You are here
A FRAMEWORK FOR NON-INTRUSIVE OCEAN CURRENT TURBINE ROTOR BLADE IMBALANCE FAULT DETECTION
- Date Issued:
- 2022
- Abstract/Description:
- Ocean current turbines (OCT) convert the kinetic energy housed within the earth’s ocean currents into electricity. However, due to the harsh environmental conditions that these turbines operate in, their system performance naturally degrades over time. This degradation correlates to high operation and maintenance (O&M) costs, which necessitates the need for robust condition monitoring and fault detection (CMFD). Unfortunately, OCT operational data is not publicly available in large and/or diverse enough quantities to develop such frameworks. Therefore, from an industry-wide perspective, the technologies needed to harvest this energy source are still in their infancy.
Title: | A FRAMEWORK FOR NON-INTRUSIVE OCEAN CURRENT TURBINE ROTOR BLADE IMBALANCE FAULT DETECTION. |
![]() ![]() |
---|---|---|
Name(s): |
Freeman, Brittny , author Tang, Yufei , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 122 p. | |
Language(s): | English | |
Abstract/Description: | Ocean current turbines (OCT) convert the kinetic energy housed within the earth’s ocean currents into electricity. However, due to the harsh environmental conditions that these turbines operate in, their system performance naturally degrades over time. This degradation correlates to high operation and maintenance (O&M) costs, which necessitates the need for robust condition monitoring and fault detection (CMFD). Unfortunately, OCT operational data is not publicly available in large and/or diverse enough quantities to develop such frameworks. Therefore, from an industry-wide perspective, the technologies needed to harvest this energy source are still in their infancy. | |
Identifier: | FA00014094 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Marine turbines Marine turbines--Blades |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00014094 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |