p,q) = (10,9). 

61 



. ~ . . . . . A . 

a: ~-~ -- ~ ----J; ·~~~v - j1 - \ .. J- .~ . ..\;-~ - ~.;)\!i(~,~ - ~~~~ 
, vv~i\1 , 11 y ,v , , 1 , ~ , 

.005 ·······:· ···· · -~ - - ~ - --:-·-·····• ····· · ~ ·· · ····i·······~···· · ·· ~ · ·····-~· -····· 

70 8l 90 100 

:....__ __________ (a) ___________ _ (b) 

Figure 4.21: Case 4 differenced heading residual statistics AIC (a) and (1,1,1) (b) 

The residuals of the parameter estimation are shown Figure 4.21 (a) for the ARIMA 

orders (10,1,9). The estimation performance is compared to a lower model (1,1 ,1) to 

verify the need to use at least 10 parameters to model the heading noise. The (1 ,1,1) 

residuals show that an autoregressive parameter of order 10 has been omitted on the ACF 

plot indicating the need to parameterize the model until order 10. 
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4.2.2.3 Case 1 data set 

Like the previous cases, the data set collected from the AUV 1 in an outdoor field was 

studied for the original and differenced cases (ARMA and ARIMA models). 

Performances between the original and differenced signal were compared. 

4.2.2.3.1 Original Signal Parameter Estimation: 
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Figure 4.22: Case 1 Heading residual AIC (above) and WT (below) 

The AIC criterion is minimum for the parameter orders (p,d,q) = (10,0,5) m Figure 

4.22. Like that in Figure 4.12, the AIC criterion has several peaks along the q-axis. This 

is confirmed on the below plots of figure 4.22 where the whiteness test increases with the 

AR orders p. For this signal, the best model is obtained from the WT criterion for the 

orders (p,d,q) = (8,0,7). It also seems necessary to estimate the sensor error with a 
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mjnimum order (4,0,2). There, the residual whiteness is guaranteed with 95% confidence 

interval (WT>1). 

Figure 4.23 shows the residuals characteristics of estimation with the best AIC criterion 

and whiteness test results. These residuals are compared to the lower order parameter 

estimation (p ,d,q) = (4,0,2) chosen graphically from Figure 4.24. 
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Figure 4.23: Case 1 Heading residual (10,0,5) and (8,0,7) 
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Figure 4.24: Case 1 Heading residual (4,0,2) 

The vanance of the heading signal has been reduced from a signat = 0.4017 to 

a resid = 0.3417 for the white noise. Despite the assumption that the drift is temperature 
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dependent the major part of the heading fluctuation is due to white noise. Figure 4.24 

shows a residual with a spike at Jag 7 on the PACF plot. Even if the whiteness is attained 

for the parameters (4,0,2), a moving average of order 7 has been omitted and should be 

considered as shown in Figure 4.23 (b). 

4.2.2.3.2 Regular Differenced Signal Parameter Estimation 

The residual of the parameter estimation are shown in Figure 4.25. We obtain the same 

pattern as in Figure 4.15 and 4.20 for the differenced signals. The whiteness of the 

residuals (WT>1) is obtained with the minimum orders (2,1,2). The plots on top of Figure 

4.25 show that the AIC criterion doesn ' t drastically improve beyond order (2,1,2) like for 

the whiteness criterion. 
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Figure 4.25: Differenced Case 1 heading residual AIC (above) and WT (below) 
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The best AIC criterion and whiteness test are respectively obtained for the orders: 

r
p -4l q = 6 ~ AIC: -1.509 

d =1 r
p -8l q = 8 ~ WT: 3.9758 

d =1 

~
: . . : : 

O.tu . ..; ...... ; ........ , ... .. ... , .. ..... . ; ........ ; ..... . .. . ; .... . ... ; ....... +······ 

~ ': · ~&~i~nlfrt;ili~~~Jm;tL · 

O.tu ,----,---,---,----,-.,..-_ ---,-.,.-. ---,-,.--. --. 

~ 0

: =:•~~itJtlt~~Jr+ o·· 

.o 02o 10 20 ~ ., so so 10 ao 90 1cn 
l•ll•l•.npln) lag•l• ... l 

_ ___________ (a) ____________ (b) 

Figure 4.26: Case 1 Heading residual (a) (4,1,6) and (b) (8,1,8) 

The residuals in Figure 4.26 (a) from the AIC best orders do not agree with the results 

obtained for the non-differentiated signal where an order (p,d,q) = (10,0,5) was 

obtained. The whiteness test shows more coherent order results between the original and 

differentiated signal in Figure 4.23 (b) and 4.26 (b). The several spikes between lags 4 to 

8 from Figure 4.19 (a) are there removed. However, these spikes are not very significant 

in this case. And the AIC criterion confirms the previous graphical assumption that an 

ARMA process of order (4,0,2) can model the outdoor heading steady state signal. 
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4.2.3 Conclusion 

Heading Order 

AIC criterion Whiteness test 

p D Q p D Q 

Case 2 Original 6 0 10 10 0 8 

Differenced 6 1 10 6 1 10 

Case4 Original 10 0 9 10 0 10 

Differenced 10 1 9 10 0 9 

Case 1 Original 10 0 5 8 0 7 

Differenced 4 1 6 8 1 8 

Table 4.3: Results of heading model error order selection 

Table 4.3 lists the results obtained with the heading model criteria. The study of the 

heading error model has shown various results depending on the experiments. A fixed 

number of models have not been set to be optimum. The order parameterization has been 

evaluated until order 10 as it was found that the correlation was more significant for the 

shorter lags . It also removes most of the periodic terms of the signal. As a result, an 

order estimate encompassing 10 AR and/or MA components was able to guarantee 

whiteness of the residual. It has been shown from graphical analysis of the whiteness test 

that acceptable error modeling was performed with an ARMA process of minimal order 

4. The parameters results obtained are given in Appendix A. 

The variability of the parameters values with the experiments suggests that online 

parameter estimation with the vehicle steady state is preferable using a maximum of 

order 10. 
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Heading Case 2 Case4 Case 3 

Signal std [0
]: 0.5712 0.1604 0.6338 

Residual std [0
]: 0.4358 0.0588 0.5846 

Table 4.4: Standard deviation of the heading signal 

We remark from table 4.4 that the white noise fluctuations still represent a large amount 

of the heading noise error on the Morpheus AUV 1. On the Morpheus AUV 2, the 

fluctuation magnitudes are much smaller and enable the characterization of 2/3 of the 

variations. 
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4.3 GPS SENSOR NOISE CHARACTERISTICS 

As we have seen in section 2. 1.1.2, the major part of error in GPS measurements can be 

assigned to: satellite clock errors, ephemeris error, receiver errors and atmospheric or 

ionospheric delay. However, in spite of these noise characteristics that can be partially 

corrected with the HDOP and consequently the number of satellites, the position data are 

still accompanied with a low-frequency noise that is investigated in this section. 

4.3.1 Steady state measurement 

A set of GPS measurements were collected on the AUV 1 in an outdoor field, see Table 

4.1. In this field, the AUV was partially surrounded by the buildings of Seatech 

University. Despite that the GPS signals emitted by the satellites can be affected by the 

high buildings, tunnels or bridges, the Horizontal Dilution of Precision, Figure 4.28, 

shows a satisfactory reception. We will describe a noise model of GPS from these static 

data tests and its statistics properties. 

Time Series GPS Latitude [min] 
3.32 r-----r---.--~--,.--.---rr----', 

3.319 

3 .318 

3.317 

'2 
:.§.3.316 

~ 
~ 3.315 

3 .314 

3.313 

3.312 

.r ·r 
r 
v· 
t 

3·311 OL___500_.___1 ...... 000--1500..___2000...___2500_.__3000_.___3500__, 

Time (sec) 

6.805 

6.004 

'2 
:.§.6.802 ., ., 
" -~6.001 

_§ 
6 .8 

6.799 .: .•. 

6.798 -

Time Soria!' GPS Longitude [min] 

6
.7

97 
0 500 1 000 1500 2000 2500 3000 3500 

Time (sec) 

Figure 4.27: GPS latitude (left) and Longitude (right) [min] 
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Figure 4.27 shows the latitude and longitude position recorded on the steady state AUV 

while being stationary in an outdoor field at Seatech campus. The very high resolution of 

the GPS data should enable a precise positioning (10-4 [min] H 3.10-3 [meter] ). However, 

the observed fluctuations and data inaccuracies are caused by ionospheric delay, satellite 

multipath, orbital error and satellite geometry. The Horizontal Dilution Of Precision 

HDOP fluctuations (Figure 4.28) measures how the available satellite geometry 

influences the latitude and longitude data accuracy: 

HDOP=~ (4.2) 

Where a x is the latitude standard deviation, a Y the longitude standard deviation and a 

is the global position standard deviation. For a HDOP greater than 4, the data are usually 

disregarded. A statistical analysis would have been ideal on a set with the same HDOP 

values. But the results on the two large spans for HDOP = 1.8 and 1.3 have not shown 

satisfactory parameter estimation (see Figure 4.28). We then applied the analysis on the 

total time record. 
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Figure 4.28: GPS HDOP 

The ACF plots for latitude and longitude measurements on top of Figure 4.29 ressembles 

an autoregressive model with a pass-band white noise ACF pattern [14], similar to that in 

Figure 4.19 (b). The PACF plots (middle of Figure 4.29) show a spike at lag 1 and 

indicate that a Gauss-Markov process of order 1 may describe the model, which will be 

discussed later. 
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Figure 4.29: GPS Latitude (left) and Longitude (right) statistics 

From the logarithmic PSD plots, below of Figure 4.29, we notice that the signal is carried 

by low-frequency energies and the remaining higher frequencies represent the 

background noise. This pattern usually corresponds to the frequency representation of a 

bias, a constant, or a long-term drift. The model of a wave signal as emitted for a GPS 

sensor error model [23] with a very long period ranging from 1200 to 2400 [seconds] 

appears suitable at first sight. But in our case, although the ACF plots exhibit some 

periodic oscillations, their amplitude tends to decay with the lags. The PACF plots, in 

Figure 4.29, give a more accurate answer regarding the sensor error model. The strong 

spike at lag 1 indicates the presence of an autoregressive term of order 1. Several other 

spikes of minor amplitude are observed at lags 8, 9 and at further lags 63, 71 and 85. 
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4.3.2 Order and Parameter estimation 

In this section, we select the best parameter order to adequately represent the error model 

of the GPS latitude and longitude measurements. 

4.3.2.1 GPS Latitude parameter estimation 
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Figure 4.30: GPS Latitude residual AIC (above) and WT (below) 
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In Figure 4.30, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the following parameter orders (see Appendix A for the 

parameter estimation results) : 

r
p -2l q = 2 ~ AIC: -3.2502 

d=O r
p = lOl 
q=lO ~WT : 4.2639 

d=O 

The whiteness test, below of figure 4.30 show that the 95% whiteness level is reached 

(WT=l) as soon as an AR estimation of order 1 or greater is used. This confirms the 

assumption made in 2.3.2.2.2 that the sensor error model could be modeled by a 151 order 

Gauss-Markov process. Nevertheless, the AIC criterion suggests an ARMA model of 

order (p,d,q) = (2,0,2) where as (p ,d,q) = (10,0,10) is ideal for the whiteness test with 

a 98% confidence interval. The estimation performance results are investigated in Figure 

4.31 and 4.32. 

Rn llll• tom ~IMA(2.0.2) lor il11: G,.c.w lttm 

.o.oso 10 20 3J 4) 50 60 70 8l 00 100 
"P(IM'!Ples j 

---- -------- (a) ____________ (b) 

Figure 4.31: GPS Latitude residual statistics (a) (2,0,2) and (b) (10,0,10) 
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From the middle plots in figure 4.31 , the ACF are shown for parameter order of (2,0,2) 

and (10,0,10). Figure 4.32 shows the residual time series, ACF and PACF plots of 

(p,d, q) = (1,0,1) and (p,d,q) = (2,0,0) signal estimations. A significant peak at lag 1 of 

0.185 is observed on the PACF and ACF plots of Figure 4.32 (a). Contrary to our 

previous assumptions, the sensor error model is not sufficiently described with an order 1 

AR model solely. This implies that the residual is still correlated. 

'-------------- (a) ------------ (b) 

Figure 4.32: GPS Latitude residual statistics (a) (1,0,1) and (b) (2,0,0) 
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4.3.2.2 GPS Longitude parameter estimation 
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Figure 4.33: GPS Longitude residual AIC (above) and WT (below) 

In Figure 4.33, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the following parameter orders (see Appendix A for the 

parameter estimation results): 

r
p -51 q = 5 => AIC: -3.1736 

d=O r
p = 101 
q = 0 => WT : 8.0789 

d=O 

As previously, the whiteness is reached for AR orders ~ 1. The Whiteness test contrary to 

the AIC criterion, suggests the use of AR parameters only for the model estimation . In 

both cases, the whiteness performances are very high . It appears sufficient to use an AR 

model of order 2. In this case, the whiteness confidence is almost 99% (WT -5), see 

Figure 4.35 . 
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Figure 4.34: GPS Longitude residual statistics AIC (5,0,5) (a) & WT (10,0,0) (b) 
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Figure 4.35: GPS Longitude residual statistics (2,0,0) 

4.3.3 Conclusion 

Table 4.5 summarizes the parameter estimation results obtained with the AIC criterion 

and Whiteness test respectively. An autoregressive process of order 2 appears to be an 

adequate model for the GPS position error model. Then the GPS sensor error can be 

modeled in continuous time domain as a 2nd order Gauss Markov process. Deriving 

equation 2.41 for n = 2 , we obtain: 

x(t) = -2.{32 (t).x (t ) + fJ{ (t ).x(t) + w(t) (4.3) 
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The discrete time formulation of the 1st and 2nd process derivative gives: 

x(k) = -1 
.[x(k)- x(k -1)] 

!1t 

x(k) = -1 
.[x(k)- x(k -1)] 

!1t 

x(k) = -
1 

.[-
1 

.[x(k)- x(k -1) ]- -
1 

.[x(k -1)- x(k- 2) ]l 
11t !1t !1t ~ 

x(k) = - 1
-.[x(k)- 2.x(k -1) + (k- 2)] 

M z 

Replacing the terms on both side of Equation (4.3), we have: 

(4.4) 

(4.5) 

-
1
-.[x(k)- 2.x(k -1) + x(k- 2)]= -2. fl z .[x(k)- x(k -1)]+ fJ~ .x(k) + wk (4.6) 

M2 M 

[x(k)- 2 .x(k -1) + (k- 2)] = -2/]2 .M .[x(k)- x(k -1)]+ fJi. .M 2 .x(k) + M 2 
.wk (4.7) 

x(k).l1 + 2./]2 .!1t- (!1t ./]2 )
2 J= x(k -1).[2 + 2!1t.fJ2]- x(k- 2) + M 2 .wk (4.8) 

x(k -1).[2 + 2M./]2 ]- x(k- 2) + M 2 .wk 
x(k) = l 2 (4.9) 

1+2./]2 .M-(!1t./]2 ) j 

From Equation (2.44), a second order AR model can be written as: 

(4.10) 

2.146 
The constant time is computed by T = -- for the order 2 [ 4], !1t is the time step 

/]2 

interval and the AR parameters should verify the following equalities : 

at= 2 
1 + 211t.fJ2 - (!1t .fJ2) 

-1 
( 4.11) 
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GPS Order 
AIC criterion Whiteness test 
p D Q p D Q 

Latitude I Original 2 0 2 10 0 10 
Longitude I Original 5 0 5 10 0 0 

Table 4.5: Results of GPS model error order selection 

Table 4.6 compares the standard deviation between the GPS measurements and the 

residual prediction errors. As we can see, a tenth of the deviation is recognized as white 

noise. This indicates that a major part of the oscillation is efficiently characterized by an 

ARMA process. 

GPS measurements: Latitude Longitude 
Signal std [min]: 2.3720 2.2708 
Residual std [min]: 0.1965 0.2036 

Table 4.6: Standard deviation of the GPS signals 
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4.4 IMU SENSOR NOISE CHARACTERISTICS 

The Crossbow IMU quantities were collected solely on Morpheus AUV 2 as the other 

AUV did not encompass any Inertial Measurement Unit at this time. Two sets of IMU 

data (acceleration and angular rates) were available for analysis. They were collected 

from AUV 2 respectively in the pool and in laboratory. The analysis was performed only 

on the latter set of data as (section 4.4.1 ), the wave oscillation highly corrupts the steady 

state data analysis. 

4.4.1 Accelerometer characteristics 

An acceleration error model will be constructed based on the similar analysis as that from 

the compass data. 

4.4.1.1 Steady state measurement 

Table 4.7 shows the statistics of the residuals of acceleration (mean and variance). The 

high resolution enables the output of a very precise acceleration reading. The acceleration 

readings in X and Y seem to remain stationary on left of Figure 4.36, the Z axis however 

outputting the gravity term tends to drift over the time span. Last rows of Table 4. 7 show 

that the whiteness tests of first differenced signals are assumed white noise. It favors the 

minimum use of a 1-order AR model (see section 2.3.6). 
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Accelerometer X acceleration Y acceleration Z acceleration 
Sampling rate [sec]: 0.11 0.11 0.11 
Resolution [g']: 10-(J 10-(J 10-6 

Mean [g']: 0.007038 0.055706 0.957941 
Variance [g'] L: 0.009236 0.021534 0.014305 
Standard deviation [g']: 0.096092 0.146746 0.119603 
Whiteness Signal 0.0514 0.0508 0.0508 

1st Difference 1.3359 1.5390 1.4788 
Table 4.7: Acceleration whiteness test 

By observing the logarithmic PSD plots of acceleration along the three axes, right in 

Figure 4.36, we assume that the signal high frequency oscillations are due to white noise 

shown by the energy level present along the whole frequency span. The sample ACF 

plots, left in Figure 4.37, show that the noise is close to white but the decaying trends 

observed resembles to the AR model pattern. The z-axis acceleration ACF plot decay is 

more accentuated and becomes negative around the lags 5000 ofthe 14400 total samples. 

The signal autocorrelation was computed for the signal minus its mean (see section 

2.2.1 ). Consequently, for time-drifting data the product of opposite sign values will result 

in a negative autocorrelation function for higher lags. 

The sensor error residuals show few autoregressive terms (spikes) in the PACF plots, 

right of Figure 4.37. 
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Figure 4.36: X, Y, Z Acceleration signals time series (left) and PSD (right) 
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Figure 4.37: X, Y, Z Acceleration signals ACF (left) and PACF (right) 

4.4.1.2 Order and parameter estimation 

In this section, we select the best parameter order to adequately represent the error model 

of the acceleration measurements. 
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4.4.1.2.1 
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Figure 4.38: X-acceleration residual AIC (above) and WT (below) 

On top of figure 4.38, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the parameter orders (see Appendix A for the parameter 

estimation results) : 

[

p- 3] 
q = 5 ~ AIC : -9.7482 

d=O 
[

p -5] 
q = 10 ~ WT :4.2780 

d=O 
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Figure 4.39: X acceleration residual statistics (a) AIC and (b) WT 

Figure 4.39 (a) and (b) show the residual results statistics for order respectively found 

(p,d,q) = (3,0,5) and (p,d,q) = (5,0,10) with the AIC criterion and Whiteness test. 

The ACF plots on the middle row show that most of the residual autocorrelation terms 

stay within the confidence interval. Some few spikes within this region are retrieved on 

the PACF plots last row in Figure 4.39. When using the optimum order from the AIC 

criterion, we have omitted a minor autoregressive term at lag 7 and a 

(p,d,q) = (5,0,10) order estimation obtained with the whiteness test shows a residual 

significantly uncorrelated for the first 24 lags. 

4.4.1.2.2 Y-axis acceleration 

From Figure 4.40, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the parameter orders (see Appendix A for the parameter 

estimation results): 

r
p - 3J 
q = 3 => AIC: -9.3977 

d=O r
p =10J 
q = 4 => WT : 4.3823 

d=O 
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As seen for the x-axis acceleration analysis, the AIC criterion and whiteness test suggest 

the use of an ARMA model to fit the y-axis acceleration process. The whiteness test 

results show that the residual whiteness is obtained as soon as a 4 AR model order is 

used. This is confirmed by the AIC criterion where the best orders are obtained between 

orders 4 and 6. Also, we can notice that the whiteness is not significantly improved 

beyond a (p,d,q)=(2,0,2) parameter estimation. 
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Figure 4.40: Y-acceleration residual AIC (above) and WT (below) 

10 

Left of Figure 4.41 shows the estimation result with (p,d,q)=(3,0,3) ARMA parameters. 

The ACF plot is almost completely contained under the confidence limits apart some 

peaks starting at lag 3, same is observed on the PACF plot below. The parameterization 

until order (p,d,q)=( 10,0,4) seems preferable for an almost perfect modeling. 
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Figure 4.41: Y acceleration signal residual statistics (a) AIC and (b) WT 

4.4.1.2.3 Z-axis acceleration 

AIC Crito rion with ARMA. ordoro (p,q) 
.. ~-. 

Whilness tell wilh ARMA orders (p ,q) 

Figure 4.42: Z-acceleration residual AIC (above) and WT (below) 
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Figure 4.42 shows the AIC criterion and Whiteness test results, like for the x and y-axis 

acceleration data. These indicators are found to be respectively minimum and maximum 

for the parameter orders (see Appendix A for the parameter estimation results) : 

r

p = lOl 
q = 10 ::::} AIC : -9.7425 

d =0 r
p -6l q = 9 ::::} WT: 3.8228 

d=O 
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Figure 4.43: Z-axis acceleration residual statistics (a) AIC & (b) WT 
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Figure 4.44: Z-axis acceleration residual statistics (2,0,1) 

Figure 4.43 show the best results obtained from the two criteria. Figure 4.44 shows the 

results for an ARMA model estimation with orders (p,d,q)=(2,0,1). The results do not 
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show any spike over the confidence level for the smaller lags. A MA order 1 is still 

needed in this case to take in account the drift revealed in Figure 4.36 (left below row). 

4.4.1.3 Conclusion 

Acceleration Order 

AIC criterion Whiteness test 

p D Q p D Q 

X-axis 3 0 5 5 0 10 

Y-axis 3 0 3 10 0 4 

Z-axis 10 0 10 6 0 9 

Table 4.8: Results of acceleration model error order selection 

The accelerometer sensor model analysis has yielded to various results for the x, y and z­

axis acceleration in Table 4.8. Currently, an autoregressive process model has proven to 

characterize the errors correctly. A moving average parameter seems required for the drift 

models and unexpectedly, even for the apparently stationary process. In the last case, the 

white noise fluctuation amplitude may be too large compared to the signals'. Indeed the 

problem here is characterized by the standard deviations listed in table 4.9 showing that 

most of the signal fluctuation is attributed to the white noise. 

Accelerometer X acceleration Y acceleration Z acceleration 

measurements: 

Signal std [g']: 0.007633 0.008712 0.008153 

Residual std [g'] : 0.007640 0.008912 0.007670 

Table 4.9: Standard deviation of the accelerometer signals 
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4.4.2 Gyroscope characteristics 

Table 4.10 shows the statistics of the static residuals of the angular rate measurements 

(mean and variance). Like the accelerometer, the high resolution enables the output of a 

very precise observation reading. The whiteness test in table 4.14 suggests that the yaw 

rate can be modeled with 1-order ARMA parameter (of value around 1) since the 

whiteness is verified for the differenced signal (see section 2.3.6). The roll and pitch rate 

on the other hand have a differenced signal still correlated and suggest p > 1. 

Gyroscope Yaw rate Roll rate Pitch rate 

Measurements: 

Resolution [0 /sec]: 10-6 10-6 10-6 

Mean [0 /sec] : 0.411180 0.0149180 0.001239 

Variance [0 /sec] 1
: 2.188923 3.870713 2.421427 

Standard deviation [0 /sec]: 1.479501 1.967413 1.556094 

Whiteness Signal 0.0537 0.0583 0.0580 

test: 1st Difference 1.6792 0.3912 0.4936 

signal 

Table 4.10: Angular rates characteristics 
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Times series IMU angular rate [degls] 
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Figure 4.45: Gyroscope signals (left) and PSD (right) 

As stated previously, the angular rates recorded from the ring-laser gyroscope exhibit a 

long-term drift, left of Figure 4.45. In the yaw rate signal, this drift is greater than usual 

value expected. The yaw rate drift rescaled on 1 hr is about 2.5 [0 /hr]. For the roll and 

pitch rate, these values are 10 times smaller. Right of Figure 4.45 shows the logarithmic 

PSD functions of yaw pitch and roll over time. The signal and drift are supposedly 

contained in the lower frequency of the spectrum. 

Figure 4.46 shows the ACF plots of the angular rates. The PACF function, right of Figure 

4.46 exhibits some decaying patterns for the 3 angular rates. The yaw rate PACF (top row 

Figure 4.46) displays an auto regression at every lag where as the pitch rate PACF 

(middle row Figure 4.46) displays another one every other lag and for the roll rate (last 

row Figure 4.46), an auto regression for both lags 1 and 2. This implies the use of MA 

process of order 1 to parameterize the yaw rate, and of order 2 for the pitch and roll rate. 
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Figure 4.46: Gyroscope signals ACF (left) and PACF (right) 
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4.4.2.1.1 Yaw angular rate 
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Figure 4.47: Yaw rate residual AIC (above) and WT (below) 

10 

On top of figure 4.47, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the same parameter orders (see Appendix A for the 

parameter estimation results): 

lp = Sl AIC : -6.9313 
q=9 ~ 

WT: 4.4642 
d=O 
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Figure 4.48: Yaw rate residual statistics (a) (5,0,9) and (b) (2,0,2) 

Figure 4.48 (a) shows the residual from a (p,d,q)=(5,0,9) model estimation. None of the 

correlation terms crosses the level interval meaning that the model is best fitted to the 

signal. Figure 4.48 (b) shows the results for a chosen (p,d,q)=(2,0,2) model order 

estimation. Other tests not included here showed that any estimation under this order 

exhibits a significant correlation term at lag 2. It is necessary to model the signal with a 

second order at least in spite of the first analysis highlighting the only need of 1 MA 

parameter. 
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4.4.2.1.2 Roll angular rate 
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Figure 4.49: Roll angular rate AIC and WT 
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On top of figure 4.49, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the parameter orders (see Appendix A for the parameter 

estimation results): 

lp -31 q = 3 ~ AIC : -7.0698 

d=O lp -81 q=10 ~WT:3.9059 

d=O 

We can see that unlike the characteristics for the yaw rate measurements 4.4.2.1.1, the 

roll angular rate needs MA terms added to the AR to model adequately the correlation of 

the noise (WT<l for p, q <1). The ACF plot of the original signal already highlighted the 

2-order minimum MA model. 
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Figure 4.50 (a) and (b) show the residuals obtained from the best AIC criterion and 

whiteness test analysis. The residuals are assumed uncorrelated with 95% confidence 

level from the middle row ACF plots. The PACF plots, in Figure 4.50, show that all the 

first lags AR and MA parameters have been considered, the few spikes at larger lags 

being insignificant. 
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Figure 4.50: Roll rate residual statistics (3,0,3) and (8,0,10) 
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Figure 4.51: Roll rate residual statistics (2,0,2) 
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Figure 4.51 shows the analysis residual obtained with a second order ARMA model as 

presume in Figure 4.46 (b). Here, the whiteness performances, respectively on the ACF 

and PACF plots have shown satisfactory for the first lags until the series of spikes beyond 

lag 80. 

4.4.2.1.3 Pitch angular rate 
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Figure 4.52: Pitch angular rate AIC and WT 
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On top of figure 4.52, the AIC criterion and Whiteness test are found to be respectively 

minimum and maximum for the parameter orders (see Appendix A for the parameter 

estimation results): 

[

p -3J q = 4 ~ AIC : -7.1457 

d=O 
[

p -7 J 
q = 10 ~ WT : 4.4364 

d=O 
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The AIC criterion exhibits peaks along the q-axis for the odd MA parameters. The AR 

terms do not show any improvement when used solely. The combination of the AR and 

MA parameters seems necessary for all the angular rate measurements. 
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Figure 4.53: Pitch rate residual statistics (a) (3,0,4) and (b) (7,0,10) 

Figure 4.53 (a) and (b) shows the results obtained with the best AIC criterion and 

whiteness test. The results does not drastically improve the residual characteristics from 

the (p,d,q)=(2,0,2) model Figure 4.54. 
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Figure 4.54: Pitch rate residual statistics (2,0,2) 
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4.4.2.2 Conclusion 

Angular rates Order 

AIC criterion Whiteness test 

p D Q p D Q 

Yaw rate 5 0 9 5 0 9 

Roll rate 3 0 3 8 0 10 

Pitch rate 3 0 4 7 0 10 

Table 4.11: Results of angular rate model error order selection 

Angular rate Yaw rate Roll rate Pitch rate 

measurements: 

Signal std [0 /sec]: 0.247457 0.046969 0.029928 

Residual std [0 /sec]: 0.031187 0.029114 0.028192 

Table 4.12: Standard deviation of the angular rate signals 

Table 4.11 resumes the best parameters found with AIC criterion and whiteness test 

respectively. The three angular rate errors despite these results, showed acceptable 

whiteness characteristics with a (p,d,q)=(2,0,2). It seems suitable to model the gyroscope 

sensor error by an ARMA model of order 2 with: 

u(n) + a,.u(n -1) + a 2 .u(n- 2) = b,.v(n -1) + b2 .v(n- 2) + v(n) (4.12) 

The standard deviations listed in table 4.12 show that the model accounts for most of the 

residual error for the yaw rate where as for the roll and pitch rate, the residual standard 

deviation still represents a major component of the total signal fluctuation. 

The results of the parameter estimation are given in Appendix A. 
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5 CONCLUSIONS 

The goal of this research was to develop an error model for the navigation sensors used 

on the Morpheus AUV. Following the work done in [6] using an error state Kalman 

Filter; my contribution was focused on modeling the sensor errors. 

The method applied was based on the Box-Jenkins building block processes. The use of 

graphical autocorrelation analysis has been a useful tool for model identification. Two 

criteria were used to select the model order, and were applied to the prediction error 

residual. The consistency of the model was checked with both the ACF and P ACF 

functions. 

The model orders and parameters estimates are included in Appendix A. Model orders 

have shown to be very different from one sensor to another. This confirms the 

assumption that a 1st order Gauss-Markov process is not adequate to characterize most of 

the sensors except for the acceleration quantities. 

The DVL measurements collected in the pool did not enable the sensor error modeling. 

We assumed that a horizontal wave motion was imposed to the vehicle platform during 

the data collection. The pool measurements encompass a waveform signal and cannot be 

treated to model the DVL error. Another approach should be considered to overcome 
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these difficulties. For instance, we can tether the AUV to the 4 comers of an indoor pool. 

There, the water surface will be steady and the signal characteristics should be essentially 

white noise driven. However, if the signal component still remains significant, another 

approach is proposed. The method based on power spectrum subtraction described in [ 17] 

can be applied if the signal still encompasses a periodic wave oscillation. This method 

consists in subtracting from the signal its background noise through the power spectrum 

estimation. Following, an ARMA model can then be estimated. 

The ARMA model estimated from the MATLAB ARMAX function did not characterize 

accurately the measurements from one data set to another. The model parameters 

obtained give the best fit from the Least-Square Estimation but do not guarantee that this 

is the true model. This suggests an online parameter estimation of the sensor errors. A 

model can also be developed to incorporate these error models into the process model 

used for the error-state Kalman Filter [6]. 

For further work on sensor modeling, it is suggested to investigate the sampling rate 

effect over the model orders. A simple case Equation 3.1 showed that the correlation time 

is directly related to the sampling rate l1t . The dependency of the model order and 

therefore the ARMA parameter values with the sampling rate can be the next step of a 

complete sensor error modeling. 
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APPENDIX A 

ARMA Parameter Orders and Estimates: 

1 - Sensor Error Model Orders 

2 - TCM2 Compass Heading parameters 

3- GPS parameters 

4 - Crossbow IMU parameters 
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APPENDIX A- 1 

SENSOR ERROR MODEL ORDERS 

Measurement Set p D Q AIC WT 

Compass Laboratory ( 1) 6 0 10 -1.7317 3.5579 
Heading 10 0 8 -1.9106 3.5970 

Outdoor 10 0 5 -1.0782 3.4539 
8 0 7 -1.0717 3.9773 

Laboratory (2) 10 0 9 -6.0531 1.6486 
10 0 10 -6.4937 1.7970 

Compass Laboratory (1) 6 1 10 -1.9077 3.5384 
Heading 6 1 10 -1.9077 3.5384 
Differentiated Outdoor 4 1 6 -1.0509 3.3641 

8 1 10 -1.0497 3.9758 
Laboratory (2) 10 1 9 -5.3254 2.1012 

10 1 8 -5.3185 2.2317 
GPS Latitude 2 0 2 -3.25018 3.3370 

10 0 10 -3.2413 4.2639 
Longitude 5 0 5 -3.1736 6.3958 

10 0 0 -3 .1708 8.0789 
IMU X acceleration 3 0 5 -9.7482 3.9710 

5 0 10 -9.7385 4.2780 
Y acceleration 3 0 3 -9.3977 3.7432 

10 0 4 -9.3932 4.3823 
Z acceleration 10 0 10 -9.7425 3.6668 

6 0 9 -9.7403 3.8228 
Yaw rate 5 0 9 -6.9313 4.4642 

5 0 9 -6.9313 4.4642 
Roll rate 3 0 3 -7.0698 3.7046 

8 0 10 -7.0673 3.9059 
Pitch rate 3 0 4 -7.1457 3.7432 

7 0 10 -7.1443 4.4364 
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APPENDIX A- 2 

TCM2 Compass Heading parameters 

I Laboratory 1 Heading 

Original signal: 
AIC CRITERION: (6,0,10) 

Order 1 2 3 4 5 6 7 8 9 10 

A -2.203 1.251 0.483 -1.302 1.234 -0.463 

Order 1 2 3 4 5 6 7 8 9 10 

B -2.149 0.846 0.964 -1.034 0.654 -0.428 0.164 0.0620 -0.108 0.028 

WHITENESS TEST: (10,0,8) 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.986 0.580 -0.615 -0.652 0.783 -0.355 0.377 - 0.020 -0.133 

0.0180 
Order 1 2 3 4 5 6 7 8 
B -0.931 0.239 -0.518 -0.515 0.849 -0. 164 0.191 -0.144 

Difference signal: 
AIC CRITERION- WHITENESS TEST: (6,1,10) 

Order 1 2 3 4 5 6 7 8 9 10 
A 0.0427 0.4656 0.2463 -0.446 0.0654 0.190 
Order 1 2 3 4 5 6 7 8 9 10 
B -0.930 0.0639 -0.028 -0.548 0.4477 -0.081 0.113 -0.064 -0.024 0.058 

I OUTDOOR Heading 

Original signal: 
AIC CRITERION: (10,0,5) 

Order 1 2 3 4 5 6 7 8 9 10 
A 0.293 0.2880 -0.457 0.040 -0.911 -0.088 -0.157 0.0662 -0.120 0.0456 
Order 1 2 3 4 5 
B 0.0413 0.134 -0.382 0.056 0.830 
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WHITENESS TEST: (8,0,7) 

Order 1 2 3 4 5 6 7 8 
A -1.092 1.043 -0.164 -0.216 -0.165 0.182 -0.435 -0.153 
Order 1 2 3 4 5 6 7 
B -1 .352 1.257 -0.173 -0.590 0.303 -0.016 0.416 

1st difference: 
AIC CRITERION: (4,1,6) 

Order 1 2 3 4 5 6 7 8 9 10 
A 0.801 1.058 0.924 0.5756 - - - - - -

Order 1 2 3 4 5 6 7 8 9 10 
B -0.438 0.243 0.0146 -0.483 -0.336 0.081 - - - -

WHITENESS TEST: (8,1,10) 

Order 1 2 3 4 5 6 7 8 9 10 
A 1.596 1.471 2.183 2.518 1.723 1.458 1.288 0.578 - -

Order 1 2 3 4 5 6 7 8 9 10 
B 0.354 -0.335 0.893 0.155 -0.953 0.0845 -0.084 -0.683 -0.286 0.117 

I Laboratory 2 Heading 

Original signal: 
AIC CRITERION: (10,1,9) 

Order 1 2 3 4 5 6 7 8 9 10 
A 1.438 1.145 0.417 -0.466 -1.159 -1.419 -1.133 -0.420 0.431 0.168 
Order 1 2 3 4 5 6 7 8 9 10 
B 1.990 2.403 2.098 1.202 0.075 -0.870 -1.268 -0.988 -0.168 -

WHITENESS TEST: (10,0,10) 

Order 1 2 3 4 5 6 7 8 9 10 
A 1.507 1.182 0.405 -0.524 -1.237 -1.487 -1.168 -0.407 0.488 0.241 
Order 1 2 3 4 5 6 7 8 9 10 
B 2.052 2.464 2.125 1.176 0.001 -0.967 -1.359 -1.044 -0.171 0.0342 

Difference signal: 
AIC CRITERION: (10,1,9) 
Order 1 2 3 4 5 6 7 8 9 10 
A -1.604 1.657 -0.995 0.0463 1.004 -1.583 1.646 -0.993 0.0448 0.029 
Order 1 2 3 4 5 6 7 8 9 10 
B -2.279 2.668 -2.043 0.673 0.930 -2.138 2.533 -1.952 0.643 
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WHITENESS TEST: (10,1,8) 

Order 1 2 3 4 5 6 7 8 9 10 
A 1.461 1.197 -0.693 -0.173 0.841 -0.829 0.739 -0.162 -0.113 -0.073 
Order 1 2 3 4 5 6 7 8 9 10 
B -1.461 1.197 -0.693 -0.052 0.911 -1.345 1.190 -0.606 
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APPENDIX A- 3 

GPS parameters 

I GPS Latitude 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A -1.977 0.644 
Order 1 2 3 4 5 6 7 8 9 10 
B -1.210 0.242 

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.985 -0.151 0.035 -0.067 0.116 0.112 0.167 -0.207 0.664 0.643 
Order 1 2 3 4 5 6 7 8 9 10 
B -0.198 -0.141 -0.041 -0.130 0.013 0.079 0.249 -0.038 -0.616 0.136 

I GPS Longitude 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A -1.343 0.2859 -0.239 0.0359 0.260 - - - - -

Order 1 2 3 4 5 6 7 8 9 10 
B -0.597 0.042 -0.249 -0.172 0.018 

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.787 -0.177 -0.062 -0.022 0.068 0.021 -0.061 0.048 -0.026 0.041 
Order 1 2 3 4 5 6 7 8 9 10 
B - - - - - - - - - -
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APPENDIX A- 4 

Crossbow IMU parameters 

I IMU X acceleration 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.089 0.080 -0.990 - - - - - - -
Order 1 2 3 4 5 6 7 8 9 10 
B -0.055 0.080 -0.977 -0.011 0.015 - - - - -

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.861 -0.243 0.634 -0.654 0.124 - - - - -
Order 1 2 3 4 5 6 7 8 9 10 
B -0.831 -0.269 0.634 -0.626 0.102 0.001 0.035 -0.009 -0.016 0.003 

I IMU Y acceleration 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.439 0.020 -0.581 - - - - - - -
Order 1 2 3 4 5 6 7 8 9 10 
B -0.356 -0.108 -0.507 - - - - - - -

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.534 0.365 -1.084 0.326 -0.388 -0.004 0.019 -0.041 0.006 -0.014 
Order 1 2 3 4 5 6 7 8 9 10 
B -0.464 0.316 -1.006 0.285 - - - - - -

I IMU Z acceleration 

AIC CRITERION: 



WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -2.154 2.214 -1.170 -0.231 1.038 -0.697 - - - -
Order 1 2 3 4 5 6 7 8 9 10 
B -2.081 2.050 -1.006 0.3033 0.998 -0.583 -0.096 0.032 -0.007 -

I IMU Yaw rate 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.162 0.178 -0.111 -0.029 -0.877 - - - - -

Order 1 2 3 4 5 6 7 8 9 10 
B -0.138 0.174 -0.093 -0.014 -0.856 -0.003 0.003 0.020 -0.013 -

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.122 -0.008 -0.177 0.012 -0.313 -0.093 -0.130 -0.101 - -
Order 1 2 3 4 5 6 7 8 9 10 
B - - - - - - - - - -

I IMU Roll rate 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A 0.998 -1.000 -0.999 - - - - - - -

Order 1 2 3 4 5 6 7 8 9 10 
B 0.990 -0.987 -0.979 - - - - - - -

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -1 .296 0.014 1.941 -2.259 0.474 0.993 -1.128 0.261 - -
Order 1 2 3 4 5 6 7 8 9 10 
B -1.284 0.004 1.922 -2.206 0.422 1.007 -1.087 0.204 0.023 0.005 
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I IMU Pitch rate 

AIC CRITERION: 

Order 1 2 3 4 5 6 7 8 9 10 
A 0.996 -1.000 -0.997 - - - - - - -

Order 1 2 3 4 5 6 7 8 9 10 
B 0.976 -1.003 -0.973 0.008 - - - - - -

WHITENESS TEST: 

Order 1 2 3 4 5 6 7 8 9 10 
A -0.000 -1.094 0.375 -0.696 -0.650 0.788 0.273 - - -
Order 1 2 3 4 5 6 7 8 9 10 
B -0.021 -1.081 0.387 -0.699 -0.628 0.785 0.265 0.011 -0.003 -0.014 
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