You are here

A FRAMEWORK FOR NON-INTRUSIVE OCEAN CURRENT TURBINE ROTOR BLADE IMBALANCE FAULT DETECTION

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
Ocean current turbines (OCT) convert the kinetic energy housed within the earth’s ocean currents into electricity. However, due to the harsh environmental conditions that these turbines operate in, their system performance naturally degrades over time. This degradation correlates to high operation and maintenance (O&M) costs, which necessitates the need for robust condition monitoring and fault detection (CMFD). Unfortunately, OCT operational data is not publicly available in large and/or diverse enough quantities to develop such frameworks. Therefore, from an industry-wide perspective, the technologies needed to harvest this energy source are still in their infancy.
Title: A FRAMEWORK FOR NON-INTRUSIVE OCEAN CURRENT TURBINE ROTOR BLADE IMBALANCE FAULT DETECTION.
39 views
12 downloads
Name(s): Freeman, Brittny , author
Tang, Yufei , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 122 p.
Language(s): English
Abstract/Description: Ocean current turbines (OCT) convert the kinetic energy housed within the earth’s ocean currents into electricity. However, due to the harsh environmental conditions that these turbines operate in, their system performance naturally degrades over time. This degradation correlates to high operation and maintenance (O&M) costs, which necessitates the need for robust condition monitoring and fault detection (CMFD). Unfortunately, OCT operational data is not publicly available in large and/or diverse enough quantities to develop such frameworks. Therefore, from an industry-wide perspective, the technologies needed to harvest this energy source are still in their infancy.
Identifier: FA00014094 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Marine turbines
Marine turbines--Blades
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014094
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.