You are here
Performance analysis of back propagation algorithm using artificial neural networks
- Date Issued:
- 2002
- Summary:
- Backpropagation is a standard algorithm that is widely employed in many neural networks. Due to its wide acceptance and implementation, a standard benchmark for evaluating the performance of the algorithm is a handy tool for software design and development. The object of this thesis is to propose the use of the classic XOR problem for the performance evaluation of the backpropagation algorithm, with some variations on the input data sets. This thesis covers background work in this area and discusses the results obtained by other researchers. A series of test cases are then developed and run to perform the performance analysis of the backpropagation algorithm. As the performance of the networks depends strongly on the inputs, the effect of variation of the design parameters for the networks are evaluated and discussed.
Title: | Performance analysis of back propagation algorithm using artificial neural networks. |
177 views
53 downloads |
---|---|---|
Name(s): |
Malladi, Sasikanth. Florida Atlantic University, Degree grantor Pandya, Abhijit S., Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2002 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 109 p. | |
Language(s): | English | |
Summary: | Backpropagation is a standard algorithm that is widely employed in many neural networks. Due to its wide acceptance and implementation, a standard benchmark for evaluating the performance of the algorithm is a handy tool for software design and development. The object of this thesis is to propose the use of the classic XOR problem for the performance evaluation of the backpropagation algorithm, with some variations on the input data sets. This thesis covers background work in this area and discusses the results obtained by other researchers. A series of test cases are then developed and run to perform the performance analysis of the backpropagation algorithm. As the performance of the networks depends strongly on the inputs, the effect of variation of the design parameters for the networks are evaluated and discussed. | |
Identifier: | 9780493913308 (isbn), 12961 (digitool), FADT12961 (IID), fau:9829 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2002. |
|
Subject(s): |
Back propagation (Artificial intelligence) Neural networks (Computer science) |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12961 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |