You are here
Swimming control of an underwater vessel with elongated ribbon fin propulsion
- Date Issued:
- 2022
- Abstract/Description:
- Navigation of unmanned underwater vehicles in coastal zones, tight spaces and close to structures such as ports, ship hulls and pipelines remains a difficult challenge. Currently Autonomous Underwater Vehicles (AUVs) use a variety of techniques for motion control, including single thrusters with diving planes or hydrofoils, robotic wrists, or a moving mass. However, these techniques provide limited maneuverability. The objective of this work was to understand the mechanics of elongated fin propulsion for swimming and motion control of underwater vehicles. This bio-inspired propulsion is used by several fishes that swim by undulating a thin and elongated median fin that allow them to perform forward and directional maneuvers. In the first chapter we present the literature review as well as the mathematical formulation using thrust vectoring approach to achieve forward and turning maneuvers. In the second chapter, we used a robotic vessel with elongated fin propulsion to determine the thrust scaling and efficiency. Using precise force and swimming kinematics measurements with the robotic vessel, the thrust generated by the undulating fin was found to scale with the square of the relative velocity between the free streaming flow and the wave speed. In addition, a hydrodynamic efficiency is presented based on propulsive force measurements and a model on the power required to oscillate the fin laterally.
Title: | Swimming control of an underwater vessel with elongated ribbon fin propulsion. |
30 views
13 downloads |
---|---|---|
Name(s): |
Uddin, Mohammad Irfan , author Curet, Oscar M. , Thesis advisor Florida Atlantic University, Degree grantor Department of Ocean and Mechanical Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 143 p. | |
Language(s): | English | |
Abstract/Description: | Navigation of unmanned underwater vehicles in coastal zones, tight spaces and close to structures such as ports, ship hulls and pipelines remains a difficult challenge. Currently Autonomous Underwater Vehicles (AUVs) use a variety of techniques for motion control, including single thrusters with diving planes or hydrofoils, robotic wrists, or a moving mass. However, these techniques provide limited maneuverability. The objective of this work was to understand the mechanics of elongated fin propulsion for swimming and motion control of underwater vehicles. This bio-inspired propulsion is used by several fishes that swim by undulating a thin and elongated median fin that allow them to perform forward and directional maneuvers. In the first chapter we present the literature review as well as the mathematical formulation using thrust vectoring approach to achieve forward and turning maneuvers. In the second chapter, we used a robotic vessel with elongated fin propulsion to determine the thrust scaling and efficiency. Using precise force and swimming kinematics measurements with the robotic vessel, the thrust generated by the undulating fin was found to scale with the square of the relative velocity between the free streaming flow and the wave speed. In addition, a hydrodynamic efficiency is presented based on propulsive force measurements and a model on the power required to oscillate the fin laterally. | |
Identifier: | FA00014117 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Autonomous underwater vehicles Biomimetics Underwater propulsion |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014117 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |