You are here

EVALUATING ENVIRONMENTAL VARIABLES THAT INFLUENCE POND DISSOLVED OXYGEN TO INFORM PREDICTION MODEL DEVELOPMENT

Download pdf | Full Screen View

Date Issued:
2022
Abstract/Description:
Pond aquaculture accounts 65% of global finfish production. A major factor limiting pond aquaculture productivity is fluctuating oxygen levels, which are heavily influenced by atmospheric conditions and primary productivity. Being able to predict DO concentrations by measuring environmental parameters would be beneficial to improving the industry’s efficiencies. The data collected included pond DO, water temperature, air temperature, atmospheric pressure, wind speed/direction, solar irradiance, rainfall, pond Chl-a concentrations as well as water color images. Pearson’s correlations and stepwise regressions were used to determine the variables’ connection to DO and their potential usefulness for a prediction model. It was determined that sunlight levels play a crucial role in DO fluctuations and crashes because of its influence on pond heating, primary productivity, and pond stratification. It was also found that image data did have correlations to certain weather variables and helped improve prediction strength.
Title: EVALUATING ENVIRONMENTAL VARIABLES THAT INFLUENCE POND DISSOLVED OXYGEN TO INFORM PREDICTION MODEL DEVELOPMENT.
39 views
17 downloads
Name(s): Weber, Ethan W., author
Wills, Paul S. , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Marine Science and Oceanography
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2022
Date Issued: 2022
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 115 p.
Language(s): English
Abstract/Description: Pond aquaculture accounts 65% of global finfish production. A major factor limiting pond aquaculture productivity is fluctuating oxygen levels, which are heavily influenced by atmospheric conditions and primary productivity. Being able to predict DO concentrations by measuring environmental parameters would be beneficial to improving the industry’s efficiencies. The data collected included pond DO, water temperature, air temperature, atmospheric pressure, wind speed/direction, solar irradiance, rainfall, pond Chl-a concentrations as well as water color images. Pearson’s correlations and stepwise regressions were used to determine the variables’ connection to DO and their potential usefulness for a prediction model. It was determined that sunlight levels play a crucial role in DO fluctuations and crashes because of its influence on pond heating, primary productivity, and pond stratification. It was also found that image data did have correlations to certain weather variables and helped improve prediction strength.
Identifier: FA00014012 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2022.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Pond aquaculture
Water--Dissolved oxygen
Algorithms
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00014012
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.